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A B S T R A C T

While designing sustainable and resilient urban built environment is increasingly promoted around the world,
significant data gaps have made research on pressing sustainability issues challenging to carry out. Pavements
are known to have strong economic and environmental impacts; however, most cities lack a spatial catalog of
their surfaces due to the cost-prohibitive and time-consuming nature of data collection. Recent advancements
in computer vision, together with the availability of street-level images, provide new opportunities for cities
to extract large-scale built environment data with lower implementation costs and higher accuracy. In this
paper, we propose CitySurfaces, an active learning-based framework that leverages computer vision techniques
for classifying sidewalk materials using widely available street-level images. We trained the framework on
images from New York City and Boston and the evaluation results show a 90.5% mIoU score. Furthermore,
we evaluated the framework using images from six different cities, demonstrating that it can be applied to
regions with distinct urban fabrics, even outside the domain of the training data. CitySurfaces can provide
researchers and city agencies with a low-cost, accurate, and extensible method to collect sidewalk material
data which plays a critical role in addressing major sustainability issues, including climate change and surface
water management.
1. Introduction

As urban areas expand around the world, more impervious surfaces
replace the natural landscape, creating significant ecological, hydrolog-
ical, and economic disruptions (Arnold & Gibbons, 1996; Chithra, Nair,

marnath, & Anjana, 2015). Choosing the right material to cover city
urfaces has become a critical issue in mitigating the adverse effects of
ncreased anthropogenic activities. Historically, local availability, cost,
trength, and aesthetics were the main factors influencing the choice
f surface pavements (Lay, Metcalf, & Sharp, 2020; Tillson, 1900). The
dvent of asphalt and, later, concrete changed the face of cities. The
ongevity and durability coupled with relatively low production and
nstallation costs made them the pavements of choice. However, as
t was later revealed, these benefits came with huge environmental
urdens (Van Dam et al., 2015).

One of the concerning environmental impacts of impervious sur-
aces is the sharp rise in urban temperature compared to its neigh-
oring rural areas – a phenomenon called Urban Heat Island (UHI)
ffect (Oke, 1982). UHI, which poses serious challenges to public
ealth, ecological environment, and urban liveability (Estoque, Mu-
ayama, & Myint, 2017), is shown to be directly associated with surface
haracteristics, such as thermal performance and reflectivity. It can
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influence microclimates within the city by absorbing more diurnal
heat and emitting that into the atmosphere at night (Nwakaire, Onn,
Yap, Yuen, & Onodagu, 2020; Takebayashi & Moriyama, 2012; Wu,
Sun, Li, & Yu, 2018). Natural surfaces and vegetation increase the
amount of evapotranspiration and decrease the overall temperature
and create a cool island effect (Amati & Taylor, 2010; Du et al.,
2017). Reflective/high-albedo materials are also known to decrease
UHI (Akbari, Menon, & Rosenfeld, 2009; Santamouris, 2013; Santa-
mouris, Synnefa, & Karlessi, 2011; Zhu & Mai, 2019). Hence, the
spatial distribution of land cover has a strong impact on the surface
temperature (Chen & Zhang, 2017). Surface material also impact the
water runoff and increase the risk of flooding. Sidewalks and roads
form the main part of the urban ground surfaces. Today, the majority of
the sidewalks are covered with impermeable materials which prohibit
the infiltration of the water into the underlying soil, increase both the
magnitude and frequency of surface runoffs (Bell, Tague, & McMillan,
2019; Shuster, Bonta, Thurston, Warnemuende, & Smith, 2005), reduce
the groundwater recharge, and negatively impact the water quality.
The excessive use of impervious surfaces is shown to be the primary
cause of the Combined Sewer Overflows (CSOs), which can lead to
massive pollution of natural bodies of water and street flooding (Joshi,
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Fig. 1. Using CitySurfaces to map the dominant surface material in Chicago, Washington DC, and Brooklyn (not part of our training data). Segments where the dominant material
differs from concrete are drawn using a thicker line.
Leitão, Maurer, & Bach, 2021). Aside from the mentioned impacts,
sidewalk pavements can also lead to public health hazards such as
outdoor falls, or pose a barrier to walkability and accessibility of
public spaces, specifically for the more vulnerable population and
wheelchair users (Aghaabbasi, Moeinaddini, Shah, Asadi-Shekari, &
Kermani, 2018; Clifton, Smith, & Rodriguez, 2007; Talbot, Musiol,
Witham, & Metter, 2005). Studies show that uneven surfaces, indistin-
guishable surface colors, and low-friction materials contribute to the
high incidence of outdoor falls in elderly populations (Chippendale &
Boltz, 2015; Thomas, Gardiner, Crompton, & Lawson, 2020).

Despite the substantial economic, environmental, public health,
and safety implications of sidewalk pavements (Estoque et al., 2017;
Muench, Anderson, & Bevan, 2010; Van Dam et al., 2015), most cities,
even in industrialized economies, still lack information about the loca-
tion, condition, and paving materials of their sidewalks (Deitz, Lobben,
& Alferez, 2021). The lack of data creates barriers to understanding
the real extent of the environmental and social impacts of using dif-
ferent materials and inhibits our ability to take a complex system
approach to sustainability assessment (Van Dam et al., 2015). For
instance, studies show a significant intra-urban variability of the urban
thermal environment due to the street-level heterogeneity of paving
materials (Agathangelidis, Cartalis, & Santamouris, 2020). However,
the data scarcity makes it challenging to measure this variability across
different neighborhoods and consequently, impedes the development
of a sustainable and resilient mitigation response plan (Akbari & Rose,
2008; Li, Zhou, & Ouyang, 2013; Yang et al., 2019). In the absence of
fine-scale data, studies mainly rely on remote sensing images; however,
the high-resolution aerial images are both spatially and temporally
sparse (Zhang, Odeh, & Han, 2009), requiring researchers to use a
variety of data aggregation and extrapolation techniques to fill in the
missing data, which can lead to high bias and hurt the validity of the
final results.

Collecting comprehensive and fine-scale sidewalk data using con-
ventional methods is time-consuming and cost-prohibitive. Recent tech-
nological innovations in data collection opened new frontiers for re-
search on public space and pedestrian facilities, creating opportunities
to track features of interest at higher temporal frequencies and more
granular geographic scales (Glaeser, Kominers, Luca, & Naik, 2018).
The use of street-level images in urban analysis has gained popularity
since the introduction of Google Street View (GSV) (Anguelov et al.,
2010) and Microsoft Street Slide (Kopf, Chen, Szeliski, & Cohen, 2010),
services that provide panoramic images captured by cameras mounted
on a fleet of cars. Concurrently, developments in machine learning
and computer vision applied to these new datasets have enabled novel
research directions to measure the ‘‘unmeasurable’’ in urban built
environments (Ewing & Handy, 2009), including sidewalks (Ai & Tsai,
2016; Frackelton et al., 2013; Saha, Saugstad, Maddali, Zeng, Holland,
Bower, Dash, Chen, Li, Hara, & Froehlich, 2019).

In this work, we address this data gap and take a step towards
exploring the surface of our cities through CitySurfaces, a framework
2

aimed at generating city-wide pavement material information by lever-
aging a collection of publicly available urban datasets. We combine
active learning and computer vision-based segmentation model to lo-
cate, delineate, and classify sidewalk paving materials from street-level
images. Our framework adopts a recent high-performing segmentation
model (Tao, Sapra, & Catanzaro, 2020), which uses hierarchical multi-
scale attention combined with object-contextual representations. To
tackle the challenges of high annotation costs associated with dense
semantic label annotation, we make use of an iterative, multi-stage
active learning approach, together with a previously acquired sidewalk
inventory from Boston, which lists the dominant paving material for
a given street segment. We demonstrate how the trained segmentation
model can be extended with additional classes of materials with no-
ticeably less effort, making it a versatile approach that can be used in
cities with varying urban fabrics and paving materials. To show the
generalization capabilities of CitySurfaces, we employ our framework
in the segmentation of street-level images from four different cities:
Brooklyn, Chicago, Washington DC, and Philadelphia, none of which
were included in the training process. Fig. 1 highlights how different
pavement materials are spatially distributed in three cities.

Our contributions can be summarized as follows:

• We present CitySurfaces, a deep-learning-based image segmenta-
tion framework for large-scale localization and classification of
sidewalk paving materials.

• We adopt an active learning strategy to significantly reduce pixel-
level annotation costs for training data generation, and yield
increased segmentation accuracy.

• We conduct extensive experiments using street-level images from
six different cities demonstrating that our model can be applied
to cities with distinct urban fabrics, even outside of the domain
of the training data.

• We make publicly available our model as well as the results of
our material classification in the selected cities. The data can be
accessed at: https://github.com/VIDA-NYU/city-surfaces.

This paper is organized as follows: Section 2 describes the main
data sources of our framework; Section 3 describes the CitySurfaces
framework; Section 4 summarizes our results; Section 5 highlights
challenges and limitations; and Section 6 presents our conclusion.

2. Data description

Manually labeling the sidewalk materials in each image is a time-
consuming task. Our proposed framework leverages a unique dataset
that describes the material of sidewalks in Boston. We combine that
data with the street-level images to create the training data for our
semantic segmentation model. Next, we describe both data sources.

https://github.com/VIDA-NYU/city-surfaces
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Fig. 2. The eight classes of surface materials used in our study. Top: Standard and
revalent materials. Bottom: Materials with distinct use.

.1. Boston sidewalk inventory

The sidewalk inventory (Boston PWD, 2014) is part of the Boston
edestrian Transportation Plan (Loutzenheiser, 2010) and describes
idewalk features, including geographic coordinates and paving mate-
ials collected via manual field visits. The material attribute describes
he dominant surface material of each street segment (either concrete,
rick, granite, a mix of concrete and brick, or asphalt). Fig. 2 illustrates
atches of these five materials; the other three extra materials (granite
lock, cobblestone, hexagonal pavers) shown in the image were not
ecorded in the Boston dataset but were later manually added to
ur classes, as we will discuss in Section 3.3. We grouped the street
egments by materials, using the geographic coordinates of the paving
aterials in the Boston inventory, and used it to assign an overall image

lass to the street-level images to guide the annotation process.

.2. Street-level images

Street-level image usage in urban analysis has gained popularity
ith the introduction of Google Street View (GSV) (Anguelov et al.,
010) and Microsoft Street Slide (Kopf et al., 2010), services that
rovide panoramic images captured by specifically designed cameras
ounted on a fleet of vehicles. These new data sources enable new

uestions and study designs for urban planning and design, urban
ociology, and public health (Griew, Hillsdon, Foster, Coombes, Jones,

Wilkinson, 2013; Mooney et al., 2016; Yin, Cheng, Wang, & Shao,
015). The GSV API can retrieve street-level images via geographic
oordinates and allows users to adjust camera settings such as the
eading, field of view (FoV), and pitch.

We use the OSMnx library (Boeing, 2017) to obtain the Boston
treet network and query the GSV API for street-level images at a fixed
nterval (5 m), excluding major highways and tunnels. We acquire
he compass bearing of each street to set the camera heading to be
erpendicular to the street, thus looking directly at left and right
idewalks. The pitch was set to 0◦ with an FoV of 80◦. To create a

more diverse training set, for 35% of the training data, we use different
combinations of headings (pitch ∈ [−10◦,−20◦], and FoV∈ [60◦, 70◦]),
to have sidewalk images taken at varying angles and perspectives.
Fig. 3 illustrates sampled street segments in Boston, together with
their image-level annotations. In order to train our framework, 3500
Boston images were obtained, and later 2000 images from New York
City (NYC) were added to the pool of initially unannotated data. We
excluded images with no sidewalks as well as those where more than
80% of the sidewalks were occluded. The final set had a total of
3

4300 images.
Fig. 3. Examples of sampled points in Boston to obtain street-level images. Three
different sampling locations are highlighted and for each location, the street-level image
as well as the prediction result of the model is depicted.

3. CitySurfaces

CitySurfaces adopts an active learning approach for the seman-
tic segmentation of sidewalk paving materials. Using this framework,
we aim to: (1) Train a model that can classify five different paving
materials plus asphalt roads; (2) Extract information about sidewalk
materials of a city for which no ground truth sidewalk inventory exists
(e.g., NYC); and (3) Extend the model to classify additional classes of
materials so that it can be applied to a more general set of cities.

Active learning aims at achieving high accuracy while minimizing
the amount of required labeled data. The main hypothesis is, if we
allow the model to choose the training data, it will perform better with
fewer labeled instances (Settles, 2009). Through iteratively selecting
the most informative or representative images to be labeled, fewer
labeled instances are required to achieve similar performance, when
compared to randomly selecting a large sample as training data and
annotating all of it at once (Bloodgood & Vijay-Shanker, 2014; Huang,
Jin, & Zhou, 2010).

In general, our multi-stage workflow is different from previous
works in active learning for semantic segmentation in two important
ways: First, our sample selection method is not fully automated; we
use the uncertainty measure to filter the pool of unlabeled data in each
stage, but we also use domain expertise for selecting a sample of images
to be annotated and added to the training set in the next stage. Second,
our query frequency is ten epochs (each epoch is a pass through all
training data). The conventional approach in active learning is to select
new samples (query) every iteration, which can work in cases where
the cost of annotation is not high or in experimental studies that work
with already annotated images to advance the field and develop new
query algorithms, as is the case with most of the already published
works in active learning for semantic segmentation, where they use
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Fig. 4. CitySurfaces workflow. Block (a): Creating the initial ground truth labels using the Boston sidewalk inventory and GSV images. A sample of unlabeled images is fed to a
pre-trained HRNet, which outputs annotation labels containing two classes of interest: roads and sidewalks. The labels are manually refined to represent the five sidewalk paving
classes, forming our ground truth set; Block (b): Training the base model to classify five classes of surface materials, plus roads. The data from block (a) is used for the first
stage of training. The model is then iteratively retrained for multiple stages on new samples. In each stage, the most representative and informative samples are chosen, and the
annotations are manually refined and added to the training set to retrain the network; Block (c): Introducing three new classes of materials. The pre-trained model from block
(b) is retrained on the newly annotated image with three new classes. The final model can classify eight classes of different materials.
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datasets such as Cityscapes (Cordts et al., 2016) or ADE20k (Zhou
et al., 2017). However, since no annotated dataset exists for sidewalk
materials, we have to annotate every new sample we choose during
the training process, and it is impractical to annotate a new sample
for every iteration (Kim et al., 2020). To overcome this, we adopt a

ulti-stage framework and annotate a new sample at the end of each
tage, where each stage consists of ten epochs.

Our workflow has three major blocks as illustrated in Fig. 4: Block
a) creating initial training labels; Block (b) training a material seg-
entation model and; Block (c) extending the model to segment three

dditional classes from NYC standard materials. In this section, we first
escribe the different blocks of the workflow in detail, followed by a
escription of the semantic segmentation model. The training process
nd experiments were executed on 4 NVIDIA P100 GPUs with 12 GB
f RAM each.

.1. Block (a): Initial image annotation

To start the training process, we need a set of annotated images. To
btain the annotated data, we randomly sample 1000 images from a
ool of unlabeled Boston street-level images and feed that sample into
RNet-W48 (Sun et al., 2019; Wang et al., 2020) model pre-trained
n Cityscapes (Cordts et al., 2016) and get the initial segmentation
esults (Fig. 4(a)). The model outputs 19 classes from which we only
eep roads and sidewalks. To generate an initial set of labeled data, we
ake use of the Boston Sidewalk Inventory (detailed in Section 2.1).
e first query for the street segments of the images in our initial

ample and modify the label to match the audited pavement from
he inventory. Effectively, we are ensuring that, instead of having a
eneral sidewalk class outputted by the pre-trained HRNet, our image
et will have annotations according to the ground truth inventory data
e.g., concrete, bricks). We then manually refine them to account for
he pre-trained model’s prediction errors. In the initial training set, we
estrict our sampling to images where the sidewalks mainly consist
f a single material and eventually move to more complex material
onfigurations in later stages. The final annotated images were split
nto 80% training and 20% validation to train the model in block (b).
4

.2. Block (b): Model training on Boston and NYC

In the second block of the framework (Fig. 4(b)), we train an
ttention-based model (detailed in Section 3.4) using the labeled im-
ges from block (a). Our training step initially uses 800 images for
raining, and 200 images for validation, with a batch size of 8, SGD
or the optimizer, momentum 0.9, weight decay 5𝑒−4, and an initial
earning rate of 0.002. We train the model in a multi-stage framework,
here each stage consists of ten epochs. In each stage, we choose the
poch with the highest mIoU on the validation set. At the end of each
tage, we make two decisions: (1) we select the best model considering
ll epochs of the current stage; and (2) we analyze the quantitative and
ualitative results of the model to guide sampling the new addition
o the training data. In particular, we analyze the confusion matrix,
imilarity matrix, as well as the top 10% of predictions with the highest
IoU and the top 20% of failures, obtained from the validation phase

f the best epoch. The weights of the best model in the current stage
re then used to initialize the model in the next stage with more
raining data. This restating scheme of SGD with the best solution of
he previous stage is useful in increasing the chances of finding better
olutions in the current stage.

To sample new images, we employ two strategies: (i) Uncertainty in
redicting unlabeled images: We make use of the model’s uncertainty
stimations on unlabeled data and select the images that were most
hallenging for the model to predict; and (ii) Performance on validation
et: By examining per-image IoU, uncertainty, and error rates of the
mages from failure and success cases together with confusion matrices,
e construct a set of sample images to be used as inputs for finding

imilar unlabeled images. A more detailed explanation of these two
echniques is provided in Appendix.

Following the sample selection strategies, we retrieve 300 unlabeled
mages, apply the current model on these new unlabeled images to
enerate a prediction, and then modify the predicted labels to add
hem to the overall training set, such that the segmentation model
s trained on more samples of hard-to-segment images. To improve
odel generalization, in the third stage, we begin including images

rom Manhattan, which has a different urban fabric and more diverse
orms and types of paving materials, in the pool of unlabeled data.
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Fig. 5. Examples of how the annotation labels with additional classes were created
from the output of the model in block (b) of our framework. The model trained in
block (b) classified granite blocks and cobblestone as background, leaving smooth and
clear boundaries, which helps to augment the labels with new classes during manual
refinement and train a model that can classify eight different materials (block (c) of
the framework).

Since no ground truth data exists for Manhattan, to create the ground
truth label, we need to have a model with reliable performance to
create the base annotation. We chose the third stage since the model
reached a reliable performance (83% mIoU) in detecting the main
classes, and outputs had clear borders compared to the other two stages.
The selected images from Manhattan were fed to the model, and the
results were corrected and refined using feedback from the domain
expert and added to the training dataset. The segmentation model is
then trained on the combined set of the initial and newly annotated
data (1100 images), initialized with the weight from the best epoch of
the previous stage. This procedure is iterated for five stages (at which
point we observe no further notable improvements). The model at the
final stage was trained on 2500 images (Fig. 4(b)), and achieved 88.6%
mIoU on the held-out test set.

3.3. Block (c): Including additional materials from NYC

Once the model in block (b) attains sufficiently accurate segmen-
tation performance, we extend it by adding three additional classes
(Fig. 4(c)). The three additional classes are granite blocks, hexagonal
pavers, and cobblestone. These materials are standard sidewalk mate-
rials in the NYC street design manual (NYC DOT, 2020). While granite
locks and cobblestones were also observed in Boston, they were not
ncluded in the Boston sidewalk inventory. Since the original model in
lock (b) was not trained to detect these materials, they are initially ei-
her classified as background (mostly granite blocks and cobblestones)
r misclassified (mostly hexagonal pavers) as other visually similar
aterials. To collect street-view images that have these new materials,
e follow the NYC and Boston street design manuals (NYC DOT, 2020;
homas M. Menino, 2013) to filter unlabeled data from the locations

n which these materials can be found. For example, hexagonal pavers
NYC only) are typically used on sidewalks adjacent to parks and open
paces, and cobblestones are used in historic districts.

We select a total of 800 images that contain these new classes
o be iteratively sampled for training, 150 additional images for the
alidation set, and 200 images for the held-out test set. Annotating
he new image set consumed fewer resources as compared to the
nitial annotations since smooth model predictions typically leave clear
oundaries, which only needed to be assigned the appropriate label (see
5

ig. 5). The newly generated set of labels was used to train the model
y initializing the architecture with model weights in block (b) and
nly replacing the final softmax layer instead, to produce ten output
hannels (corresponding to eight paving materials, plus the road, and
ackground). At the end of each stage, we select a new sample of
nlabeled images following the same process explained in Section 3.2,
un them through the model, obtain segmentation predictions, refine
he results, and retrain the model. In total, 726 additional images were
dded to the training set, and in the final stage, the model was trained
n 3226 images (2500 from block (b) + 726). We halt the training
n stage 3 after 30 epochs, and test the model on the held-out test
et (Fig. 4(c)). Fig. 6 shows the confusion matrices for all three stages
f our extended model, illustrating model performance as a function of
he amount of training data. These matrices were also used in part to
uide the sampling of images to annotate.

Using the described method, model performance increases from
4.3% mIoU to 88.6% for the base model (block (b)) and to 90.5%
n the extended model (block (c)), with the manual refinement time
ecreasing from 25 to 4 min per image. Fig. 7 depicts the evolution of

the segmentation results of block (c) through the active learning stages.
The model outputs more refined boundaries and significantly less noise
in later stages; thus, significantly less time is needed to modify the
newly annotated data as the stages go on. In each stage, the model is
initialized with the weights from the previous stage.

3.4. Semantic segmentation model

For the semantic segmentation task (blocks (b) and (c)), we adopt
the Hierarchical Multi-Scale Attention (Tao et al., 2020) and fine-tune
the parameters on our dataset. To train the model, following Zhu et al.
(2019), we employ class uniform sampling in the data loader, which
chooses equal samples for each class for handling the class imbalance,
since some classes like road and background are almost present in all
images, whereas classes like cobblestone and hexagonal pavers are not
that prevalent. The Region Mutual Information (RMI) loss (Zhao, Wang,
Yang, & Cai, 2019) was employed as the primary loss function. RMI
takes the relationship between pixels into account and uses the neigh-
boring pixels around each pixel to represent it instead of only relying
on single pixels to calculate the loss. We run different experiments with
and without the RMI loss function for the main segmentation head. In
the absence of RMI, standard cross-entropy loss was used instead. The
model under the same setting, but without RMI loss, performed slightly
worse (89.84) compared to the one where RMI loss was used (90.51).
Fig. 8 presents an overview of the architecture. Next, we describe the
network’s architecture in more detail.

3.4.1. Backbone
We chose HRNet-OCR (Yuan, Chen, & Wang, 2019) as the backbone.

The network comprises HRNet-W48 (Sun et al., 2019; Wang et al.,
2020) and adds Object-Contextual Representations (Yuan et al., 2019)
to further augment the representation extracted by the HRNet. The
final representation from HRNet-W48 works as the input to the OCR
module, which computes the weighted aggregation of all the object
region representations to augment the representation of each pixel. The
weights are calculated based on the relations between pixels and object
regions. The augmented representations are the input for the attention
model described next.

3.4.2. Attention model
The model is mainly based on Share-Net (Chen, Yang, Wang, Xu,

& Yuille, 2016). Suppose an input image is resized to several scales,
i.e., 𝑠 ∈ {1,… , 𝑆}. Each scale is passed through the backbone part
(HRNet-W48+OCR), and we can get the output feature 𝑓 𝑠

𝑖,𝑐 . For the
feature, 𝑐 ∈ {1,… , 𝐶} (𝐶 is the number of classes of interest, and 𝑖
ranges over all the spatial positions). As shown in Fig. 8, the features

then go through two heads, one for attention generation and the
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Fig. 7. Evolution of the block (c) extended model’s inference through different training
stages.

Fig. 8. The general architecture of the hierarchical multi-scale attention (HMSA) based
emantic segmentation method (Tao et al., 2020). The inputs are images from two
cales. The network learns the relative attention between scales and hierarchically
pplies the learned attention to combine the results from two segmentation heads and
ake a prediction.

ther for segmentation. The features 𝑓 𝑠
𝑖,𝑐 are resized for different scales

o have the same resolution (with respect to the finest scale) using
ilinear interpolation before passing the model heads. For the attention
ead, we generate the learned weights for 𝑓 𝑠

𝑖,𝑐 which is represented
y 𝑎𝑠𝑖,𝑐 . This weight is integrated into the initial output ℎ𝑠𝑖,𝑐 from the
egmentation head, and we have:

𝑠 = 𝑎𝑠 ∗ ℎ𝑠 (1)
6

𝑖,𝑐 𝑖,𝑐 𝑖,𝑐
n which 𝑔𝑠𝑖,𝑐 is the final output score map for scale 𝑠, and ∗ here
represents the pixel-wise multiplication.

In the model, the combination of score maps is similar to Tao et al.
2020) to make the flexible scales during inference time possible and
mprove the training efficiency. During the training, we only need to
rain with two adjacent scales (as shown in Fig. 8). During testing,
eights for the network are shared for each adjacent scale pair.

To be more specific, suppose the two selected adjacent scales are 1𝑥
nd 0.5𝑥 (the final selected scales during training in the model are 0.5𝑥,
𝑥, and 2𝑥) to obtain the pair of scaled images for the model input.
or inference, we can hierarchically and repeatedly use the learned
ttention to combine 𝑁 scales of predictions together. Precedence is
iven to lower scales since they have a more global context and can
hoose where predictions need to be refined by higher scale predictions.
he final combination principle for these adjacent scales is defined as:

𝑖,𝑐 = 𝑎0𝑖,𝑐 .5 ∗ ℎ0𝑖,𝑐 .5 + (1 − 𝑎0𝑖,𝑐 .5) ∗ ℎ1𝑖,𝑐 (2)

The hierarchical mechanism used in the model coupled with the
owerful HRNet-OCR backbone provides a robust architecture for the
hallenging task of material classification in the wild.

4. Results

In this section, we present the results of applying our trained model
on the held-out test set. We do not rely on pixel-level accuracy in eval-
uating the model since sidewalks comprise a relatively small portion
of each image, while road and background can occupy more than 70%
of most images, resulting in a significant class imbalance. This class
imbalance creates an arbitrary high pixel-level accuracy, which is not
a fair representation of the model’s performance.

4.1. General evaluation metrics

Table 1 presents class-level evaluation metrics, the mean Jaccard
index (IoU), precision, and recall for the final model. The model outputs
ten classes in total, seven classes of sidewalk pavings, one extra class
of street pavings (cobblestone), plus road and background. Excluding
road and background, the model achieved 88.37% accuracy, with
hexagonal asphalt pavers and asphalt sidewalks having the highest
accuracy measures. Overall, half of the pavement classes have IoU
above 90%. Concrete, the most prevalent and versatile material, can
be classified with 88.7 accuracy. A robust result considering the high
within-class variation (i.e., it comes in various colors and textures).
Granite/bluestone and granite block have the lowest accuracy (81.09
and 82.92 respectively). This can be partially explained by their visual
similarity to dark concrete (or wet concrete), potentially leading to

more false positive predictions.



Sustainable Cities and Society 79 (2022) 103630M. Hosseini et al.

T

T
E

i
p
T
w

Fig. 9. Predictions of the model on the held-out test set. Fine details and boundaries of objects like poles, plants, wooden sticks, and fire hydrants are very precisely predicted.
he model also segmented curb cuts (line 1 - column 2), different instances of the same material (3-1 and 3-3), and visually similar materials of different classes (1-4).
able 1
valuation metrics on the held-out test set.
Label IoU Precision Recall

Concrete 88.69 0.95 0.93
Brick 91.79 0.95 0.96
Granite/Bluestone 81.09 0.85 0.95
Asphalt 92.58 0.96 0.97
Mixed 86.11 0.93 0.93
Granite block/Stone 82.92 0.94 0.88
Hexagonal asphalt paver 92.81 0.98 0.95
Cobblestone 90.95 0.94 0.96
Road 99.01 0.99 1
Background 99.16 1 1

mIoU 90.51
mIoU (eight main classes) 88.37

Table 2
Evaluation metrics on samples from the selected cities (outside of training domain).

City mIoU Mean per-segment accuracy

Brooklyn 86.12 87.09
Chicago 84.31 86.52
Washington DC 82.61 84.27
Philadelphia 82.81 83.46

Fig. 9 illustrates some examples of the model’s prediction, highlight-
ng its performance in detecting boundaries between fine objects, like
oles and plants, even in shadowed scenes (line 1 - column 1, 1-3, 2-1).
he model can also detect curb ramps in most scenes, even though it
as not specifically trained with such a goal (1-1 and 2-2). Fig. 9 (1-2)

shows an example in which the model accurately classified a sidewalk
segment with patches of different materials. We can also see the model
performance in distinguishing between visually similar materials (1-4,
3-2), as well as different variation of the same material such as (3-1)
where two visually distinct concrete slabs are classified correctly.

4.2. Evaluating the generalization capabilities of CitySurfaces

To demonstrate the generalization capabilities of CitySurfaces, we
tested the performance of our approach on samples from Chicago,
Washington DC, Philadelphia, and Brooklyn, which were not part of
the training data. We randomly sampled 200 street segments from each
city, and obtained their corresponding street-view images, at every five
meters of each segment, from the left and right sides of the sidewalks.
After data cleaning and pre-processing, we were left with roughly
7

Fig. 10. Comparison of the distribution of detected materials in six different cities.
The star plots show the log of the number of sidewalk segments identified as having
a given material.

600 images per city; these images were annotated using the model in
block (b), then manually checked and refined to create the test set.
Table 2 shows the results of applying CitySurfaces on these test sets. We
report mIoU and mean per-segment accuracy. Mean per-segment is a
simple and practical metric that measures whether the model correctly
detected the dominant materials in each street segment and report the
average accuracy over all images in the test set. All tested cities had an
accuracy greater than 82%. Brooklyn achieved the highest accuracy,
since the borough’s paving materials follow the same street design
regulation as Manhattan, which was part of the training data.

CitySurfaces enables generating city-wide sidewalk material
datasets, as illustrated in Fig. 9. This allows us to compare the dis-
tribution of different paving materials in various cities. Fig. 10 shows
the result of this comparison. We can see that Manhattan and Washing-
ton DC use more diverse and balanced material types. Concrete is the
dominant material in all of the cities. Chicago has the highest number
of asphalt sidewalks among the selected cities; Boston, Washington DC,
and Philadelphia have a similar number of asphalt sidewalks, which
come second to Chicago. Asphalt sidewalks are mainly used in suburban
neighborhoods; that is why dense urban areas like Manhattan and
Brooklyn have the lowest number of sidewalks paved with asphalt. An-
other interesting observation is the higher usage of granite/bluestone in
Manhattan compared to Brooklyn, two boroughs of the same city. Gran-
ite is considered an expensive and decorative material, used mainly
in commercial streets or historic neighborhoods, which signals Man-
hattan’s higher land value and income level, since maintenance and
installation of decorative pavings are the owner’s responsibility.
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Fig. 11. Left: Exposure to direct sunlight changed the appearance of colors and texture
of the paving material, Left top: Part of a concrete sidewalk under the shadow was
classified as asphalt. Left bottom: Part of a granite surface under direct sunlight
was classified as concrete. Right: The correct predictions of the final model in the
same settings.

5. Discussion

The specific characteristics of computing the spatial distribution
of sidewalk pavement materials require experts to oversee the perfor-
mance of the model and ensure that the network is correctly classifying
the pavement materials. Through active learning process, we identified
certain elements of the urban scenes that can create higher prediction
confusion and lead to misclassification. Two main categories of pat-
terns repeatedly observed among the failure cases were shadow/light
contrasts (Fig. 11) and distinct objects such as metal gratings and
plant pits that resemble brick from a distance (Fig. 12). The texture
and color of different materials can appear different under shadow or
extreme light, showing a higher resemblance to another material. For
instance, under the shadow, concrete is classified as asphalt (Fig. 11 -
left top). Moreover, some patterns or objects can look similar to certain
materials. For example, the model initially classified certain plant pits
(Fig. 12 - left top) or brownish metal covers (Fig. 12 - left bottom) as
bricks alongside the concrete pavement and would incorrectly predict
mixed materials for that part of the sidewalk, or even small pieces of
broken concrete or granite were classified as cobblestones (Fig. 12 - left
middle). Adding more images with these patterns to the training data
improved the model’s performance in the next stage. Some examples
of the correct predictions for similar patterns are shown on the right
side of Fig. 12. The active learning strategy significantly helped with
choosing the right data at each stage. Having an expert in the loop to
review the results in each stage enabled identifying specific patterns
that were not evident by merely analyzing the quantitative metrics of
the model.

5.1. Challenges

One of the key challenges of this study was handling different
textures of the same object (sidewalk). Objects have defined boundaries
that are easier to classify (Jain & Gruteser, 2018). However, similar
textures can appear on multiple objects. For instance, red bricks are
used in both building facades and sidewalk pavings (although different
types of bricks are used for each purpose, they possess very close visual
characteristics). Our goal is to have a model that can detect sidewalks
of certain materials from street-view images.

Another challenging aspect of this task is the high degree of within-
class variation and between-class similarities. For instance, NYC desig-
nated five different types of concrete as standard materials for sidewalk
pavings, while Boston uses three different types of concrete. Each of
these types has distinct visual features that, in some cases, can resemble
materials of other classes, which pose further challenges to the clas-
sification task. Distinguishing between dark concrete and bluestone in
some cases is very difficult, even for humans. When wet, some concretes
with aggregates can look very similar to granite, and under the shadow,
asphalt and worn-off concrete can look very similar. Having a model
8

that can accurately handle the within-class variability with between-
class similarity calls for smartly selected training datasets with a good
distribution of different classes as well as multiple variants of the same
material under different conditions.

5.2. Limitations

Even though CitySurfaces can provide city-scale sidewalk material
classification, some challenges remain unaddressed. For instance, in the
absence of proper sidewalk network data, it can be challenging to map
the materials to their corresponding locations accurately. The maps in
Fig. 1 are based on the road centerlines where GSV cars traveled to cap-
ture images, depicting the dominant materials for each street segment
by taking an average over the materials observed in each image from
both the left and right sides of the street. However, knowing the exact
location of certain materials is critical for urban designers, planners,
and those working with safety and ease of walk for people with special
needs. Although our model produces this result at a highly fine level,
we cannot depict this variety in detail without proper sidewalk network
data. Having separate maps for left and right sidewalks can be one
solution, but the intersections where more than one street is captured
pose a challenge for assigning the correct materials to each segment.

Also, street-level images have some inherent limitations. Since the
images are taken by cars moving alongside streets, in many instances,
specifically in dense urban areas, the cars parked on the sides blocked
the sidewalk view, as shown in the left image of Fig. 3. The issue can
be mitigated to some extent by adjusting the heading and pitch of the
camera, but that solution fails in images with large vehicles like trucks,
or when the car with mounted cameras is too close to the sidewalks.

6. Conclusion

We present CitySurfaces, a scalable, low-cost approach towards
the automatic computation of the spatial distribution of pavement
materials at the sidewalk segment level. Our model can detect a diverse
range of materials, which to our knowledge, were not covered by any
existing dataset. For instance, hexagonal pavers or granite blocks were
not reported in any sidewalk inventories reviewed in this study. City-
Surfaces produces accurate segmentation considering multiple cities
both within and outside the domain of the training data, demonstrating
generalization capabilities across varying urban fabrics. CitySurfaces
can detect, delineate, and classify eight standard surface materials used
throughout most US cities. As shown in Section 3.3, the framework can
be extended to include additional surface materials with less effort than
building a city-specific model from scratch, which makes it possible
for almost any city or government agency that has spatially dense
street-level image data, to create a similar dataset. Moreover, since
we have covered the standard materials, such as concrete, asphalt,
granite/bluestone, and brick, the model can be applied to a wide range
of cities without any further annotation effort or with substantially less
effort using our pre-trained model. The models and generated datasets
for the selected cities are publicly available in a GitHub repository.

This work has addressed some challenges in data annotation and
accurate classification of different materials with high between-class
similarities and within-class variation. The active learning framework
utilized in this study helped reduce the annotation costs by choosing
the most informative set of data to be annotated and incrementally
decreasing the manual modification time. By offering the first com-
prehensive dataset of sidewalk surface materials at the city scale, this
study goes beyond reporting the dominant material of each segment
and provides information on the percentage distribution of all detected
materials per sidewalk segment. The material classes in this study
were selected based on the standard surface materials listed by Boston
sidewalk inventory (Boston PWD, 2014), to use it as our baseline
ground truth. That list is not extensive and does not distinguish between
various types of the same class of material, such as concrete. However,
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Fig. 12. Objects with patterns similar to different materials. Left: Classifying failures caused by different patterns. Left top: Concrete alongside a furnishing zone was misclassified
as mixed class since plant pit was detected as bricks. Left middle: Broken concretes were misclassified as granite blocks. Left bottom: Concrete was misclassified as mixed class
due to the presence of brownish metal covers. Right: Correct prediction of the model for the similar pattern in the final cycle of active learning.
for some more in-depth analysis, such as measuring UHI, we may need
to classify the materials differently, and distinguish between different
variations of the same material within one class. For instance, reflective
granite and dark matte bluestone should have two distinct classes, same
goes with the dark and light concretes since they have distinctively
different albedo values. The CitySurfaces framework can be easily
extended to detect more classes of materials as illustrated with the
Manhattan example in Section 3.3, given the availability of the images
corresponding to each class of interest to create the initial ground-truth
set. In future work, we plan to take these differences into account and
combine the generated data with shadow accumulation (Miranda et al.,
2019) to generate a city-scale UHI map.

To facilitate designing automated audit tools, we are going to extend
our model to detect surface problems such as potholes, significant
breakage, and obstacles on pedestrian paths for accessibility analy-
sis (Miranda et al., 2020). We also aim to address the walkability and
active design of sidewalks by developing a model to detect relevant fea-
tures of the sidewalk’s wall plane and furnishing zone, such as window-
to-wall ratio. As another line for our future work, we would like
to explore automated sample selection procedures and self-supervised
learning techniques and tailor them to sidewalk and pedestrian facility
analysis. We chose a simple (yet effective) uncertainty measure and
coupled it with the analysis of the model’s performance on the valida-
tion set and used expert’s feedback to refine the annotations and check
whether the model is predicting correctly since, on many instances, it
is difficult to distinguish between visually similar materials.

CRediT authorship contribution statement

Maryam Hosseini: Conceptualization, Methodology, Data Cura-
tion, Formal analysis, Investigation, Writing – original draft, Writing
– review & editing. Fabio Miranda: Conceptualization, Visualization,
Data Curation, Writing – original draft, Writing – review & editing.
Jianzhe Lin: Methodology, Writing – original draft. Claudio T. Silva:
Supervision, Writing – review & editing, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
9

influence the work reported in this paper.
Fig. 13. Two different scenarios of using the model’s output and uncertainty map in
sample selection. The warmer colors in the uncertainty map represent areas where the
model was less confident in its prediction. Top: The model correctly predicted the
class in a previously identified challenging setting (shadow) but was less certain in
predicting the shadowed areas. Bottom: The model classified the parts in shadow as
concrete alongside brick and outputted mixed class for that region. The uncertainty
map shows that the model was least certain in its prediction for that area.
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Appendix. Sampling strategies

(i) Uncertainty in predicting unlabeled images. Uncertainty sampling is
one of the most frequently used query methods to select a new sample
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of training data in active learning (Settles, 2009). To measure the
uncertainty, we use softmax probability, which has been commonly
used in active learning as a strategy for choosing the next training
sample (Settles, 2009). We use the outputs of the softmax layer as part
of the sampling strategy, which can partly reveal the most challenging
instances for the model to predict. We apply multi-class uncertainty
sampling known as margin sampling (MS) (Scheffer, Decomain, &
Wrobel, 2001), which calculates the difference between the two high-
est prediction probabilities on softmax to produce uncertainty maps.
The smallest margin in each map is then chosen as the image-level
uncertainty. The MS measure is defined as:

𝑥∗𝑀𝑆 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑥𝑃𝜃(𝑦̂1|𝑥) − 𝑃𝜃(𝑦̂2|𝑥) (A.1)

where 𝑦̂1 and 𝑦̂2 are the class labels for pixel 𝑥, with the first and
second highest probability, respectively, under the model 𝜃. The lowest
margin gives us the highest uncertainty, which is used as an image-level
uncertainty measure.

To select new samples, we feed the pool of unlabeled images to our
network, obtain the segmentation and calculate image-level uncertainty
to select images with the highest uncertainty. We start by selecting 10%
of the images using this strategy. As the training proceeds, we increase
the share of images selected through this strategy at each stage by 10%.

(ii) Performance on validation set. Since softmax probabilities do not
necessarily represent the true correctness likelihood, a problem known
as ‘‘confidence calibration’’ (Guo, Pleiss, Sun, & Weinberger, 2017), we
need other strategies as well to select an informative sample for the
model. To this end, at each stage, we examine the performance of the
best epoch on the validation set and select 10% of the best predictions
and 20% of the top failures. Images from failure and success cases are
then clustered using K-means (Cover & Hart, 1967; Fix, 1985) with the
uclidean distance to investigate potential common patterns in each
roup. In each cluster, we rank images based on the average IoU of all
lasses, excluding road and background. We then select images with the
ighest error rate. The error rate is defined as the sums of false positive
nd false negative predictions of the model in each image. Aside from
he described method, we examine the clusters of images to detect
ommon error-causing patterns. Fig. 13 (bottom row) depicts a brick
idewalk that the initial model incorrectly segmented the part next
o shadowed regions as the ‘‘mixed’’ class. Its associated uncertainty
ap reveals prediction difficulty near the edge of the car and the plant
it, which are incorrectly classified as mixed. Uncertainty maps of the
uccess cases are examined to find regions where the model is least
onfident while making a correct prediction. Fig. 13 highlights a set of

uncertainty maps. After we find the most error-prone images, we use
them to find similar unlabeled images. We extract their feature maps
using the backbone HRNet-W48 (Sun et al., 2019; Wang et al., 2020)
(more details in Section 3.4.1) and employ cosine similarity distance to
retrieve similar images from the pool of unlabeled data.
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