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ABSTRACT

While designing sustainable and resilient urban built environment is increasingly promoted around the world,
significant data gaps have made research on pressing sustainability issues challenging to carry out. Pavements
are known to have strong economic and environmental impacts; however, most cities lack a spatial catalog of
their surfaces due to the cost-prohibitive and time-consuming nature of data collection. Recent advancements
in computer vision, together with the availability of street-level images, provide new opportunities for cities
to extract large-scale built environment data with lower implementation costs and higher accuracy. In this
paper, we propose CitySurfaces, an active learning-based framework that leverages computer vision techniques
for classifying sidewalk materials using widely available street-level images. We trained the framework on
images from New York City and Boston and the evaluation results show a 90.5% mloU score. Furthermore,
we evaluated the framework using images from six different cities, demonstrating that it can be applied to
regions with distinct urban fabrics, even outside the domain of the training data. CitySurfaces can provide
researchers and city agencies with a low-cost, accurate, and extensible method to collect sidewalk material
data which plays a critical role in addressing major sustainability issues, including climate change and surface

water management.

1. Introduction

As urban areas expand around the world, more impervious surfaces
replace the natural landscape, creating significant ecological, hydrolog-
ical, and economic disruptions (Arnold & Gibbons, 1996; Chithra, Nair,
Amarnath, & Anjana, 2015). Choosing the right material to cover city
surfaces has become a critical issue in mitigating the adverse effects of
increased anthropogenic activities. Historically, local availability, cost,
strength, and aesthetics were the main factors influencing the choice
of surface pavements (Lay, Metcalf, & Sharp, 2020; Tillson, 1900). The
advent of asphalt and, later, concrete changed the face of cities. The
longevity and durability coupled with relatively low production and
installation costs made them the pavements of choice. However, as
it was later revealed, these benefits came with huge environmental
burdens (Van Dam et al., 2015).

One of the concerning environmental impacts of impervious sur-
faces is the sharp rise in urban temperature compared to its neigh-
boring rural areas — a phenomenon called Urban Heat Island (UHI)
effect (Oke, 1982). UHIL, which poses serious challenges to public
health, ecological environment, and urban liveability (Estoque, Mu-
rayama, & Myint, 2017), is shown to be directly associated with surface
characteristics, such as thermal performance and reflectivity. It can

influence microclimates within the city by absorbing more diurnal
heat and emitting that into the atmosphere at night (Nwakaire, Onn,
Yap, Yuen, & Onodagu, 2020; Takebayashi & Moriyama, 2012; Wu,
Sun, Li, & Yu, 2018). Natural surfaces and vegetation increase the
amount of evapotranspiration and decrease the overall temperature
and create a cool island effect (Amati & Taylor, 2010; Du et al.,
2017). Reflective/high-albedo materials are also known to decrease
UHI (Akbari, Menon, & Rosenfeld, 2009; Santamouris, 2013; Santa-
mouris, Synnefa, & Karlessi, 2011; Zhu & Mai, 2019). Hence, the
spatial distribution of land cover has a strong impact on the surface
temperature (Chen & Zhang, 2017). Surface material also impact the
water runoff and increase the risk of flooding. Sidewalks and roads
form the main part of the urban ground surfaces. Today, the majority of
the sidewalks are covered with impermeable materials which prohibit
the infiltration of the water into the underlying soil, increase both the
magnitude and frequency of surface runoffs (Bell, Tague, & McMillan,
2019; Shuster, Bonta, Thurston, Warnemuende, & Smith, 2005), reduce
the groundwater recharge, and negatively impact the water quality.
The excessive use of impervious surfaces is shown to be the primary
cause of the Combined Sewer Overflows (CSOs), which can lead to
massive pollution of natural bodies of water and street flooding (Joshi,
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Fig. 1. Using CitySurfaces to map the dominant surface material in Chicago, Washington DC, and Brooklyn (not part of our training data). Segments where the dominant material

differs from concrete are drawn using a thicker line.

Leitdo, Maurer, & Bach, 2021). Aside from the mentioned impacts,
sidewalk pavements can also lead to public health hazards such as
outdoor falls, or pose a barrier to walkability and accessibility of
public spaces, specifically for the more vulnerable population and
wheelchair users (Aghaabbasi, Moeinaddini, Shah, Asadi-Shekari, &
Kermani, 2018; Clifton, Smith, & Rodriguez, 2007; Talbot, Musiol,
Witham, & Metter, 2005). Studies show that uneven surfaces, indistin-
guishable surface colors, and low-friction materials contribute to the
high incidence of outdoor falls in elderly populations (Chippendale &
Boltz, 2015; Thomas, Gardiner, Crompton, & Lawson, 2020).

Despite the substantial economic, environmental, public health,
and safety implications of sidewalk pavements (Estoque et al., 2017;
Muench, Anderson, & Bevan, 2010; Van Dam et al., 2015), most cities,
even in industrialized economies, still lack information about the loca-
tion, condition, and paving materials of their sidewalks (Deitz, Lobben,
& Alferez, 2021). The lack of data creates barriers to understanding
the real extent of the environmental and social impacts of using dif-
ferent materials and inhibits our ability to take a complex system
approach to sustainability assessment (Van Dam et al., 2015). For
instance, studies show a significant intra-urban variability of the urban
thermal environment due to the street-level heterogeneity of paving
materials (Agathangelidis, Cartalis, & Santamouris, 2020). However,
the data scarcity makes it challenging to measure this variability across
different neighborhoods and consequently, impedes the development
of a sustainable and resilient mitigation response plan (Akbari & Rose,
2008; Li, Zhou, & Ouyang, 2013; Yang et al., 2019). In the absence of
fine-scale data, studies mainly rely on remote sensing images; however,
the high-resolution aerial images are both spatially and temporally
sparse (Zhang, Odeh, & Han, 2009), requiring researchers to use a
variety of data aggregation and extrapolation techniques to fill in the
missing data, which can lead to high bias and hurt the validity of the
final results.

Collecting comprehensive and fine-scale sidewalk data using con-
ventional methods is time-consuming and cost-prohibitive. Recent tech-
nological innovations in data collection opened new frontiers for re-
search on public space and pedestrian facilities, creating opportunities
to track features of interest at higher temporal frequencies and more
granular geographic scales (Glaeser, Kominers, Luca, & Naik, 2018).
The use of street-level images in urban analysis has gained popularity
since the introduction of Google Street View (GSV) (Anguelov et al.,
2010) and Microsoft Street Slide (Kopf, Chen, Szeliski, & Cohen, 2010),
services that provide panoramic images captured by cameras mounted
on a fleet of cars. Concurrently, developments in machine learning
and computer vision applied to these new datasets have enabled novel
research directions to measure the “unmeasurable” in urban built
environments (Ewing & Handy, 2009), including sidewalks (Ai & Tsali,
2016; Frackelton et al., 2013; Saha, Saugstad, Maddali, Zeng, Holland,
Bower, Dash, Chen, Li, Hara, & Froehlich, 2019).

In this work, we address this data gap and take a step towards
exploring the surface of our cities through CitySurfaces, a framework

aimed at generating city-wide pavement material information by lever-
aging a collection of publicly available urban datasets. We combine
active learning and computer vision-based segmentation model to lo-
cate, delineate, and classify sidewalk paving materials from street-level
images. Our framework adopts a recent high-performing segmentation
model (Tao, Sapra, & Catanzaro, 2020), which uses hierarchical multi-
scale attention combined with object-contextual representations. To
tackle the challenges of high annotation costs associated with dense
semantic label annotation, we make use of an iterative, multi-stage
active learning approach, together with a previously acquired sidewalk
inventory from Boston, which lists the dominant paving material for
a given street segment. We demonstrate how the trained segmentation
model can be extended with additional classes of materials with no-
ticeably less effort, making it a versatile approach that can be used in
cities with varying urban fabrics and paving materials. To show the
generalization capabilities of CitySurfaces, we employ our framework
in the segmentation of street-level images from four different cities:
Brooklyn, Chicago, Washington DC, and Philadelphia, none of which
were included in the training process. Fig. 1 highlights how different
pavement materials are spatially distributed in three cities.
Our contributions can be summarized as follows:

» We present CitySurfaces, a deep-learning-based image segmenta-
tion framework for large-scale localization and classification of
sidewalk paving materials.

We adopt an active learning strategy to significantly reduce pixel-
level annotation costs for training data generation, and yield
increased segmentation accuracy.

We conduct extensive experiments using street-level images from
six different cities demonstrating that our model can be applied
to cities with distinct urban fabrics, even outside of the domain
of the training data.

We make publicly available our model as well as the results of
our material classification in the selected cities. The data can be
accessed at: https://github.com/VIDA-NYU/city-surfaces.

This paper is organized as follows: Section 2 describes the main
data sources of our framework; Section 3 describes the CitySurfaces
framework; Section 4 summarizes our results; Section 5 highlights
challenges and limitations; and Section 6 presents our conclusion.

2. Data description

Manually labeling the sidewalk materials in each image is a time-
consuming task. Our proposed framework leverages a unique dataset
that describes the material of sidewalks in Boston. We combine that
data with the street-level images to create the training data for our
semantic segmentation model. Next, we describe both data sources.
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Fig. 2. The eight classes of surface materials used in our study. Top: Standard and
prevalent materials. Bottom: Materials with distinct use.

2.1. Boston sidewalk inventory

The sidewalk inventory (Boston PWD, 2014) is part of the Boston
Pedestrian Transportation Plan (Loutzenheiser, 2010) and describes
sidewalk features, including geographic coordinates and paving mate-
rials collected via manual field visits. The material attribute describes
the dominant surface material of each street segment (either concrete,
brick, granite, a mix of concrete and brick, or asphalt). Fig. 2 illustrates
patches of these five materials; the other three extra materials (granite
block, cobblestone, hexagonal pavers) shown in the image were not
recorded in the Boston dataset but were later manually added to
our classes, as we will discuss in Section 3.3. We grouped the street
segments by materials, using the geographic coordinates of the paving
materials in the Boston inventory, and used it to assign an overall image
class to the street-level images to guide the annotation process.

2.2. Street-level images

Street-level image usage in urban analysis has gained popularity
with the introduction of Google Street View (GSV) (Anguelov et al.,
2010) and Microsoft Street Slide (Kopf et al., 2010), services that
provide panoramic images captured by specifically designed cameras
mounted on a fleet of vehicles. These new data sources enable new
questions and study designs for urban planning and design, urban
sociology, and public health (Griew, Hillsdon, Foster, Coombes, Jones,
& Wilkinson, 2013; Mooney et al., 2016; Yin, Cheng, Wang, & Shao,
2015). The GSV API can retrieve street-level images via geographic
coordinates and allows users to adjust camera settings such as the
heading, field of view (FoV), and pitch.

We use the OSMnx library (Boeing, 2017) to obtain the Boston
street network and query the GSV API for street-level images at a fixed
interval (5 m), excluding major highways and tunnels. We acquire
the compass bearing of each street to set the camera heading to be
perpendicular to the street, thus looking directly at left and right
sidewalks. The pitch was set to 0° with an FoV of 80°. To create a
more diverse training set, for 35% of the training data, we use different
combinations of headings (pitch € [-10°,-20°], and FoVe [60°,70°]),
to have sidewalk images taken at varying angles and perspectives.
Fig. 3 illustrates sampled street segments in Boston, together with
their image-level annotations. In order to train our framework, 3500
Boston images were obtained, and later 2000 images from New York
City (NYC) were added to the pool of initially unannotated data. We
excluded images with no sidewalks as well as those where more than
80% of the sidewalks were occluded. The final set had a total of
4300 images.
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Fig. 3. Examples of sampled points in Boston to obtain street-level images. Three
different sampling locations are highlighted and for each location, the street-level image
as well as the prediction result of the model is depicted.

3. CitySurfaces

CitySurfaces adopts an active learning approach for the seman-
tic segmentation of sidewalk paving materials. Using this framework,
we aim to: (1) Train a model that can classify five different paving
materials plus asphalt roads; (2) Extract information about sidewalk
materials of a city for which no ground truth sidewalk inventory exists
(e.g., NYC); and (3) Extend the model to classify additional classes of
materials so that it can be applied to a more general set of cities.

Active learning aims at achieving high accuracy while minimizing
the amount of required labeled data. The main hypothesis is, if we
allow the model to choose the training data, it will perform better with
fewer labeled instances (Settles, 2009). Through iteratively selecting
the most informative or representative images to be labeled, fewer
labeled instances are required to achieve similar performance, when
compared to randomly selecting a large sample as training data and
annotating all of it at once (Bloodgood & Vijay-Shanker, 2014; Huang,
Jin, & Zhou, 2010).

In general, our multi-stage workflow is different from previous
works in active learning for semantic segmentation in two important
ways: First, our sample selection method is not fully automated; we
use the uncertainty measure to filter the pool of unlabeled data in each
stage, but we also use domain expertise for selecting a sample of images
to be annotated and added to the training set in the next stage. Second,
our query frequency is ten epochs (each epoch is a pass through all
training data). The conventional approach in active learning is to select
new samples (query) every iteration, which can work in cases where
the cost of annotation is not high or in experimental studies that work
with already annotated images to advance the field and develop new
query algorithms, as is the case with most of the already published
works in active learning for semantic segmentation, where they use
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Fig. 4. CitySurfaces workflow. Block (a): Creating the initial ground truth labels using the Boston sidewalk inventory and GSV images. A sample of unlabeled images is fed to a
pre-trained HRNet, which outputs annotation labels containing two classes of interest: roads and sidewalks. The labels are manually refined to represent the five sidewalk paving
classes, forming our ground truth set; Block (b): Training the base model to classify five classes of surface materials, plus roads. The data from block (a) is used for the first
stage of training. The model is then iteratively retrained for multiple stages on new samples. In each stage, the most representative and informative samples are chosen, and the
annotations are manually refined and added to the training set to retrain the network; Block (c): Introducing three new classes of materials. The pre-trained model from block
(b) is retrained on the newly annotated image with three new classes. The final model can classify eight classes of different materials.

datasets such as Cityscapes (Cordts et al.,, 2016) or ADE20k (Zhou
et al., 2017). However, since no annotated dataset exists for sidewalk
materials, we have to annotate every new sample we choose during
the training process, and it is impractical to annotate a new sample
for every iteration (Kim et al., 2020). To overcome this, we adopt a
multi-stage framework and annotate a new sample at the end of each
stage, where each stage consists of ten epochs.

Our workflow has three major blocks as illustrated in Fig. 4: Block
(a) creating initial training labels; Block (b) training a material seg-
mentation model and; Block (c) extending the model to segment three
additional classes from NYC standard materials. In this section, we first
describe the different blocks of the workflow in detail, followed by a
description of the semantic segmentation model. The training process
and experiments were executed on 4 NVIDIA P100 GPUs with 12 GB
of RAM each.

3.1. Block (a): Initial image annotation

To start the training process, we need a set of annotated images. To
obtain the annotated data, we randomly sample 1000 images from a
pool of unlabeled Boston street-level images and feed that sample into
HRNet-W48 (Sun et al., 2019; Wang et al., 2020) model pre-trained
on Cityscapes (Cordts et al., 2016) and get the initial segmentation
results (Fig. 4(a)). The model outputs 19 classes from which we only
keep roads and sidewalks. To generate an initial set of labeled data, we
make use of the Boston Sidewalk Inventory (detailed in Section 2.1).
We first query for the street segments of the images in our initial
sample and modify the label to match the audited pavement from
the inventory. Effectively, we are ensuring that, instead of having a
general sidewalk class outputted by the pre-trained HRNet, our image
set will have annotations according to the ground truth inventory data
(e.g., concrete, bricks). We then manually refine them to account for
the pre-trained model’s prediction errors. In the initial training set, we
restrict our sampling to images where the sidewalks mainly consist
of a single material and eventually move to more complex material
configurations in later stages. The final annotated images were split
into 80% training and 20% validation to train the model in block (b).

3.2. Block (b): Model training on Boston and NYC

In the second block of the framework (Fig. 4(b)), we train an
attention-based model (detailed in Section 3.4) using the labeled im-
ages from block (a). Our training step initially uses 800 images for
training, and 200 images for validation, with a batch size of 8, SGD
for the optimizer, momentum 0.9, weight decay Se~, and an initial
learning rate of 0.002. We train the model in a multi-stage framework,
where each stage consists of ten epochs. In each stage, we choose the
epoch with the highest mIoU on the validation set. At the end of each
stage, we make two decisions: (1) we select the best model considering
all epochs of the current stage; and (2) we analyze the quantitative and
qualitative results of the model to guide sampling the new addition
to the training data. In particular, we analyze the confusion matrix,
similarity matrix, as well as the top 10% of predictions with the highest
mloU and the top 20% of failures, obtained from the validation phase
of the best epoch. The weights of the best model in the current stage
are then used to initialize the model in the next stage with more
training data. This restating scheme of SGD with the best solution of
the previous stage is useful in increasing the chances of finding better
solutions in the current stage.

To sample new images, we employ two strategies: (i) Uncertainty in
predicting unlabeled images: We make use of the model’s uncertainty
estimations on unlabeled data and select the images that were most
challenging for the model to predict; and (ii) Performance on validation
set: By examining per-image IoU, uncertainty, and error rates of the
images from failure and success cases together with confusion matrices,
we construct a set of sample images to be used as inputs for finding
similar unlabeled images. A more detailed explanation of these two
techniques is provided in Appendix.

Following the sample selection strategies, we retrieve 300 unlabeled
images, apply the current model on these new unlabeled images to
generate a prediction, and then modify the predicted labels to add
them to the overall training set, such that the segmentation model
is trained on more samples of hard-to-segment images. To improve
model generalization, in the third stage, we begin including images
from Manhattan, which has a different urban fabric and more diverse
forms and types of paving materials, in the pool of unlabeled data.
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Fig. 5. Examples of how the annotation labels with additional classes were created
from the output of the model in block (b) of our framework. The model trained in
block (b) classified granite blocks and cobblestone as background, leaving smooth and
clear boundaries, which helps to augment the labels with new classes during manual
refinement and train a model that can classify eight different materials (block (c) of
the framework).

Since no ground truth data exists for Manhattan, to create the ground
truth label, we need to have a model with reliable performance to
create the base annotation. We chose the third stage since the model
reached a reliable performance (83% mloU) in detecting the main
classes, and outputs had clear borders compared to the other two stages.
The selected images from Manhattan were fed to the model, and the
results were corrected and refined using feedback from the domain
expert and added to the training dataset. The segmentation model is
then trained on the combined set of the initial and newly annotated
data (1100 images), initialized with the weight from the best epoch of
the previous stage. This procedure is iterated for five stages (at which
point we observe no further notable improvements). The model at the
final stage was trained on 2500 images (Fig. 4(b)), and achieved 88.6%
mloU on the held-out test set.

3.3. Block (c): Including additional materials from NYC

Once the model in block (b) attains sufficiently accurate segmen-
tation performance, we extend it by adding three additional classes
(Fig. 4(c)). The three additional classes are granite blocks, hexagonal
pavers, and cobblestone. These materials are standard sidewalk mate-
rials in the NYC street design manual (NYC DOT, 2020). While granite
blocks and cobblestones were also observed in Boston, they were not
included in the Boston sidewalk inventory. Since the original model in
block (b) was not trained to detect these materials, they are initially ei-
ther classified as background (mostly granite blocks and cobblestones)
or misclassified (mostly hexagonal pavers) as other visually similar
materials. To collect street-view images that have these new materials,
we follow the NYC and Boston street design manuals (NYC DOT, 2020;
Thomas M. Menino, 2013) to filter unlabeled data from the locations
in which these materials can be found. For example, hexagonal pavers
(NYC only) are typically used on sidewalks adjacent to parks and open
spaces, and cobblestones are used in historic districts.

We select a total of 800 images that contain these new classes
to be iteratively sampled for training, 150 additional images for the
validation set, and 200 images for the held-out test set. Annotating
the new image set consumed fewer resources as compared to the
initial annotations since smooth model predictions typically leave clear
boundaries, which only needed to be assigned the appropriate label (see
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Fig. 5). The newly generated set of labels was used to train the model
by initializing the architecture with model weights in block (b) and
only replacing the final softmax layer instead, to produce ten output
channels (corresponding to eight paving materials, plus the road, and
background). At the end of each stage, we select a new sample of
unlabeled images following the same process explained in Section 3.2,
run them through the model, obtain segmentation predictions, refine
the results, and retrain the model. In total, 726 additional images were
added to the training set, and in the final stage, the model was trained
on 3226 images (2500 from block (b) + 726). We halt the training
in stage 3 after 30 epochs, and test the model on the held-out test
set (Fig. 4(c)). Fig. 6 shows the confusion matrices for all three stages
of our extended model, illustrating model performance as a function of
the amount of training data. These matrices were also used in part to
guide the sampling of images to annotate.

Using the described method, model performance increases from
74.3% mloU to 88.6% for the base model (block (b)) and to 90.5%
in the extended model (block (c)), with the manual refinement time
decreasing from 25 to 4 min per image. Fig. 7 depicts the evolution of
the segmentation results of block (c) through the active learning stages.
The model outputs more refined boundaries and significantly less noise
in later stages; thus, significantly less time is needed to modify the
newly annotated data as the stages go on. In each stage, the model is
initialized with the weights from the previous stage.

3.4. Semantic segmentation model

For the semantic segmentation task (blocks (b) and (c)), we adopt
the Hierarchical Multi-Scale Attention (Tao et al., 2020) and fine-tune
the parameters on our dataset. To train the model, following Zhu et al.
(2019), we employ class uniform sampling in the data loader, which
chooses equal samples for each class for handling the class imbalance,
since some classes like road and background are almost present in all
images, whereas classes like cobblestone and hexagonal pavers are not
that prevalent. The Region Mutual Information (RMI) loss (Zhao, Wang,
Yang, & Cai, 2019) was employed as the primary loss function. RMI
takes the relationship between pixels into account and uses the neigh-
boring pixels around each pixel to represent it instead of only relying
on single pixels to calculate the loss. We run different experiments with
and without the RMI loss function for the main segmentation head. In
the absence of RMI, standard cross-entropy loss was used instead. The
model under the same setting, but without RMI loss, performed slightly
worse (89.84) compared to the one where RMI loss was used (90.51).
Fig. 8 presents an overview of the architecture. Next, we describe the
network’s architecture in more detail.

3.4.1. Backbone

We chose HRNet-OCR (Yuan, Chen, & Wang, 2019) as the backbone.
The network comprises HRNet-W48 (Sun et al., 2019; Wang et al.,
2020) and adds Object-Contextual Representations (Yuan et al., 2019)
to further augment the representation extracted by the HRNet. The
final representation from HRNet-W48 works as the input to the OCR
module, which computes the weighted aggregation of all the object
region representations to augment the representation of each pixel. The
weights are calculated based on the relations between pixels and object
regions. The augmented representations are the input for the attention
model described next.

3.4.2. Attention model

The model is mainly based on Share-Net (Chen, Yang, Wang, Xu,
& Yuille, 2016). Suppose an input image is resized to several scales,
ie, s € {1,...,5}. Each scale is passed through the backbone part
(HRNet-W48+0CR), and we can get the output feature fl.fc. For the
feature, ¢ € {1,...,C} (C is the number of classes of interest, and i
ranges over all the spatial positions). As shown in Fig. 8, the features
then go through two heads, one for attention generation and the
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Fig. 6. Confusion matrices for the three stages of the extended model. These results guided sample selection and signaled which type of images should be included in the training

data for the next stage. Notice the improvement of the predictions for hexagonal pavers, granite block, and granite/bluestone (highlighted in red).

Fig. 7. Evolution of the block (c) extended model’s inference through different training
stages.
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Fig. 8. The general architecture of the hierarchical multi-scale attention (HMSA) based
semantic segmentation method (Tao et al., 2020). The inputs are images from two
scales. The network learns the relative attention between scales and hierarchically
applies the learned attention to combine the results from two segmentation heads and
make a prediction.

other for segmentation. The features f;', are resized for different scales
to have the same resolution (with respect to the finest scale) using
bilinear interpolation before passing the model heads. For the attention
head, we generate the learned weights for /. which is represented
by a; . This weight is integrated into the initial output /;  from the
segmentation head, and we have:

s

gi,c = af,c * hi(‘ (1)

in which g/, is the final output score map for scale s, and * here
represents the pixel-wise multiplication.

In the model, the combination of score maps is similar to Tao et al.
(2020) to make the flexible scales during inference time possible and
improve the training efficiency. During the training, we only need to
train with two adjacent scales (as shown in Fig. 8). During testing,
weights for the network are shared for each adjacent scale pair.

To be more specific, suppose the two selected adjacent scales are 1x
and 0.5x (the final selected scales during training in the model are 0.5x,
1x, and 2x) to obtain the pair of scaled images for the model input.
For inference, we can hierarchically and repeatedly use the learned
attention to combine N scales of predictions together. Precedence is
given to lower scales since they have a more global context and can
choose where predictions need to be refined by higher scale predictions.
The final combination principle for these adjacent scales is defined as:
i

c=a) 5 h) 5+ (1-a).5)xh!, 2

The hierarchical mechanism used in the model coupled with the
powerful HRNet-OCR backbone provides a robust architecture for the
challenging task of material classification in the wild.

4. Results

In this section, we present the results of applying our trained model
on the held-out test set. We do not rely on pixel-level accuracy in eval-
uating the model since sidewalks comprise a relatively small portion
of each image, while road and background can occupy more than 70%
of most images, resulting in a significant class imbalance. This class
imbalance creates an arbitrary high pixel-level accuracy, which is not
a fair representation of the model’s performance.

4.1. General evaluation metrics

Table 1 presents class-level evaluation metrics, the mean Jaccard
index (IoU), precision, and recall for the final model. The model outputs
ten classes in total, seven classes of sidewalk pavings, one extra class
of street pavings (cobblestone), plus road and background. Excluding
road and background, the model achieved 88.37% accuracy, with
hexagonal asphalt pavers and asphalt sidewalks having the highest
accuracy measures. Overall, half of the pavement classes have IoU
above 90%. Concrete, the most prevalent and versatile material, can
be classified with 88.7 accuracy. A robust result considering the high
within-class variation (i.e., it comes in various colors and textures).
Granite/bluestone and granite block have the lowest accuracy (81.09
and 82.92 respectively). This can be partially explained by their visual
similarity to dark concrete (or wet concrete), potentially leading to
more false positive predictions.
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Fig. 9. Predictions of the model on the held-out test set. Fine details and boundaries of objects like poles, plants, wooden sticks, and fire hydrants are very precisely predicted.
The model also segmented curb cuts (line 1 - column 2), different instances of the same material (3-1 and 3-3), and visually similar materials of different classes (1-4).

Table 1

Evaluation metrics on the held-out test set.
Label ToU Precision Recall
Concrete 88.69 0.95 0.93
Brick 91.79 0.95 0.96
Granite/Bluestone 81.09 0.85 0.95
Asphalt 92.58 0.96 0.97
Mixed 86.11 0.93 0.93
Granite block/Stone 82.92 0.94 0.88
Hexagonal asphalt paver 92.81 0.98 0.95
Cobblestone 90.95 0.94 0.96
Road 99.01 0.99 1
Background 99.16 1 1
mloU 90.51
mloU (eight main classes) 88.37

Table 2

Evaluation metrics on samples from the selected cities (outside of training domain).

City mloU

Mean per-segment accuracy

Brooklyn 86.12 87.09
Chicago 84.31 86.52
Washington DC 82.61 84.27
Philadelphia 82.81 83.46

Fig. 9 illustrates some examples of the model’s prediction, highlight-
ing its performance in detecting boundaries between fine objects, like
poles and plants, even in shadowed scenes (line 1 - column 1, 1-3, 2-1).
The model can also detect curb ramps in most scenes, even though it
was not specifically trained with such a goal (1-1 and 2-2). Fig. 9 (1-2)
shows an example in which the model accurately classified a sidewalk
segment with patches of different materials. We can also see the model
performance in distinguishing between visually similar materials (1-4,
3-2), as well as different variation of the same material such as (3-1)
where two visually distinct concrete slabs are classified correctly.

4.2. Evaluating the generalization capabilities of CitySurfaces

To demonstrate the generalization capabilities of CitySurfaces, we
tested the performance of our approach on samples from Chicago,
Washington DC, Philadelphia, and Brooklyn, which were not part of
the training data. We randomly sampled 200 street segments from each
city, and obtained their corresponding street-view images, at every five
meters of each segment, from the left and right sides of the sidewalks.
After data cleaning and pre-processing, we were left with roughly

Concrete
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Bricks Cobblestone Bricks Cobblestone

Granite Hexagonal Granite Hexagonal
pave paver
Asphalt Grantie Asphalt Grantie
) block/stone > block/stone
Mixed Mixed

H Boston M Washington DC M Philadelphia ll Manhattan B Brooklyn [ Chicago

Fig. 10. Comparison of the distribution of detected materials in six different cities.
The star plots show the log of the number of sidewalk segments identified as having
a given material.

600 images per city; these images were annotated using the model in
block (b), then manually checked and refined to create the test set.
Table 2 shows the results of applying CitySurfaces on these test sets. We
report mloU and mean per-segment accuracy. Mean per-segment is a
simple and practical metric that measures whether the model correctly
detected the dominant materials in each street segment and report the
average accuracy over all images in the test set. All tested cities had an
accuracy greater than 82%. Brooklyn achieved the highest accuracy,
since the borough’s paving materials follow the same street design
regulation as Manhattan, which was part of the training data.
CitySurfaces enables generating city-wide sidewalk material
datasets, as illustrated in Fig. 9. This allows us to compare the dis-
tribution of different paving materials in various cities. Fig. 10 shows
the result of this comparison. We can see that Manhattan and Washing-
ton DC use more diverse and balanced material types. Concrete is the
dominant material in all of the cities. Chicago has the highest number
of asphalt sidewalks among the selected cities; Boston, Washington DC,
and Philadelphia have a similar number of asphalt sidewalks, which
come second to Chicago. Asphalt sidewalks are mainly used in suburban
neighborhoods; that is why dense urban areas like Manhattan and
Brooklyn have the lowest number of sidewalks paved with asphalt. An-
other interesting observation is the higher usage of granite/bluestone in
Manhattan compared to Brooklyn, two boroughs of the same city. Gran-
ite is considered an expensive and decorative material, used mainly
in commercial streets or historic neighborhoods, which signals Man-
hattan’s higher land value and income level, since maintenance and
installation of decorative pavings are the owner’s responsibility.
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