Temporal Causal Graph Discovery
in Complex HPC Network Traffic Simulations

Subha Ilamathy, Rafat Ashraf Joy, Matthew T. Dearing, Dr. Zhiling Lan

UNIVERSITY OF

ILLINOIS CHICAGO Experiments & Methods

College of Engineering
1. Causal Discovery Methods

Motivation o | | | S
To identify the features most responsible for influencing the application iteration time, we
e Parallel Discrete Event Simulations applied four Causal Discovery techniques on multivariate time series data:
(PDES) offers accurate HPC 1. Granger Causality - Linear, lag-based causality detection.
simulations but is computationally 2. Enhanced Granger - Weighted loss for robustness. 77
Intensive and slow to scale. o .y -
3. NAVAR (Neural Additive VAR) | ) N\ —

* Surrogate models can accelerate * Non-linear components to estimate directed influence. T
simulations, and we explore if  Learns node-specific causal graphs. oo
causal insights can improve their 4. CausalFormer
long-term forecasting stability. * Transformer model Relative Relevance Propagation (RRP).

« Captures lag-aware multivariate attention over time. kB

* |nterpretable attention-based causal graphs.

° .
? Research Questions

* Can Causal Signals hidden in HPC 2. Feature Weighting Techniques
simulations unlock better

forecasting?

We evaluated two feature integration strategies to incorporate

 Candifferent Causal Discovery causal signals into surrogate model training. scaled
methods identify key drivers for
accurate surrogate forecasting?

X = 2-xj, for all causal features x;.
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1. Direct Feature Scaling
 Causal features identified by NAVAR and CausalFormer were amplified.

2. Attention-Based Weighting afcaled = a; - m;
Features & Model « Attention weights learned during training using softmax,
enabling adaptive emphasis on causal features. x;"’eighted = x; - agcaled
HPC Topology Simulated * Enhanced both interpretability and forecasting robustness.

Dragonfly [1] - a fully-connected graph
Routers: 36 Compute Nodes: 72 Results & Future W()I'k

Ir\j gy & SN €. Which Causal Methods Worked Best?
| s o i a 7K Forecasting Results by Causal Method
All-to-all intra-group connection 9 \\ MEthOd Type RESUlt

S Granger Statistical 22 features selected,
O Tomina ComputoNod9) [0 Pousrwiid | Poor model performance

S — Enhanced Granger Statistical (WDS) Slightly better than Granger, but still suboptimal

NAVAR Neural VAR Best results when used with attention weightin
Data Features (per compute node) e
. lF T f - T f ith L Attenti

e 44 features from a synthetlc HPC CausalFormer ransformer-based op performer with Causa ention

n etWO rk S i mu lati on Of M I LC [2] * Model Training Metrics - Feature Weighting using Scaling Factor Model Training Metrics - Feature Weighting using Attention
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framework using base and

augmented features.
1. Iteration time (Time_Diff)

2. Network traffic (QOS_Data) ) I | I ) I
3. Virtual Channel occupancy (VC) 1 = Il @ mE | |

Metric value
Metric value

4. Downstream credits (DC) Baselne afedures)  NAVAR (alleaurs) o Mterlon s Causarmer (afaurs)
Causal Method Causal Method
Time Se ries MOdel ArChitectu re BASELINE MODEL - Normalized Time Series and Forecasted Values for Time_Delta We Suggest that ConSidering
From [4]. Trained on exogenous features g causal features opens the
Input: 28 prior time steps Shape: (28, 43) door to enhance forecasting
Output: Application iteration time O ~.._._ | capabilitythrough future
1D ConvNet + Regularization 2 e research:

* Train causally-informed
CAUSALFORMER WITH ATTN MODEL - Normalized Time Series and Forecasted Values for Time_Delta
models for each exogenous

MW WWW\A\”\“ .

LSTM + Regularization

alue

Dense layer (features)

1 unit - regression output

/ | \4 e . Use these independent
/\WW/VMA {“ t//WWW\J \J "N\ B predictions in the next-step

predictors of the target
ime steps variable model.
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