
Energy-Efficient Method to Improve TCP Performance for MANETs

Chaoyue Xiong, Jaegeol Yim, Jason Leigh and Tadao Murata
Computer Science Department, University of Illinois at Chicago

Chicago, IL 60607, USA

ABSTRACT

The current implementation of TCP for the Internet is not
efficient when used for Mobile Ad hoc Networks
(MANETs). This is because TCP assumes that all packet
losses are caused by congestion, whereas transmission
errors are a main reason for packet losses in wireless
networks. To ameliorate this situation and increase
performance, we propose a method of using multi-metric
parameters to distinguish the causes for packet losses and
use Colored Petri Net to analyze the revised protocol.
We call this TCP-MEDX (Mobile Error Detection
eXtension). TCP-MEDX has two characteristics: Firstly,
it is energy-efficient because this solution is only initiated
when a packet loss is detected. This characteristic is very
important for MANETs because of its limited power
source; secondly, our approach removes negative effects
caused by asymmetry in wireless links, thus improving
correctness in determining causes for packet losses. Our
simulation results using Design/CPN show that the
proposed approach increases throughput and reduces
propagation delay compared with standard TCP.

Keywords: Transmission Control Protocol, Colored Petri
Nets, Propagation Delay, Throughput, Congestion.

1. INTRODUCTION

Transmission Control Protocol (TCP) has been the
dominant transport-layer protocol for reliable data
delivery over the Internet, and it has been the main
research target for many network researchers. Some of
them use simulation to study TCP performance, others
use mathematical model to analyze algorithms in TCP.
Our prior work with Colored Petri Nets (CPN) [11] has
shown them to be a powerful tool for simulating and
analyzing TCP protocols [9]. CPNs have a graphical
form underlying on mathematical definition and it is the
method used in this paper. CPNs together with
Design/CPN provide both simulation and formal model to
analyze TCP.

TCP assumes that the underlying network is relatively
reliable because it was designed for a wired environment.
When packet loss occurs, the TCP sender interprets it as
evidence of congestion in the network, thus invoking
congestion control by drastically reducing its congestion
window. This mechanism ensures fairness among
connections sharing the same channel, and works well in
a wired network, where most of the packet losses are due

to congestion. However, it performs poorly in Mobile Ad
hoc Networks (MANETs) because communication over
MANETs is characterized by high bit-error rates. Packet
losses occur more frequently due to transmission errors
than due to congestion in MANETs. However, TCP has
no mechanism to detect the causes for packet losses but
instead interprets all packet losses as those resulting from
congestion, thus causing severe performance degradation
when used for MANETs. In order to improve TCP
performance over MANETs, where wireless links are
subjected to high transmission errors, it is necessary to
revise TCP, so that it can detect the causes for packet
loss. This paper proposes a reactive approach called TCP-
MEDX that calculates metrics to detect the causes for
packet loss only when packets are lost, making the
approach energy-efficient.

The rest of the paper is organized as follows: Section 2
describes the proposed approach. Section 3 describes
CPN model for TCP-MEDX and simulation environment
in Design/CPN, and simulation results are given in
section 4. Section 5 introduces related work. Conclusions
are given in Section 6.

2. PROPOSED APPROACH

For energy efficiency, our proposed mechanism is
activated only when packet loss is detected by assuming
that a certain relationship between congestion and
propagation delay exists. TCP Vegas [10], for example,
similarly adopts this assumption to change its congestion
window proactively to avoid serious congestion. In the
mechanism, we use the following two parameters to
check the occurrence of congestion:

1) Propagation delay
Propagation delay is a better metric for indicating
congestion than Round Trip Time (RTT) in MANETs for
the following reason. Wireless links are usually
asymmetric, the time that a packet spent on a forwarding
path may not be equal to the time spent on its
corresponding backward path. Thus, propagation delay is
not equal to ½RTT. Thus, the use of propagation delay
rather than RTT removes this asymmetry and increases
accuracy in detecting congestion.

Our mechanism uses average propagation delay as a
threshold. Average propagation delay P is calculated by
the following equation, which is similar to the RTT
calculation in TCP:

newPPP)1(αα −+= (1)
where α is a parameter, which is chosen between 0 and 1;

newP is the most recently received propagation delay.

2) Differences between propagation delays.
The degree of difference between propagation delays is
also an indication of congestion. If congestion occurs,
more and more packets are queued in router buffers that
are located along the path to the packets’ destination. The
propagation delay will continually increase until the
congestion is cleared. In the worst case, the buffer will
overflow causing the router to discard packets. Thus,
when congestion occurs, the difference between
propagation delays will be non-zero.

Using the above two metrics, we adopt the following
criteria to decide whether congestion occurs or not.

Congestion criteria: TCP-MEDX considers that a
network is in a state of congestion if both of the following
conditions are satisfied:

I. The current propagation delay is far beyond a
threshold, which is equal to Pβ where P is an average
propagation delay and β is specified by the
application.

II. Propagation delay keeps increasing for a certain
number of packets.

When packet loss is detected, TCP-MEDX initiates the
above two criteria to decide whether a congestion indeed
occurred or not. If congestion did occur, it halves its
congestion window. Otherwise, TCP-MEDX assumes
that the packet loss is caused by a transmission error and
does not change the congestion window.

To implement the above two criteria, we add the
following revisions to standard TCP at the receiver and
sender sides, respectively.

At the receiver side: when a packet is received, it
calculates the propagation delay which is equal to (Trecv -
Tsnd). Trecv is the receiving time and Tsnd is the time when
the packet is sent by the source. The propagation delay is
attached to the corresponding acknowledgement and sent
back to the sender by the receiver. For sender to obtain
the most updated network dynamics, the protocol does
not adopt delayed acknowledgment and requires the
receiver to acknowledge every incoming packet.
At the sender side: Sender obtains propagation delay
from acknowledgement and saves it in its propagation
buffer. At the same time, the sender updates its average
propagation delay. The length of the propagation buffer
may be specified by the application1.

Choice of parameters α and β

1 The threshold will be determined empirically for
simulation results or real test bed experiments

α and β have major influence on the performance of
TCP-MEDX. For a MANET with high mobility,
propagation delay changes frequently, so α should be
higher, so that it can immediately reflect the most recent
update of propagation delay. However, network
dynamics and characteristics inherent in wireless network
affects propagation delay and in order to smooth out these
noisy influences, α cannot be too high. To balance its
tradeoff, α is chosen between 0.2~0.8. In our simulation,
we choose α at 0.5. β reflects deviation of a propagation
delay away from weighted average propagation delay. It
can be chosen from experience from a specific network.
We choose β at 1.2.

3. SIMULATION ENVIRONMENT

Our prior work with Colored Petri Nets (CPN) [11] has
shown them to be a powerful tool for simulating and
analyzing TCP protocols [9]. A simulation environment
called Design/CPN [12] was used in that work. CPNs can
conveniently express non-determinism, concurrency and
different levels of abstraction that are inherent in
protocols. CPNs have a graphical form underlying on
mathematical definition. Design/CPN is a suite of tools
for editing, simulating and analyzing CPNs, and it has a
graphical editor that allows users to create and layout
different net components. One of its nice features is that
Design/CPN uses pages to divide the model into smaller
components, enhancing the maintainability and
readability without affecting the execution or analysis of
the model. A CPN on a subpage, which provides a more
precise and detailed description of an activity, is
represented by a substitution transition on a higher-level
page. A non-hierarchical view of the Design/CPN net
would involve replacing the substitution transitions with
their corresponding subpages. Another important feature
of Design/CPN is its supports for timed modeling and
simulation, which allows us to easily implement the fuzzy
time functions [13].

The TCP-MEDX protocol modeled here is an extension
of our prior TCP model with two modifications to the
channel module to simulate packet loss. These include:

• modeling transmission errors with a probability
(which is fixed during all the simulation time;)

• designing a congestion pattern that can be easily
modified to model different congestion situations.

The revised channel module is shown in Fig. 1. It is well
known that the transmission error rate of a MANET is
substantial, and hence it is set at 0.2 in this model. The
transmission error is modeled by the function attached to
the arc from the transition: ‘Transmit Packet’ to the
place: ‘arrive’. A bottleneck router is also imposed on the

Fig. 1 Channel module of TCP-MEDX

channel. The router has a First-In-First-Out (FIFO) buffer
for saving segments temporarily. The maximum length of
the buffer is 80 segments. We call the list of segments of
the buffer, ‘lst’. When the buffer length is less than the
maximum length, an arrived segment is added to the end
of ‘lst’, but if the buffer is full, a newly arrived segment
is discarded. This is done by the function attached to the
arc from the transition: ‘Drop tail’ to the place:
‘R_buffer’.

Fig. 2 shows our data generation module. In this module,
tokens represent segments in TCP protocol. Based on

characteristics of an application, segments may be sent in
a burst mode or in a continuous mode. In a burst mode,
many segments are sent in a small interval and may result
in congestion over the network. Corresponding to these
two modes, tokens can be of two types and are generated
by transition: “Gen. Tokens with traffic type”. Type “O”
represents ordinary traffic and type “C” represents
congestion traffic. The proportion of these two types is
specified by the arc inscription from transition: “Gen
tokens with traffic type” to place: “with traffic type”:

if CPN`randint(0, 999) < 900 then 1`(e, O) else 1`(e, C).

Fig. 2 Data generation module of TCP-MEDX

Packets

burst Normal

With traffic
type

One by one
Gen. tokens with

traffic type

Is congest type 1`(e, t_type)

e

if CPN`randint(0,999)<900
then 1`(e, O)
else 1`(e, C)

Send packet in
burst

B_timeout

Is normal type

Send it

Data from
application

e

1`(e, t_type)
[t_type = O] [t_type = C]

e@+300000000

100`e 1`e

1`e1`e

Output origt;
Action
(time());

Output origt;
Action
(time()); e e@+5

N_timeout e

e@+100

E 500`e

E

E

E

E

e

e

e E

DATA

EXT_TYPE

Drop tail

Process
delay

arrive

Packet from
router

R_buffer

Send
packet

Router sends
Transmit
Packet

if len(lst)<80
then tok::lst
else if len(lst)=80
 then lst
 else []

lst

1`tok

lst

Pre(lst)

e@+6+len(lst) e

[lst<>[]]

Lastelem(lst) (n, p, ptype)

@+10000

if CPN`randint(0,99)<80
 then 1`(n, p, ntype)
 else empty INTXDATAXTYPE

INTXDATAXTYPE

INTXDATAXTYPE

INTXDATAXTYPE

E e

e@+50000

Our congestion algorithm is shown in Fig. 3.

update_prop_list()
1 when (receives an acknowledgment)
2 update propagation delay list;

predict_loss_cause()
3 if (packet is lost)
4 bool congest ← false;

 /* true means a network is in congestion state*/
5 if (the weighted sum of propagation delay in the list> Pβ)
6 congest ← true;
7 for (all the propagation delay in the list)
8 if (propagation delay < previous propagation delay)
9 congest ← false;
10 break;

Fig. 3 Congestion control algorithm of TCP-MEDX at the

sender
When an acknowledgment arrives at the sender, the sender
removes the oldest propagation delay from head and
appends the most recent propagation delay at the tail (line
1,2). When a packet loss is detected, the sender checks if the
congestion occurs or not (line 3~10). If it predicts the
occurrence of congestion, the function returns true.

4. SIMULATION RESULTS

In this simulation, the data generation module has options to
work in two modes, normal and congested. The mode thst
the module is in depends on a probability. In our
simulation, we chose 90% for congested and 10% for
normal, so that we can test the degree of correctness in
predicting loss type. In the normal mode, the data
generation module generates a packet every 50,000 time
units. In a congested mode, the data generation module
generates burst packet every 500 time units.

Propagation Delay

0

0.5

1

1.5

1 58 11
5

17
2

22
9

28
6

34
3

40
0

Segment Number

D
el

ay
 (s

) TCP-MEDX

Standard
TCP

Fig. 4. Comparison of propagation delay for standard

TCP and TCP-MEDX

Model Criteria Revised Original

Number of
Segments

1069 201

Table 1. Throughput comparison

Fig. 4 shows that propagation delays in TCP-MEDX are
indeed much lower than those in standard TCP. The
reduced propagation delay shows that when packet loss is
caused by congestion, TCP-MEDX is able to detect it
with a high degree of accuracy. Let us assume for a
moment that our mechanism misjudges packet loss
caused by congestion, as loss caused by transmission
error. When this happens the sender will not decrease its
congestion window as expected. As a result, congestion
will increase dramatically and many successive packets
will be discarded, leading to many retransmissions, and
thus increasing propagation delay. Fig. 4 shows that this
is not the case with TCP-MEDX.

Table 1. compares the throughput between TCP-MEDX
and standard TCP. We used the same data generation
model and a fixed simulation duration for the two TCPs.
After running 4 seconds, we found the total throughput
from the original TCP is: 201 segments, while the total
throughput from the TCP-MEDX is: 1,069 segments. The
increased throughput of TCP-MEDX is further evidence
that the scheme is correctly identifying the cause of
packet losses. If we were to assume for a moment that
TCP-MEDX was mistaking the cause of packet loss from
transmission error, as loss from congestion, the sender
will always half its congestion window, thus lowering the
throughput, which is contrary to the results in Table 1.

Both results strongly suggest that TCP-MEDX can indeed
identify the cause of packet loss accurately.

5. RELATED WORK

Prior proposals for improving TCP performance in
mobile wireless networks [2, 3] require cooperation from
an intermediate node to generate a notification message
when the node detects congestion. Shagdar et. al [2]
proposes Explicit Wireless Loss Notification (EWLN),
which uses information from the Medium Access (MAC)
layer to distinguish between the two causes of packet
losses. Chawla and Nandi [3] propose Freeze and
Explicit Congestion Notification (FECN) that uses
Explicit Congestion Notification (ECN) [8] to monitor
congestion. These techniques improve TCP performance
in MANETs under certain situations, but they incur
implementation cost and energy consumption at mobile
nodes along a transmission path. Thus, they may be
difficult to apply in practice because energy-efficiency is
an important consideration in MANETs. It is therefore
meaningful for MANETs to adopt an end-to-end

mechanism which imposes demands only on the sender
or the receiver. In this paper, we are primarily interested
in an end-to-end solution.

A number of effective end-to-end solutions have been
proposed in the past [4] [7] . Barman et. al [4] detects
congestion using its correlation with RTT. This approach
is sound, but the probability of false detection can
sometimes be high, which significantly reduces its
performance. Fu [7] applies multi-metric parameters
instead of a single metric in [4] to detect the nature of
packet losses and hence is able to improve detection
accuracy . But it also imposes high computation cost at
the receiver because it must calculate at least two metrics
when each packet is received. Our reactive scheme is
more energy-efficient because it calculates metrics only
when a packet is lost.

6. CONCLUSIONS

We have proposed a method to revise TCP to meet the
special characteristics of Mobile Ad hoc Networks
(MANETs). TCP-MEDX works by properly identifying
the cause of packet loss in a TCP stream, and shrinking
congestion window only when it is caused by congestion
rather than transmission error. This has the effect of
increasing throughput and decreasing propagation delay.

7. REFERENCES

[1] S. Hadjiefthymiades, S. Papayiannis, and L. Merakos,
“Using path prediction to improve TCP performance in
wireless/mobile communications”, IEEE
Communications Magazine, Vol.40, Issue: 8, August
2002, pp. 54 –61.

[2] O. Shagdar, M. N. Shirazi and B. Zhang, “Improving
ECN-based TCP performance over wireless networks
using a homogeneous implementation of EWLN”,
Telecommunications, 2003. ICT 2003. 10th
International Conference on, Vol.1, 2003, pp. 812 –817.

[3] R Chawla, and S. Nandi, “TCP FECN: a unified solution
for wireless networks” Communication Systems, 2002.
ICCS 2002. The 8th International Conference on, Vol. 2,
2002, pp. 815 –819.

[4] D. Barman and I. Matta, “Effectiveness of loss labeling
in improving TCP performance in wired/wireless
networks”, 10th IEEE International Conference on
Network Protocols (ICNP'02), November 12 - 15, 2002.

[5] B. S. Bakshi, P. Krishna, N.H. Vaidya and D.K.Pradhan,
“Improving performance of TCP over wireless
networks”, International Conference on Distributed
Computing Systems, 1997.

[6] S. B. Moon, “Measurement and analysis of end-to-end
delay and loss in the Internet”, Ph.D. thesis, University
of Massachussets at Amherst, Feb. 2000.

[7] Z. Fu, B. Greenstein, X. Meng and S. Wu, “design and
implementation of a TCP-friendly transport protocol for
ad hoc wireless networks”, 10th IEEE International
Conference on Network Protocols (ICNP'02).

[8] S. Floyd, “TCP and explicit congestion notification”,
ACM SIGCOMM Computer Communication Review,
V.25, No. 5, pp. 8-23, 1994.

[9]Y. Zhou, T. Murata, and T. DeFanti, "Modeling and
performance analysis using extended fuzzy-timing Petri
nets for networked virtual environments," IEEE
Transactions on Systems, Man, and Cybernetics - Part
B: Cybernetics, Vol.30, No.5, October 2000.

[10] L. Brakmo and L. Peterson. TCP Vegas: End to End
Congestion Avoidance on a Global Internet. IEEE
Journal on Selected Areas in Communication, Vol 13,
No. 8 (October 1995) pp. 1465-1480.

[11] K. Jensen, Coloured Petri Nets. Basic Concepts,
Analysis Methods and Practical Use. Volume 1, Basic
Concepts. Monographs in Theoretical Computer
Science, Springer-Verlag, 2nd corrected printing, 1997.

[12] K. Jensen, Design/CPN [Online]. Dept. Computer
Science, Univ. Aarhus, Denmark. Available:
http://www.daimi.au.dk/designCPN/.

[13] T. Murata, T. Suzuki and S. Shatz, "Fuzzy-Timing
High-Level Petri Nets (FTHNs) for Time-Critical
Systems," in J. Cardoso and H. Camargo (editors)
"Fuzziness in Petri Nets" Vol. 22 in the series "Studies
in Fuzziness and Soft Computing" by Springer Verlag,
New York, pp. 88-114, 1999.

