
Rain Table: Scalable Architecture for Group-Oriented

Visualization of Real-Time Geoscience Phenomena

BY

Dmitri Nikolai Svistula,

B.S., University of Illinois at Chicago, 2004

PROJECT

Submitted as partial fulfillment of the requirements for

the degree of Master of Science in Computer Science

in the Graduate College of the

University of Illinois at Chicago, 2008

Chicago, Illinois

 1

TABLE OF CONTENTS
SECTION

 PAGE

1 Introduction and Motivation.. 6

2 Background and Related Work.. 10

 2.1 Tiled Display Interaction.. 10

2.2 Parallel Simulation and Visualization.. 12

 2.3 High Resolution Image Rendering... 13

 2.4 Interactive Applications for Horizontal Displays.. 13

3 Design and Implementation... 15

 3.1 Design Goals.. 15

 3.2 Basic Renderer... 15

 3.2.1 Scene Graph.. 16

 3.2.2 Scene Node... 16

 3.2.3 Event System.. 16

 3.3 High Resolution Image Rendering... 16

 3.3.1 Tiling... 17

 3.3.2 Indexing.. 17

 3.3.3 Compression... 18

 3.3.4 Request System... 18

 3.3.5 Tile Caching.. 21

 3.3.6 Data Traversal... 22

 3.3.7 LOD Approximation... 23

 3.4 Particle-Based Simulation... 24

 3.4.1 Cluster Communication.. 24

 3.4.2 Simulation on a Grid... 28

 3.4.3 Screen Space... 29

 3.4.4 Simulation Zones.. 33

 3.4.5 Visualization Pipeline... 34

 3.4.6 Load Management Mechanisms... 37

 2

 3.4.7 Data Caching... 42

 3.4.8 Multithreading... 42

 3.5 Synchronization... 42

 3.6 Scalability... 44

4 Interaction.. 45

 4.1 Basic Navigation.. 45

 4.2 Magnifiers.. 45

 4.3 Inputs, Triggers, and Modifiers.. 46

5 Applications... 48

 5.1 Flow Model Calculation.. 48

 5.2 Rainfall Runoff.. 52

 5.3 Sediment Flux.. 53

 5.4 Lava Flow... 53

 5.5 Pyroclastic Flow... 54

 5.6 Glacial Movement.. 57

 5.7 Water Pollution.. 60

6 Limitations and Future Work... 61

7 Conclusion... 63

8 Current System... 64

9 Gallery.. 70

REFERENCES.. 73

 3

ACKNOWLEDGEMENTS

 I would like to thank Jason Leigh, my advisor, Paul Morin, and Pat Hamilton for supporting

me in this work. Thanks to Andy Johnson and Luc Renambot for your suggestions and valuable

input. To Lance Long and Pat Hallihan for all the technical support you have done. To my lab

mates, Ratko Jagodic, Arun Rao, Don Olmsted, Hyejung Hur, and Cole Krumbholz for your help

and suggestions. To Ryan Currier for working out and helping me understand and simplify some

of the science mathematics.

D.S.

 4

SUMMARY

 The contribution of this work is:

1. Development of a decentralized particle-based simulation model that can be applied to

many times of simulations.

2. Development of an approach to efficient coupling of visualizations and particle-based

simulations on high resolution tiled displays.

3. Application of traditional out-of-core and LOD methods to interactive high resolution en-

vironments.

4. Application of visualization research technology to informal science education.

 5

1 Introduction and Motivation

 High resolution tiled displays are widely used by researchers to visualize large data. When

moving to high resolution environments and large interaction spaces, the ability of software sys-

tems to scale up is crucial. Scalable high resolution tiled displays have broken the boundary of

limited resolution by tiling together multiple LCDs or projectors that are built around clusters of

computers. Scalable tracking systems have been developed for such devices, enabling multi-user

interaction with visualizations. There is plenty of research in the area of simulation and visualiza-

tion using clusters and grids, however most of it is aimed at speeding up these processes and dis-

playing them back on a single screen. The assumed modes of interaction with these processes

range from one user to completely non-interactive systems. The motivation for this work is to

develop a scalable system to provide group-oriented interaction with very large scale simulations

and visualizations using high resolution tiled displays and apply it to the domain of science edu-

cation. Simulations and visualizations are both CPU and GPU intensive. It is possible to decou-

ple these processes by running them on separate machines or clusters, however such setup is not

suitable for museum or classroom settings and requires high speed network interconnection out-

side of the tiled display. This research project builds on the knowledge of scalable tiled displays

and scalable tracking technology to provide guidelines for developing scalable interactive simu-

lations and visualizations on tiled display hardware directly. As the proof of concept, this re-

search project implements an application called Rain Table using a high resolution tiled tabletop

system called LambdaTable [1] developed at the Electronic Visualization Laboratory (EVL),

which provides 24 megapixels of interactive screen space.

 6

 Rain Table is an application for large-scale interactive 2D particle-based simulation and visu-

alization on scalable high-resolution tiled displays for group-oriented interaction with geoscience

content. The goal of this research project is to apply high resolution visualization technology to

geoscience education in museums or classrooms to provide educators with new means of visual-

izing and simplifying the understanding of complex scientific phenomena. The work in this pro-

ject is aimed at informal education in science museums, however it may potentially be of use to

real scientists. This project implements software that allows users to interact with visualizations

by taking advantage of novel scalable tracking technology for tiled displays, developed at EVL.

Rain Table implements an out-of-core image rendering framework that uses tiling, on-demand

texture paging, multi-level caching, compression, and threading techniques to minimize latencies

and maintain system interactivity. The core of Rain Table is a decentralized particle-based simu-

lation and visualization model that runs alongside the rendering nodes of tiled displays. The first

goal of this project is to design and implement the architecture to run and display simulations of

rainfall runoff and the context for these simulations, such as aerial photography in high detail.

The second goal is to prepare this architecture for other types of simulations and assess its scal-

ability in terms of data size, output resolution, communication, computation, and interaction

space.

 7

Figure 1. Students interacting with a physical model of a water table.

 On the application side, the original idea and foundation for this work revolve around water-

shed education and various outreach projects conducted by the National Center for Earth-Surface

Dynamics (NCED) at the University of Minnesota. Figure 1 shows a group of students sprinkling

water on top of a physical model of a region. This is a great way to visualize the paths water

takes though watersheds and how it connects different sub-regions. However, it is a poor substi-

tute for the complexities of water flow in the real world. It is also very hard for students to think

about the phenomena on a more global scale, because physical models are usually meant to rep-

resent very small regions. Physical models are not flexible enough because a separate model has

to be built for different types of terrains. This process is time consuming and the resulting models

take up a lot of space. A solution that is more modular and versatile can help in solving these

problems.

 8

 The ideal solution is a large table surface that resembles a physical water table, but also en-

ables students to:

1. Quickly experiment over any terrain map and switch between them.

2. Take advantage of very high resolution observatory data such as satellite topography

and aerial photography.

 The rainfall runoff simulation in Rain Table allows users to interactively explore the flow of

water across maps and discover the concepts of watersheds, floods, and the interconnectivity of

river systems. Multiple users can generate water flow independently of one another, so small

groups work together interactively, eliminating passive viewing and equalizing user’s control of

the visualization model.

 9

2 Background and Previous Work

 This section goes over background and previous work.

2.1.1 Tiled Display Interaction

 The usefulness of visualization on tiled displays is apparent as the size of visualized data be-

comes large. This applies to data produced by instruments in the fields of medicine, biology,

geoscience, and physics. Tiled display systems can output more resolution and therefore display

data in more detail. Various modes of multi-user interaction with large displays have been pro-

posed. These techniques vary from laser pointers [2] to those using gestural input directly [3] and

those using a combination of acoustics and computer vision [4]. Ball [5] suggests that tiled dis-

plays improve performance for basic visualization tasks. The findings also suggest that physical

navigation is more common to high-resolution displays than low resolution and physical naviga-

tion is preferred. This research suggests that high resolution displays may be better fitted for

group work. Display size and resolution need to grow in order to maintain the same space to user

ratio for a group of people.

 10

Figure 2. EVL’s LambdaTable.

Figure 3. LambdaTable interaction.

 Moving on to horizontal displays, previous research suggests that tabletops are better fitted

for co-located group work than wall displays [6]. Much of the research related to high resolution

tiled tabletop displays is outlined in [1], which also implements a solution for scalable multi-user

 11

tracking for a high resolution tiled table, LambdaTable, shown in Figure 2. This system is used in

this project. LambdaTable is a 7 by 3 foot, 24-megapixel cluster of 6 nodes build using six Dell

LCD 2560 by 1600 pixel displays. There are three rendering nodes and three tracking nodes.

Each tracking node is connected to an IR camera that is mounted overhead. Unique patterns of

retro-reflective markers are used to determine locations and orientations of objects placed on the

tabletop. Figure 3 shows a group of people interacting with LambdaTable.

2.1.2 Parallel Simulation and Visualization

Figure 4. Parallel visualization.

 Traditional parallel visualization techniques attempt to render a part of the entire visualized

data on a cluster node and transmit these rendered pixels to the visualization host that combines

pieces into the entire image. This is shown in Figure 4. Alternatively, the results can also be dis-

played on the cluster nodes. Traditional parallel or distributed simulations works in a similar

fashion by decomposing computational tasks either functionally or spatially. This way, clusters

of computers are efficient for simulating complex problems. However, the traditional use of clus-

ters for simulations is to do intensive and non-interactive calculations. It is possible to use both

computational and rendering facilities of cluster nodes to display intermediate results of simula-

 12

tions. Allard [7] discusses coupling of parallel simulation with visualization on rendering nodes

of a cluster. Their system is able to interactively run and display a small-scale simulation of two

fluids and a simulation of a piece of cloth. The interest in parallelism in this project is to provide

support for larger interaction area, simulation, and data given a scalable display and interaction

system. It is not directly aimed to speed up the simulations or visualizations.

2.1.3 High Resolution Image Rendering

 The current developments in the area of high resolution image rendering on tiled displays are

aimed at bridging the gaps between data size and the network, visualization, computation, and

storage resources available on remote or local clusters. All of the known image viewers have

limitations and are not ready for highly interactive multi-user collaborative environments. TimV

[8] relies highly on virtual memory. Argonne’s image viewer [9] does not give an option of

zooming. JuxtaView [10], developed at EVL, does not deal with maintaining interactivity during

loading of data. The task of interactive navigation is not as crucial as the ability to view the data,

however it is important to provide timely user feedback in a direct, interactive system that is also

a learning tool.

2.1.4 Interactive Applications for Horizontal Displays

 Low-resolution tabletop devices have become very popular in museums [11]. There is a

number of interactive pieces employing either tabletops or tiled displays. Some of the more no-

table ones in the domain of entertainment and education are Reactable [12] and Shigureden’s

tiled floor [13]. Reactable is a collaborative tabletop music instrument that produces sounds

when users put unique trackable objects on top of it. The unique objects represent modular com-

 13

ponents of audio synthesis that are able to connect with each other to produce sound. Reactable

is a multi-user, controlled, collaborative environment.

Figure 5. Shigureden tiled floor.

 The tiled floor at Shigureden is a Nintendo-powered museum exhibit in Arashiyama, Kyoto.

Location aware Nintendo DS devices are handled by users that walk around a large map of

Kyoto. The devices are used by museum goers to select locations in Kyoto to be guided to by a

virtual guide shown on the floor display. The large display also shows animations of city ponds

and moving cars on the map. Shigureden tiled floor is an inspiration for this work.

 14

3 Design and Implementation

 This portion of the text goes over design and implementation. Section 3.1 outlines the overall

design goals. Section 3.2 describes the rendering system used. Section 3.3 goes over the render-

ing system for high resolution images. Section 3.4 describes a decentralized model for particle-

based simulation, its visualization, and the way of interacting with it. Section 3.5 outlines syn-

chronization mechanisms. Finally, Section 3.6 analyzes the scalability of the system.

3.1 Design Goals

 In order to achieve scalability, this research project will:

 1. Analyze and develop a parallel visualization framework.

 2. Analyze and develop a decentralized simulation model.

 3. Analyze and employ decentralized data access and caching mechanisms.

The main goal is to design a system where individual components work independently of each

other and independently of any common shared components as much as possible.

3.2 Basic Renderer

 The rendering framework for this project was implemented in C/C++ using OpenGL for

graphics, and FLTK [14] for windowing. It is based on a scene graph, which arranges objets in a

hierarchical manner making it easy to prevent drawing visual content that is not visible on a sin-

gle rendering node of the tiled display. MPI [15] and Quanta [16] are used for cluster communi-

cation and synchronization of graphics and simulations.

 15

3.2.1 Scene Graph

 Scene Graph is a data structure that is a representation of the spatial arrangement of scene

objects. The need for a scene graph structure is useful to efficiently determine visibility of scene

objects in a tiled display environment.

3.2.2 Scene Node

 A scene node is an object that inherits certain basic functionality that is accessed during

scene graph traversal and implements new functionality. This object is used as a building block

to render visualizations.

3.2.3 Event System

 Each scene node carries an identification that is unique on the entire cluster. This way, remote

events can be delivered to the right scene objects. A hash table of all scene nodes is created at

startup. Addition and removal of scene nodes is handled dynamically by performing relevant op-

erations on the hash table. The user interface features in this project are implemented using the

observer-listener design pattern. User interface objects follow the same identification scheme and

are consistent across the rendering nodes of the cluster.

3.3 High Resolution Image Rendering

 This part of the document goes the design and implementation of the high resolution image

rendering framework implemented in this project. It builds on traditional techniques in LOD and

employs concurrency mechanisms to achieve interactive frame rates.

 16

 This image rendering framework uses tiling, texture paging, multi-level caching, compres-

sion, and threading techniques to provide fast access to any region of interest in an image. High

resolution image rendering of a single image is implemented within a single scene node. This

allows overlaying of data and the addition of multiple images in the same context.

Certain assumptions have to be made when dealing with large data in a cluster environment:

 1. All data may not fit into texture memory of a rendering node.

 2. All data may not fit into main memory of a rendering node.

 3. All data may not fit into distributed memory of a cluster.

These assumptions suggest the necessity for out-of-core techniques.

3.3.1 Tiling

 Tiling is an important step in large image processing because regularly sized pieces of image

can be paged to texture memory and cached more efficiently. For this reason, the entire image is

processed into a quad-tree pyramid of tiles from coarsest to finest resolution, sub-sampling data

by a factor at each coarser level. This standard data partitioning scheme allows us to design an

efficient data structure for traversing the data.

3.3.2 Indexing

 A multi-level index array of tiles is build for each image. This data structure is used for gen-

erating data tile requests and traversing the data using a quad tree, which is implicitly defined by

the index array.

 17

3.3.3 Compression

 Compression of image data reduces its storage requirements on disk and in main memory. It

also decreases the time required to transfer image data to texture memory. Original data is com-

pressed in DXT1 format using the squish library [17]. Decompression of the data happens en-

tirely on the GPU. This improves performance when many textures have to be paged into GPU

client memory repetitively.

3.3.4 Request System

 Requests for data are made at multiple system levels. This allows us to decouple rendering

and data access. Figure 6 shows all possible data requests in the current implementation. L 1 is a

request for a data tile from remote disk to node’s main memory. L 2 is a request for data tile from

node’s main memory to node’s texture memory. A more robust solution could also implement

requests for transfer of data from a remote node’s memory instead of the remote disk, however

such system introduces an extra level of memory management on the entire cluster. The goal of

this particular implementation is to provide a stable level of interactivity at all times and not nec-

essarily improve the speed at which data may arrive and be displayed. Instead of a more robust

memory management system, this solution implements loading of data into main memory (L 1)

asynchronously on a thread that runs concurrently with the main thread. Main memory acts as a

buffer between disk and texture memory. This prevents the main thread to stall when the remote

disk is accessed. The remote disk is currently represented seamlessly via NFS [18] or PVFS [19]

file systems. In the case of NFS, the data resides on a disk of only one node, the master node.

Data access is therefore always from this remote disk. When a node tries to access a piece of

 18

data, other nodes requesting data are locked until it finishes. PVFS is much more efficient since

data is distributed across disks of the entire cluster, so the loading of data may or may not be di-

rectly from the local disk. This prevents locking from happening as frequently. The threads of L 1

and L 2 communicate only when new data has been loaded into the main memory. Figure 7

shows the request system in more detail represented in the context of the two threads, the main

thread (L 1) and the fetcher thread (L 2). Each thread maintains a cache of tiles.

Remote
Disk

Main
Memory

Texture
Memory

L 1 L 2

Figure 6. Levels of requests for a data tile.

 19

TI$% i

$ ' (a*+e $ - (a*+e

$ ' .ueue $ - .ueue

In $ '
(a*+e

$ ' re2uest 5678%lse

$ - re2uest

Figure 7. Request system and caches in detail. If a tile exists in L 2 cache, it is drawn, otherwise
a request for it is made from L 1 cache. If it doesn’t exist in either caches, a request is made to

read it from a remote disk.

 20

3.3.5 Tile Caching

! " # $

" # $ %

$ % &

$ % & '

()*

()+

(),

()-

Figure 8. LRU Cache additions of 4 tiles.

 The caches described here are caches that exist in memory of each rendering node. Sizes of

the caches are set by the user and are represented by the number of data tiles that can be held in

source memory of a cache. The caches of tiles in both L 1 and L 2 are implemented as LRU (least

recently used) caches. If a tile is present in a cache when it is requested, that tile is pushed to the

front of the cache. When a new tile is cached, the least recently used tile is popped off the cache

and discarded. This is illustrated in Figure 8 for caching off four tiles. The L 2 cache introduces

an extra step when popping because the data contained in this cache may currently be displayed.

The L 2 cache is actually a restricted LRU implementation. Whether a tile can be safely popped

off L 2 is determined during traversal of the data and is based on the region of interest (ROI) of

the rendered image. This may occasionally produce a condition where the texture cache slightly

exceeds the desired size limit. However, both caches are updated at regular intervals, so the con-

dition is temporary and may last only a few seconds.

 21

3.3.6 Data Traversal

(a)

ROI

- - - end

- - - start

Finest

Coarsest

 (b)

ROI Dataset

Figure 9. Region of interest traversal of the image pyramid. Side view (a), top view (b).

 The data is traversed only within the region of interest, which is based on the view frustum.

Data that falls outside the view frustum is culled by comparing the data tile’s bounding box to

the view frustum. Since we are working in 2D using orthogonal projection, this test is very sim-

ple. Each tile’s bounding box is tested against the left, right, top, and bottom planes of the view

frustum. The test that determines whether something is inside or outside the view frustum is

 22

known as the frustum test. Only a portion of the entire quad-tree is traversed at a given time,

however traversal may not start at the root node. Traversal from the root node for large data in-

creases storage requirements and computation. Oftentimes coarser data is never actually dis-

played and the calculations to display it become unnecessary. For this reason, we start traversal

at tiles that are several levels coarser than the current level of detail (LOD). The locations of

these tiles are determined as the subset of all tiles at that coarser level that pass the frustum test.

Figure 9 shows the traversal of data. Traversal stops at current LOD. The coarsest tile of the im-

age is loaded and displayed at all times. This method decreases storage requirements, calcula-

tions, and data requests when traversing very large images, but creates more unpleasant blending

artifacts when zooming in and out with a large frequency of cache misses.

3.3.7 LOD Approximation

 Data tile sizes in node coordinates are searched from coarsest to finest until condition (3) is

met. When the condition is met, the level of detail of that tile becomes the LOD level for that im-

age. The following equations go over approximating LOD. The idea behind these calculations is

to find a match between the rendered size of a tile and its pixel size to be displayed on the screen.

 W W = P W T W (1)

 H W = P H T H (2)

 W N H N S L ≥ W W H W L S (3)

where,

W N : width of data tile in scene node coordinates

H N : height of data tile in scene node coordinates

W W : width of data tile in world coordinates

 23

H W : height of data tile in world coordinates

P W : width of one screen pixel in world coordinates

P H : height of one screen pixel in world coordinates

T W : width of data tile in pixels

T H : height of data tile in pixels

L : quad-tree level

S : sampling factor

3.4 Particle-Based Simulation

 This part of the document goes over a decentralized particle based simulation and visualiza-

tion model that runs in the screen spaces of rendering nodes.

3.4.1 Cluster Communication

 Communication between cluster nodes is essential in order to execute updates of the entire

simulation in sync. The idea is to distribute particles spatially across all nodes. This means that

the simulated particles may travel in and out of the extents of a node’s screen space at any time

during simulation. Figure 10 illustrates a possible path that a particle may take. As an obvious

solution, it is possible to route the particles that go outside a node’s extent through one node,

such as the master node, and have it calculate where particles should go. However, as the number

of particles grows, this becomes inefficient because one node has to handle sorting of all parti-

cles and forwarding them to appropriate nodes.

 A more efficient solution is to set up communication between nodes that follows the screen

layout of nodes in the tiled display. This provides direct communication links between adjacent

 24

nodes without the need of a proxy node. In order to set up this communication properly, the

physical layout of nodes has to be taken into account. This is because the layouts of physical

screens on each rendering node of the entire tiled display may differ. Rain Table reads the con-

figuration of the screens of rendering nodes from a file, it is shown in Figure 5. This file provides

information about the physical mappings of screens according to nodes’ host names and IP ad-

dresses. Assuming that the tiled display is set up as a regular grid of screens, this configuration

makes it easy to calculate the exact connections that have to be established between nodes.

!"#$%&%%%%%% !"#$%'

!"#$%(!"#$%)

Figure 10. Example path of a particle traveling across multiple nodes.

 Figure 11 shows all communication links necessary to execute simulation updates for the

tiled display configuration in Figure 12.

 25

T"#$D"&'#()
D"*$+&",+& 4 2
01##",+& 223 223
4$&,#15",+ 466 466
778 92
0(:;"+$& <

D"&'#()=,>$
=(*$ 5$"?1@11B16
87 16262C211
0,+"5,@& 1 D3F1G

D"&'#()=,>$
=(*$ 5$"?1@12B16
87 16262C212
0,+"5,@& 1 D2F1G

D"&'#()=,>$
=(*$ 5$"?1@1<B16
87 16262C21<
0,+"5,@& 1 D1F1G

D"&'#()=,>$
=(*$ 5$"?1@13B16
87 16262C213
0,+"5,@& 2 D1F6G D2F6G

D"&'#()=,>$
=(*$ 5$"?1@14B16
87 16262C214
0,+"5,@& 2 D6F6G D6F1G

D"&'#()=,>$
=(*$ 5$"?1@13B16
87 16262C213
0,+"5,@& 1 D3F6G

Figure 11. Example of a tiled display configuration file. This file starts with some information
about the tiled display. “Dimensions” keyword describes the number of columns and rows of the
tiled display. “Mullions” keyword is followed by the vertical and horizontal mullions measured
in inches. “Resolution” is the screen resolution of each tile. “PPI” is the pixels per inch of each

tile. “Machines” is the number of display nodes which drive the tiled display for each “Dis-
playNode”. “DisplayNode” represents a machine that can have an arbitrary number of screens.

Each screen has a mapping described by the tiled column and row within the entire display.
“Name” describes the host name of the node. “IP” is the IP address of the node. “Monitors” de-

scribes the mappings of each screen attached to that node with (0,0) located in the lower left.

 26

10#0#$#12

10#0#$#1&

10#0#$#1'

10#0#$#13

10#0#$#1110#0#$#1)

*3+1,*2+1,*1+1,*0+1,

*3+0,*2+0,*1+0,*0+0,

Figure 12. Tiled display for the tile configuration file described in figure 11. This figure also
shows the communication setup for 6 visualization nodes of irregular physical layout.

 The diagram in Figure 13 shows an example architecture for a system comprised of 4 nodes.

In terms of communication, each node:

 1. Acts as a server that communicates outgoing simulation data to adjacent nodes.

 2. Acts as a client that listens for incoming simulation data from adjacent nodes.

 3. Acts as a client that communicates with the master node server to synchronize.

 27

!im.
%lient

!im.
!er+er

!ync !er+er

!ync %lient

!im.
%lient

!im.
!er+er

!ync %lient

!im.
%lient

!im.
!er+er

!ync %lient

!im.
%lient

!im.
!er+er

!ync %lient

T0P 234T

50TT0M RI9:T

T0P RI9:T

50TT0M 234T

Master Node

Figure 13. 4-node system architecture.

3.4.2 Simulation on a Grid

 The simplest way to avoid O(N2) run time is to partition the simulation space into a static

regular grid of spatial bins. Other more efficient dynamic methods can be employed, however

local simulation methodology is out of the scope of this project. Each bin of the static grid con-

tains particles currently in its field of view. When a particle moves from one bin to another, it is

removed from its old bin and put into the new bin. In this setup, neighborhood lookups are sim-

ply a search in the particle’s own bin and the neighboring bins. A simulation grid is local to each

node. Its extent is slightly larger than the renderable extent of a node. This is necessary to ac-

 28

commodate for remotely located particles in N-body type simulations. Figure 14 shows a particle

and its field of view of the neighbors. Figure 15 shows approximate relative sizes of the render-

ing extent and the simulation grid. Each particle has a size, color, type, position, and velocity.

Figure 14. Particle neighborhood.

Simulation Grid Rendering Extent

Figure 15. Relative sizes of rendering extent and simulation grid.

3.4.3 Screen Space

 The particle simulation runs in the screen spaces of the tiled display. In order to effectively

couple the visualization and computation procedures on the entire cluster, all nodes have to be

well balanced. Load balancing will be discussed in a separate section in detail.

 29

From the point of view of one node, the local procedures as related to simulation and visualiza-

tion pipelines are (Figure 16):

1. Generate simulation input. This input is the primary source of particles. It is controlled en-

tirely by the user.

2. Perform calculations and data access for the simulation input that was generated locally

and needs to be rendered locally, forward it to the local visualization pipeline.

3. Perform calculations and data access for simulation input that was generated remotely but

needs to be rendered locally, forward it to the local visualization pipeline.

4. Do load balancing. Perform calculations (data is forwarded from the origin node) for simu-

lated input from any source that needs to be rendered remotely, send the results back.

 30

!"#$%&'"()*
+),$'

-(*./)0/1

2(3&%*
4"5$&%"6&'"()
7",/%")/

2(3&%*
!"#$%&'"()*
7",/%")/

!/)0*'(*2(3&%*
!"#$%&'"()*
7",/%")/*&)0*
!/)0*8&39*
./5$%'5

./#('/%:

2(3&%%:

Figure 16. Local procedures. This figure shows an overview of the local processes taking place
from the time a particle is generated until until it is visualized.

 The local simulation pipeline is shown in detail in Figure 17.

 31

Coordinate Conversion

C-ec/ S1atial Bin

4o Sim6lation Related
Call8ac/s

O:TC-ec/ <=ainst
Renderin= E?tent Send <@ay and

Remove Local Co1y
IN

Remove
Particle

Need
To Load
Balance

NO
FES

Pac/ <ll 4ata
and Send <@ay

NONE

To Render

Remotely

Locally

C-ec/ LiGe TOO OL4 Remove
Particle

OH

To
Render

Remotely Send
Bac/

M<P

Figure 17. Local simulation pipeline. This figure shows stages during a particle’s life cycle as it
moves through the components of the pipeline on a local node.

 32

3.4.4 Simulation Zones

 In order to run N-body type simulations across borders of tiled displays, it is necessary to de-

fine regions of space close to borders. These regions or zones are used to map remote particles to

local simulation grids and map local particles to a remote simulation grids. This is an extra step

in the simulation pipeline when checking for a particle’s intersection with the rendering extent.

There are three major zones. The first zone is the local zone where no mapping is necessary. The

second zone is a zone that forwards information about its particles to appropriate adjacent nodes.

These particles are sent to adjacent node’s “ghost” zone, which contains information about parti-

cles that are not local to the adjacent node located outside the node’s rendering extent. This way,

given proper synchronization, a neighborhood query close to a border on any node would

produce correct results. The union of the local zone and the map zone correspond to a node’s lo-

cal rendering extent. The “ghost” zone is outside of a node’s rendering extent. The zones are il-

lustrated in figure 18. The map and ghost zones are further divided into sub-zones that follow the

established 2-way connections to other nodes. Particles that end up in corner sub-zones, NW,

NE, SW, and SE, are sent over to multiple nodes. For example, for a node that shares a border

with other nodes on the north, west, and northwest sides, a particle in zone NW would need to be

mapped to the north, and the northwest node. The figure illustrates two points of view, inbound

and outbound, as nodes receive remote incoming mappings and send out local ones. When parti-

cles “die” locally or get removed when they jump outside of the map and local zones, messages

have to be sent to appropriate nodes to indicate that these particles are no longer mapped. When

moving between sub-zones, this procedure also has to check if multiple messages need to be sent

out when particles move outside of the corner zones.

 33

W

N

S

E

N W NE

SES W

NENN W

W E

SESS W

GHOST ZONE

NENN W

W E

SESS W

MAP ZONE

LOCAL ZONE

Outbound:

Inbound:

Figure 18. Simulation zones. This figure shows outbound and inbound views.

3.4.5 Visualization Pipeline

 The local particles are drawn into a texture buffer using OpenGL’s framebuffer object exten-

sion. Each particle is drawn as a point splat of certain size, color, and texture. In OpenGL, the

splats are drawn as point sprites using GL_COORD_REPLACE_ARB extension that generates

the correct texture coordinates for the vertex processor. A vertex program is used to correctly as-

 34

sign point sizes and types from attribute arrays. The size of the particles is controlled by the

number of particles hashed to a simulation grid cell. Larger sizes represent larger volumes. In-

formation contained in the attribute arrays is generated during the simulation step while new par-

ticles are introduced into the system at a set rate at the locations of table pucks. Particles are col-

ored according to their type directly in a fragment program. The result texture is a blending of

two frames: the current frame, and the previous. Smoothing the two rendering frames results in

better perception of motion. The result is blurred using 5x5 kernel Gaussian blurring to render

metalball-style blobs. For efficiency, this is a two pass process. First, the texture is blurred hori-

zontally in the fragment program, then vertically. This is illustrated in Figure 19. Figure 20 has a

detailed view of the visualization pipeline.

!orizontal +aussian

Vertical +aussian

Result +aussian

Figure 19. 2-pass Gaussian blur.

 35

!ertex Buffer Ob,ect . Particle Type

Texture 6
Previous
:rame

Texture <
Current
:rame

!ertex Buffer Ob,ect . Particle PositionPoint
Splatter

:ragment Program APass 6B

. Blend < frames

. Do E.pixel horiGontal Haussian blur

Color
Lookup

!ertex Program

. Henerate K texture coordinates per
point

:ragment Program

. Lookup texture splat

. Color by particle type

Bind Offscreen Texture

Render Resulting Texture
Across the Screen

!ertex Buffer Ob,ect . Particle SiGe

:ragment Program APass <B

. Do E.pixel vertical Haussian blur

Figure 20. Visualization pipeline.

 36

3.4.6 Load Management Mechanisms

 Since particles are free to move anywhere in the space of interaction, it is possible for the

system to become unbalanced. An example of this is when all of particles move to a single node.

In this case, it is good to offload / distribute the computation if the simulation step is CPU-

intensive. Communication is somewhat costly. If it is the case that both computation and com-

munication have the same cost, increasing the number of computation nodes does not provide

any performance benefit. Normally, the computation cost should be greater than the communica-

tion cost. Instead of using he entire cluster and doing a conventional broadcast at every simula-

tion step, it would make sense to instead evaluate whether distribution is necessary. Say that each

node can do calculations for N number of particles (normal computation plus load balancing

computation). Then, we could say that if the number of particles grows larger than N/2, distribute

the computation for N - N/2 particles. This would greatly minimize the communication cost for

an under-loaded scenario. We can then define a discrete metric for each node to indicate whether

it is under-loaded (< N/2), loaded (>N/2), or over-loaded (>N). If distribution is necessary, the

particles can then be evenly distributed to under-loaded nodes. When interaction speed and sys-

tem responsiveness is crucial, it is reasonable to employ other mechanisms to control the number

of simulated particles to ensure a more balanced system. These mechanisms are hierarchical. On

the lowest level, it is possible to limit the number of particles that can be present in a simulation

grid bin. On the mid-level, it is possible to limit the number of particles that can be present on a

node. On the highest level, the previous limitations control the number of particles that can be

present on the entire cluster. On the lowest level, this method removes particles that are not really

necessary for visualization and greatly decreases the local load. Another improvement is a good

 37

balance between the rate at which particles are input into a node and the rate at which they exit.

This is achieved by dynamically adjusting the input rate per node based on the rate particles exit

a node.

 To assess the possibility of offloading, it is necessary to define some metrics for communica-

tion and computation costs.

 1. Computation cost =

 (number of particles) * (computation time)

 2. Communication cost =

 (number of particles) * (size of data) + average latency

 The communication bandwidth is usually good enough to transfer data. For example, in a

1Gbit local network, passing 1000 for offloading would mean passing a total of about (5 floats *

4 bytes * 1000) 20000 bytes.

 In theory, this can be done 4000 times a second. However, theoretical bandwidth does not

take into account the latency of packing the data, sending it across PCI bus to the wire, sending it

from the wire though PCI bus, and unpacking it. It also does not take into account the overhead

of TCP. These latencies depend on architecture, efficiency of the packing code, system drivers,

and etc. Figure 21 lists round trip TCP latencies in milliseconds for a 1Gbit LAN using a frame

size of 1500 byes for different packet sizes.

 38

Figure 21. TCP round trip latencies for 1Gbit LAN.

 If the communication cost is greater than the cost of computation, the computation is done

locally. At the start up, an unused connection is established between each node, aka between each

load balancing client and server, in the cluster. The metrics for each node are gathered by the

master and distributed to the slaves. The slaves choose under-loaded nodes and distribute the

computation evenly among them. This is illustrated in figure 22 (top). Alternatively, these load

balancing servers may run on machines completely separate from the tiled display, however this

is not implemented in this project because of the interest in avoiding the use of outside resources.

The load balancing procedure does not assume that the data and the information to be gathered

from the simulation grid is located on the load balancing server. This information is forwarded

from the client to the computation server. This minimizes data access on the remote machine

while taking advantage of data caching (described in the next section). It is not guaranteed that

minimum average maximum

0 msec

0.0357 msec

0.0714 msec

0.1071 msec

0.1429 msec

0.1786 msec

0.2143 msec

0.2500 msec

64 b 128 b 512 b 1024 b 2048 b 4096 b 8192 b

 39

offloading particles to a remote machine for computation would always increase performance.

The chart in figure 22 (bottom) shows that performance is gained only for simulations that re-

quire longer to complete one simulation step (measured in nanoseconds). For this reason,

offloading should be avoided for simple simulations because the latency of communicating data

may be longer than the amount of time it takes to complete the simulation locally. Experiments

on the LambdaTable suggest that offloading should be employed for simulations or sub-

processes that take a significant amount of time to compute and, ideally, do not require immedi-

ate visualization. As the number of nodes increases, there is an optimal number of nodes that can

provide performance benefit. This number would vary for different types of simulations due to

the varied amount of information that is required to be transfered (based on the simulation type).

However, when the number of tiled display nodes is low, local load management methods are

more robust.

 40

!" ser'er (

)n+erloa+e+

!" ser'er /

)n+erloa+e+

!" ser'er 0

)n+erloa+e+

!" client

4istri5ute 7890::::::8; <articles

=o><ute 7?890::::::8@9A; <articles

!" ser'er A

!oa+e+

!" ser'er B

!oa+e+

!" ser'er C

D'erloa+e+

Figure 22. Diagram of offloading (top). Offloading 100 particles of varied computation time on
LambdaTable, consisting of 3 nodes (bottom).

Local Remote (2)

0 sec

2.143 sec

4.286 sec

6.429 sec

8.571 sec

10.714 sec

12.857 sec

15.000 sec

1000 nsec 10000 nsec 100000 nsec

 41

3.4.7 Data Caching

 Similar to caching of image blocks in high resolution image rendering framework, the data

required for simulation is cached locally. During a simulation, each particle accesses some data

that is juxtaposed on the map of an area rendered by the image framework. This data access op-

eration is a lookup of a single cell of data. This cell is cached locally if it is not already loaded.

The frequency of cache misses is directly proportional to the amount of simulated input intro-

duced into areas not already covered by any particles.

3.4.8 Multithreading

 In order to maximize concurrency, the visualization and simulation pipelines run in a separate

threads. Every time the simulation code is done with one update, it notifies the visualization code

that new simulation data is available. This prevents the visualization pipeline from busy waiting.

In addition, the generation of simulation input is done on a separate thread placing it randomly

around the location of a user puck.

3.5 Synchronization

 Synchronization is a achieved using constant communication with the master node. This is a

centralized synchronization model. The synchronization server broadcasts a message that the

simulation is ready to start and blocks until it hears back from all nodes that one simulation step

is done. On the client size, the simulation pipeline is blocked until it hears for a message to start.

Once the client is finished, it sends a proper message back. The procedure for synchronizing the

visualization pipeline is similar, but it is done on a separate thread to ensure concurrency. In this

 42

synchronization model, the frequency of simulation update and rendering update can be adjusted

separately to meet system requirements. Figure 23 goes over rough synchronization commands.

Sync Server Sync Client

broadcast(Start_Simulation)

blockingRecvAll(Stop_Simulation)

broadcast(New_SimulationState)

blockingRecv(Start_Simulation)

Do local simulation

Communicate to resolve simulation state

send(Stop_Simulation)

T
H
R
E
A
D

1

broadcast(Start_Visualization)

blockingRecvAll(Stop_Visualization)

nonBlockingRecv(New_SimulationState)

Use new state if available

blockingRecv(Start_Visualization)

Draw local simulation data

send(Stop_Visualization)

T
H
R
E
A
D

2

 Figure 23. Synchronization.

 43

3.6 Scalability

 This section presents an analysis of the scalability of this architecture.

 Data size:

 - Can be decentralized using PVFS file system, data is accessed only for cache misses.

 Output resolution:

- Limited only by the fill rate of the video card on each node and the transfer bus (AGP/PCI/

PCI-Express).

 Communication:

- Limited by bandwidth, communication increases for unbalanced system, stays consistent

for a balanced system.

 Computation:

- All computation is done locally, unless the load is too heavy, employs load balancing

mechanisms that may either offload or decrease the load locally by removing particles that

are not important to the visualization.

Interaction Space:

- Limited by scalability of the tracking system.

 44

4 Interaction

 This section goes over the interaction mode in Rain Table.

4.1 Basic Navigation

 Rain Table lets users pan around and zoom into visualizations using trackable pucks. The

pivot of zoom is determined by the location of the zoom puck on top of the table.

!oom$ Pivot of zoomingTranslation

3agni!er5nputs

Figure 24. Pucks with unique retro-reflective markers.

4.2 Magnifiers

 Magnifiers provide zoomed versions of areas under it. A single puck or multiple pucks can be

assigned to be magnifiers. The magnifier also contains a version of the visualization under the

magnifier. In order to make the imagery displayed by the magnifier more visible, the displayed

visualization is a more transparent version of the original visualization. When a magnifier

 45

crosses the border of local rendering extent, the magnifier typically displays data simulated and

visualized by separate nodes. This is shown in figure 25.

Node A Node B

Figure 25. Magnifier on the border.

4.3 Inputs, Triggers, and Modifiers

 In order to support a variety of visualizations, we define several widgets. Input widgets are

considered to be the entry points of particles into simulations. They can an be radial or directed.

Triggers are used to trigger events at certain areas, such as volcanos. Modifiers can be assigned

to different types of parameters in simulations. For example, a modifier can be used to interac-

tively control the rate at which particles enter simulations or the intensity of a volcano eruption.

Figures 26 and 27 show the widgets described.

 46

Figure 26. Radial and directed inputs.

Figure 27. Trigger (right) and modifier (left).

 47

5 Applications

 This section goes over the applications implemented using the architecture and the prepara-

tion of data for them.

5.1 Flow Model Calculation

50 1 2 3 4

Figure 28. 1D elevation model.

 In order to utilize the resolution of tiled displays, the data used to support simulations can be

very large. Digital elevation models (DEMs) can be used to guide particles around a map juxta-

posed with elevation data. However, the calculation of correct flow directly from large DEMs is

not an option at run time due to a large number of natural depressions in DEMs. There is a num-

ber of GIS applications that provide the means to calculate flow models from digital elevation

models. Some of this software is GRASS [20], ArcGIS [21], RiverTools [22], and LandSerf [23].

However, GRASS is the only known open-source application to provide this feature.

 This project implements a single flow (SF) routing calculation on DEMs, however this calcu-

lation is not completely optimized for I/O and is meant to be a straight forward implementation

of a well known algorithm [24]. The TerraFlow [25] project implements an I/O efficient method

to do this calculation on very large grids.

 48

 The flow model is calculated directly from elevation data. In a single flow model, any given

location has only one possible flow direction, the steepest down-slope neighbor. In the multi flow

(MF) model, flow directions can be assigned to any steepest down-slope neighbors. Multi flow

models are more realistic, but they take significantly more time to calculate and require more

storage space. Given a regular grid of elevations, we can think of a depression as a single cell or

a group of grid cells that do not flow out anywhere. Looking at Figure 28, we can see that this

one dimensional grid of elevations contains two major depressions. One includes cells 1 and 2

and the other includes cell 4. The spill cells, the cells where all of the given cells in a depression

should go through, are cell 3 for the first depression and cell 5 for the second. Figure 29 shows

the distinction between single cell and multi cell depressions on a 2D grid.

56 11 32

90 10 234

89 14 244

56 11 32

10 10 10

23 10 20

10

77 45

10 10

78 89

56

44

89

89

89

97

80

112

89

Figure 29. Singe-cell depression (left) and multi-cell depression (right).

 The algorithm in Figure 31 goes over the calculation of flow models from DEMs. This algo-

rithm is iterative. The algorithm makes multiple passes through the entire elevation grid. It iden-

tifies depressions and fills them in. To make sure that certain important areas do not get filled in,

we introduce a depression threshold size. Small to medium sized depressions usually represent

 49

insignificant features or errors in elevation created by the process used to record the data. Large

depressions represent important geographical features and typically should not be filled in. After

filling in all depressions that meet the threshold criteria, the algorithm calculates a vector of flow

for each grid cell using the distance weighted drop. Figure 30 shows how to calculate this vector.

This calculation uses V as the vector representing direction of the flow, D as the actual distance

between the cells (depends on the resolution of elevation data), E 1 as the elevation at the target

cell and E 0 as the elevation at origin cell. When all vectors are calculated, each cell vector is in-

terpolated with the next grid cell’s vector in the flow. This produces smoother flows for particle

tracing routines.

V(-1,1) V(0,1)
 V(1,1)

V(-1,0) V(0,0) V(1,0)

V(-1,-1)
V(0,-1) (1,-1)

D

A

B

 A = V(1,1) (E1 - E0) D

 B = V(1,0) (E1 - E0) D / √2

Figure 30. Vector calculation.

 50

 E = Regular grid of elevation values

 N D = Number of depressions

 N T = Number of depressions above threshold size

 D THRES = Threshold cell size of a depression

 While (N D is not equal to N T)

 Do

 {

 N D = 0

 N T = 0

 Set the edges of E to flow out

 Find all single-cell depressions in E and fill them in

 L U = List of undefined flows

 For each cell in E

 {

 Calculate flow

 If the flow is undefined push it on to L U

 }

 For each cell in L U

 {

 Fill in undefined flows based on adjacent flows

 If flows back to the current cell, do not fill in

 }

 L D = List of multi-cell depressions

 For each cell in L U

 {

 D H = Highest bounding elevation

 Recursively examine cell’s boundary

 {

 D L = List of connected cells of a depression

 If a neighbors value is greater than D H

 Then update D H with that value

 If a neighbor does not already belong to a depression

 Then assign it a unique depression ID and push it on to D L

 }

 Push each D L on to L D

 N D = N D + 1

 51

 }

 For each depression in L D

 {

 If (its cell size is lower than D THRES)

 Then assign all cells the value of D H

 Else N T = N T + 1

 }

 }

 For each cell in E

 {

 Calculate the flow vector based on its flow direction

 }

 For each cell in E

 {

 Interpolate the cell’s flow vector with its target cell’s flow vector

 }

Figure 31. Pseudo code for computing a flow model from DEMs.

5.2 Rainfall Runoff

 This is a simple problem of particle tracing in a vector field calculated directly from a DEM.

It requires minimal calculation since we are not interested in visualizing complex CFD, but the

direction water takes on a map. The most time consuming step is the access of vector data at each

step of the trace. The movement of a particle across vector field can be described by the follow-

ing equations:

 P T + ∆T = P T + V T (4)

 V T + ∆T = MAX (V T + D (V T – V T - ∆T), V MAX) (5)

 L T + ∆T = L T – ∆T (6)

 where,

 52

 P is position vector

 V is velocity vector

 T is time

 D is damping

 L is particle life

5.3 Sediment Flux

 Here, we model the movement and deposition of sediment in rivers and channels. The

amount of sediment that can be picked up by water depends on its velocity and volume. We dis-

cretize this affect to describe three sizes of sediment that would be present in water: small, me-

dium, and large sediment. The algorithm uses a lookup table to map particle’s velocity and the

volume of water in the local area to the sediment size that can be picked up. The deposition of

sediment works in a similar way. Another lookup table maps a particle’s (particle that is carrying

some amount of sediment) velocity and the volume of water in the local area to the sediment size

that may be deposited. In this model, large amounts of small sediment are always be present in

water. On the visualization side, larger sediment is represented by darker colored brown particles

contained within water.

5.4 Lava Flow

 The flow of lava follows the topography similarly to the flow of water, however the physics

are different. In order to properly simulate lava, a particle has to do a few neighborhood lookups.

The task of modeling a simple flow of lava is to mimic insulated flow. In an insulated flow, a

particle cools down faster if there are fewer particles around it. Let’s develop a simple velocity

 53

decay scheme. If the diameter of a visualized particle is approximately the size of a spatial bin on

the simulation grid, then the velocity decay scheme can be approximated as:

 V T + ∆T = MAX (V T + D (V T – V T - ∆T) – ID (1 +E) 2, V MAX) (7)

 This equation is similar to particle tracing with the addition of insulated flow physics. In this

equation, LD represents insulation damping and E is the number of non-empty spatial bins

around a particle.

5.5 Pyroclastic Flow

Figure 32. Pyroclastic flow of Mayon Volcano, Pyilippines.

 54

Figure 33. Eruption graph.

 Pyroclastic flows are a result of volcanic eruptions (Figure 32). It is the movement of a com-

bination of hot gas, ash, and rock, also known as tefra, around the volcano. The basic equation

for computing the velocity of a particle in the flow is defined by (8). It is a simplified version of

the plinian eruption model. The equation represents a linear relationship between and the veloc-

ity and the time since the initial eruption, where M is the magnitude of the eruption, D is damp-

ing, and T is the time. For larger eruptions, it is necessary to increase M and decrease D. This is

because larger plinian columns tend to reach higher altitudes prior to collapse. Degassing of a

larger volume flow should take longer than degassing of smaller flows. Figure 33 shows a graph

of an eruption where M is 60.0 and D is 0.132. Equation (9) defines the relationship between

stagnation height and particle velocity. Stagnation height is the accumulative height a particle has

to overcome as it travels across terrain. If the velocity of a particle is less than the minimum ve-

locity necessary to overcome this height, the flow is effected by the terrain, otherwise the flow

conserves its velocity.

 55

 V T + ∆T = MAX (M – DT, V MAX) (8)

 H STAG = V MIN 2 V MIN = √ H STAG (9)

The relationship between the stagnation height and its relative minimum velocity is shown in

Figure 34.

Stagnation Height Minimum Velocity

20 meters 20 meters / sec.

80 meters 40 meters / sec.

5 meters 10 meters / sec.

Figure 34. Stagnation heights and their relative velocities.

 In order to calculate the stagnation height correctly, it is necessary to keep track of the last

lowest elevation the particle passed through. This is illustrated in figure 35. The last lowest ele-

vation would be used to calculate the change in elevation. Then, in order to calculate the stagna-

tion height, we would only need to know the change in horizontal position a particle has traveled.

Equation (10) shows this calculation. Figure 36 goes over the algorithm to calculate and update

stagnation height.

 H STAG = √ (∆E 2 + ∆D 2)

 (10)

E

D

H STAG
E

Figure 35. Stagnation height.

 56

 E p = Previous elevation

 E C = Current elevation

 D = Horizontal distance traveled

 H = Change in height = E C - E p

 DIST = Total distance traveled = sqrt(H2 + D2)

 MIN_VELOCITY = Stagnation velocity = sqrt(2 * g * DIST)

 If MIN_VELOCITY > CURRENT_VELOCITY

 Take into account the topography

 Else

 Velocity is conserved

 If E p > E C

 Then E p = E C

 Figure 36. Algorithm to calculate stagnation height.

5.6 Glacial Movement

Figure 37. Glacier.

 57

 Of the fresh water on Earth, over 75% resides as ice in the ice caps and as alpine glaciers

(Figure 37). Alpine glaciers are important topics of interest in the issue of global warming. The

physics of glaciers are very complicated. When snow accumulates at the thickness of about 50

meters, the pressure is sufficient to turn snow into glacial ice. Ice, under atmospheric pressure,

behaves as a brittle solid. Under enough pressure, ice will flow. Near the sides of the glacial

channel, the ice flows slowest due to frictional forces. It is also possible for the entire glacier to

slip when there is a build up of water under the glacier. This process is called basal slip and is

analogous to ice-skating, where the pressure from the weight of the skater is focused into the

blade o the skate. For visualization simplicity, we will model only the first type of movement.

Glaciers form “U” shapes when moving down slopes. The following equation defines the veloc-

ity of a particle.

 V T + ∆T = MAX (V T + D (V T – V T - ∆T) + GD (L +R), V MAX) (11)

In this equation, GD is the glacial movement damping, L is the number of non-empty bins to the

left of a particle, and R is the number of non-empty bins to the right of the a particle. This mod-

els the pressure distribution through the glacier. Particles that are in the middle typically move

down faster than the ones on the edges forming “U” shapes. The following diagram (Figure 38)

shows an example of velocity vector distribution.

 58

Upslope Downslope

Figure 38. Velocity distribution.

v

Figure 39. Neighborhood lookup.

 To calculate the number of non-empty bins to the left and right of a particle, a ray is shot in

both directions perpendicular to the particle’s velocity vector. This is shown in Figure 39. These

rays travel through bins and collect information. There is a maximum number of bins a ray can

travel through to prevent this neighborhood query to travel outside of the node’s local simulation

grid.

 59

5.7 Water Pollution

 The implications of water pollution are very significant. The visualization of rainfall runoff

shows how water connects different geographic regions. In order to visualize the pollution of wa-

ter, we set up several controllable pollution spots. When rain originates at that spot, it is color

coded according to the pollution origin’s color. The result visualization makes it clear how pol-

lutants travel with water, where they mix together, and where they end up.

 60

6 Limitations and Future Work

 This paper presents core software architecture for interactive simulations and visualizations

using the hardware of tiled displays directly. With rapid development of high speed networks, the

future work may include interaction and display of remote visualizations, interconnection of sev-

eral remote tiled displays to visualize and interact with real-time simulations.

 The current implementation runs in screen spaces of tiled display nodes and assumes that

anything that moves outside of the entire display should be discarded. Future work would in-

clude routines to offload and update particles around the edges.

 The load management mechanisms suggested in this work are not tuned to do well for a par-

ticular simulation. Future work may include adaptive methods to choose appropriate load man-

agement based on simulation requirements. Furthermore, the current system relies on manual

adjustment of simulation parameters for different data. This can be improved by using more in-

formation about the data at run time, such as its current level of detail.

 Some of the developments in the domain of GPGPU produced impressive results in the area

of interactive simulations. The parallelism in the fragment processing of GPUs is used to simu-

late complex phenomena more efficiently. The use of GPUs for simulation, however, is limiting

when the simulation is required to use large data. Frequent transfer of data between the GPU and

CPU can create very significant bottlenecks. However, asynchronous methods can be employed

to transfer data more efficiently. On demand paging of data for simulations to the GPU using tex-

tures as storage units would allow direct lookup into the data from fragment programs in screen

space. This data can then be used for in a GPU-based particle system. When moving to scalable,

 61

distributed design, such system would still constantly need to do readbacks from the GPU mem-

ory in order to synchronize the simulation state with adjacent nodes.

 To reduce the frequency of cache misses, distributed memory and caching can be employed.

This can greatly reduce remote disk access and speed up visualizations. At EVL, an application

called LambdaRAM [26] is being developed to address access of massive data over high speed

gigabit networks in data-intensive applications.

 An infrastructure called OptiStore [27], also developed at EVL, can be employed in the fu-

ture to efficiently create large data repositories for use in simulations and visualizations, which

would make Rain Table software more robust and usable for real geo-scientists.

 62

7 Conclusion

 Scalable software systems are needed when moving to high resolution interactive environ-

ments. This paper presents a method to use high resolution tiled displays to support interactive

group-oriented visualizations of real-time geoscience phenomena for science education in muse-

ums or classrooms.

 The contribution of this work is:

1. Development of a decentralized particle-based simulation model that can be applied to

many times of simulations.

2. Development of an approach to efficient coupling of visualizations and particle-based

simulations on high resolution tiled displays.

3. Application of traditional out-of-core and LOD methods to interactive high resolution en-

vironments.

4. Application of visualization research technology to informal science education.

 63

8 Current System

 Rain Table software was demoed at SC (Supercomputing) 2007. It will be deployed at the

Science Museum of Minnesota this summer. The current system includes a few datasets:

1. Mount Rainier National Park located 54 miles south east of Seattle, Washington. Mt. Rain-

ier is an active volcano covered in 35 square miles of snow and glacial ice. Image pixel di-

mensions: 13,938 by 20,282, elevation data dimensions: 1,194 by 1,738.

 64

2. The Big Island of Hawaii. It is home to a few dozen volcanos including the world’s largest

volcano Mauna Loa. 40% of Mauna Loa’s surface is covered by lava flows that are less than

1000 years old. Image (30 meter) pixel dimensions: 4,096 by 4,096, elevation data dimen-

sions: 2,048 by 2,048.

 65

3. Minnehaha Creek, Minneapolis, Minnesota. The area is one of the testbed sites of St. An-

thony Falls Laboratory (National Center for Earth-Surface Dynamics). Image (0.5 meter)

pixel dimensions: 8,821 by 5,032, elevation data dimensions: 1,198 by 488.

 66

4. The ice covered Lake Bonney, Antarctica. Located in McMurdo Dry Valleys. Image pixel

dimensions: 2,471 by 1,678, elevation data dimensions: 1,119 by 823.

 67

5. Mars data collected using Mars Orbiter Laser Altimeter over 2 years beginning in fall

1997. Shows 4 large volcanoes. Olympus Mons (upper left) is 24 km high and 550 km in di-

ameter. Image (4 meter) pixel dimensions: 9,027 by 5,599, elevation data dimensions: 2,256

by 1,399.

 68

6. McMurdo station antarctica. The data was used to visualize drainage around the station to

find problematic areas. Image (1 meter) pixel dimensions: 3,922 by 2,658, elevation data di-

mensions: 3,412 by 2,556.

 69

9 Gallery

Figure 40. Users interacting with Mars data.

Figure 41. Users interacting with McMurdo data (Antarctica).

 70

Figure 42. Rainfall Runoff (Mars data).

Figure 43. Sediment Flux (Hawaii Big Island data).

 71

Figure 44. Pyroclastic Flow (Mars data).

Figure 45. Glaciers (Mount Rainier National Park).

 72

REFERENCES

[1] Krumbholz, C., Leigh, J., Johnson, A., Renambot, L., and Kooima, R.: “LambdaTable:
High resolution tiled display table for interacting with large visualizations,” In Workshop
for Advanced Collaborative Environments (WACE). 2005.

[2]
 Chen, X. and Davis, J. “LumiPoint: Multi-User Laser-Based Interaction on Large Tiled
Displays”. In Displays, Vol. 23, pp. 205-212. 2002.

[3]
 Stodle, D. Hagen, T. Bjorndalen, J. Anshus, O. “Gesture-Based, Touch-Free Multi-User
Gaming on Wall-Sized, High-Resolution Tiled Displays”. In Proceedings of the 4th In-
ternational Symposium on Pervasive Gaming Applications, PerGames 2007, pp. 72-83.
2007.

[4]
 Stodle, D. Hagen, T. Bjorndalen, J. Anshus, O. “A system for Hybrid Vision and Sound
Based Interaction with Distal and Proximal Targets on Wall-Sized, High-Resolution Tiled
Displays”. In CVHCI07. pp. 59-68. 2007.

[5]
 Ball, R. and North, C. “Effects of Tiled High-Resolution Display on Basic Visualization
and Navigation Tasks”. In Extended abstracts of ACM Conference on Human Factors in
Computer Systems (HCI 2005), pp. 1196-1199. Portland, Oregon. 2005.

[6] Rogers, Y. and S. Lindley, “Collaborating around vertical and horizontal large interactive
displays: which way is best?” Interacting with Computers, 2004. 16(6): p. 1133-1152.

[7] J. Allard , B. Raffin , F. Zara . “Coupling Parallel Simulation and Multi-display Visualiza-
tion on a PC Cluster,” In Euro-par 2003, Klagenfurt, Austria, August 2003.

[8] Tiled Image Viewer (TimV). San Diego Supercomputing Center.

[9] Cluster-based Image Viewer. Justin Blinns, Michael E. Papka, Rick Stevens. Argonne
National Labs.

[10] N. K. Krishnaprasad et al, “JuxtaView – a tool for interactive visualization of large im-
agery on scalable tiled displays,” In Proceedings of IEEE Cluster, 2004.

[11]
 Tom Geller. “Interactive Tabletop Exhibits in Museums and Galleries”. IEEE Computer
Graphics and Applications, 26(5): 6-11. 2006.

[12]
 Jorda, S. Geiger, G. Alonso, M. Kaltenbrunner, M. “The reacTable: Exloring the Synergy
between Live Music Performance and Tangible Tabletop Interfaces”. Proceedings of the
first international conference on “Tangible and Embedded Interaction” (TEI07). Baton
Rouge, Louisiana.

 73

http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Allard
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Allard
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Raffin
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Raffin
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Zara
http://ralyx.inria.fr/2003/publications.html?projet=apache&nom=Zara

[13]
 An exhibition facility themed around the Ogura Hyakunin Isshu (a classic anthology of
100 traditional Japanese poems from the 7th to 13th centuries composed by 100 poets)
built in Arashiyama, Kyoto, in January 2006 and operated by the Ogura Hyakunin Isshu
Cultural Foundation.

[14] FLTK - Fast Light Toolkit, (http://www.fltk.org).

[15] MPICH Implementation of the Message Passing Interface (MPI),
(http://www-unix.mcs.anl.gov/mpi).

[16] E. He et al, “Quanta: a toolkit for high performance data delivery over photonic net-
works,” Journal of Future Generation Computer Systems, volume 19, issue 6, pp. 919-
933, August 2003.

[17] Brown, C. Squish DXT Compression Library, (http://www.sjbrown.co.uk/?code=squish).

[18] NFS - Networked File System (http://nfs.sourceforge.net)

[19] PVFS - Parallel Virtual File System (http://www.parl.clemson.edu/pvfs)

[20] GRASS GIS - Geographic Resource Analysis Support System, (http://grass.itc.it).

[21] ArcGIS, (http://www.esri.com/software/arcgis).

[22] RiverTools, (http://www.rivertools.com).

[23] LandSerf, (http://www.soi.city.ac.uk/~jwo/landserf).

[24] Jenson, S. and Dominique, J. “Extracting topographic structure from digital elevation
data for geographic information system analysis”. Photogrammetric Engineering and
Remote Sensing, 54(1), pp. 1593-1600. 1988.

[25] Laura Toma, Rajiv Wickremesinghe, Lars Arge, Jeffrey S. Chase, Jeffrey Scott Vitter,
Patrick N. Halpin, and Dean Urban. “Flow computation on massive grids”. In Proc. ACM
Symposium on Advances in Geographic Information Systems, 2001

[26] Vishwanath, V., Shimizu, T., Takizawa, M., Obana, K., Leigh, J. “Towards Terabit/s Sys-
tems: Performance Evaluation of Multi-Rail Systems”. Proceedings of Supercomputing
2007 (SC 2007). Reno, NV. 2007.

[27] Zhang, C. “OptiStore: An On-Demand Data Processing Middleware for Very Large Scale
Interactive Visualization”. Thesis. 2007.

 74

http://www.fltk.org
http://www.fltk.org
http://www-unix.mcs.anl.gov/mpi
http://www-unix.mcs.anl.gov/mpi
http://www.sjbrown.co.uk/?code=squish
http://www.sjbrown.co.uk/?code=squish
http://nfs.sourceforge.net
http://nfs.sourceforge.net
http://www.parl.clemson.edu/pvfs
http://www.parl.clemson.edu/pvfs
http://grass.itc.it
http://grass.itc.it
http://www.esri.com/software/arcgis
http://www.esri.com/software/arcgis
http://www.rivertools.com
http://www.rivertools.com
http://www.soi.city.ac.uk/~jwo/landserf
http://www.soi.city.ac.uk/~jwo/landserf

