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ABSTRACT 
 
The current implementation of TCP for the Internet is not 
efficient when used for Mobile Ad hoc Networks 
(MANETs). This is because TCP assumes that all packet 
losses are caused by congestion, whereas transmission 
errors are a main reason for packet losses in wireless 
networks.  To ameliorate this situation and increase 
performance, we propose a method of using multi-metric 
parameters to distinguish the causes for packet losses and 
use Colored Petri Net to analyze the revised protocol.  
We call this TCP-MEDX (Mobile Error Detection 
eXtension).  TCP-MEDX has two characteristics: Firstly, 
it is energy-efficient because this solution is only initiated 
when a packet loss is detected.  This characteristic is very 
important for MANETs because of its limited power 
source; secondly, our approach removes negative effects 
caused by asymmetry in wireless links, thus improving 
correctness in determining causes for packet losses.  Our 
simulation results using Design/CPN show that the 
proposed approach increases throughput and reduces 
propagation delay compared with standard TCP.  
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1. INTRODUCTION 

Transmission Control Protocol (TCP) has been the 
dominant transport-layer protocol for reliable data 
delivery over the Internet, and it has been the main 
research target for many network researchers.  Some of 
them use simulation to study TCP performance, others 
use mathematical model to analyze algorithms in TCP.  
Our prior work with Colored Petri Nets (CPN) [11] has 
shown them to be a powerful tool for simulating and 
analyzing TCP protocols [9].  CPNs have a graphical 
form underlying on mathematical definition and it is the 
method used in this paper.  CPNs together with 
Design/CPN provide both simulation and formal model to 
analyze TCP. 

TCP assumes that the underlying network is relatively 
reliable because it was designed for a wired environment.  
When packet loss occurs, the TCP sender interprets it as 
evidence of congestion in the network, thus invoking 
congestion control by drastically reducing its congestion 
window. This mechanism ensures fairness among 
connections sharing the same channel, and works well in 
a wired network, where most of the packet losses are due 

to congestion.  However, it performs poorly in Mobile Ad 
hoc Networks (MANETs) because communication over 
MANETs is characterized by high bit-error rates.  Packet 
losses occur more frequently due to transmission errors 
than due to congestion in MANETs.  However, TCP has 
no mechanism to detect the causes for packet losses but 
instead interprets all packet losses as those resulting from 
congestion, thus causing severe performance degradation 
when used for MANETs.  In order to improve TCP 
performance over MANETs, where wireless links are 
subjected to high transmission errors, it is necessary to 
revise TCP, so that it can detect the causes for packet 
loss. This paper proposes a reactive approach called TCP-
MEDX that calculates metrics to detect the causes for 
packet loss only when packets are lost, making the 
approach energy-efficient. 

The rest of the paper is organized as follows: Section 2 
describes the proposed approach. Section 3 describes 
CPN model for TCP-MEDX and simulation environment 
in Design/CPN, and simulation results are given in 
section 4. Section 5 introduces related work. Conclusions 
are given in Section 6. 

2. PROPOSED APPROACH 

For energy efficiency, our proposed mechanism is 
activated only when packet loss is detected by assuming 
that a certain relationship between congestion and 
propagation delay exists.  TCP Vegas [10], for example, 
similarly adopts this assumption to change its congestion 
window proactively to avoid serious congestion.  In the 
mechanism, we use the following two parameters to 
check the occurrence of congestion:  

1) Propagation delay 
Propagation delay is a better metric for indicating 
congestion than Round Trip Time (RTT) in MANETs for 
the following reason.  Wireless links are usually 
asymmetric, the time that a packet spent on a forwarding 
path may not be equal to the time spent on its 
corresponding backward path. Thus, propagation delay is 
not equal to ½RTT.  Thus, the use of propagation delay 
rather than RTT removes this asymmetry and increases 
accuracy in detecting congestion.   

Our mechanism uses average propagation delay as a 
threshold.  Average propagation delay P  is calculated by 
the following equation, which is similar to the RTT 
calculation in TCP:   



newPPP )1( αα −+=                                              (1) 
where α is a parameter, which is chosen between 0 and 1; 

newP is the most recently received propagation delay. 

2) Differences between propagation delays.   
The degree of difference between propagation delays is 
also an indication of congestion.  If congestion occurs, 
more and more packets are queued in router buffers that 
are located along the path to the packets’ destination. The 
propagation delay will continually increase until the 
congestion is cleared.  In the worst case, the buffer will 
overflow causing the router to discard packets.  Thus, 
when congestion occurs, the difference between 
propagation delays will be non-zero. 

Using the above two metrics, we adopt the following 
criteria to decide whether congestion occurs or not. 

Congestion criteria: TCP-MEDX considers that a 
network is in a state of congestion if both of the following 
conditions are satisfied: 

I. The current propagation delay is far beyond a 
threshold, which is equal to Pβ where P  is an average 
propagation delay and β  is specified by the 
application.  

II. Propagation delay keeps increasing for a certain 
number of packets.   

When packet loss is detected, TCP-MEDX initiates the 
above two criteria to decide whether a congestion indeed 
occurred or not.  If congestion did occur, it halves its 
congestion window. Otherwise, TCP-MEDX assumes 
that the packet loss is caused by a transmission error and 
does not change the congestion window.   

To implement the above two criteria, we add the 
following revisions to standard TCP at the receiver and 
sender sides, respectively. 

At the receiver side: when a packet is received, it 
calculates the propagation delay which is equal to (Trecv - 
Tsnd).  Trecv is the receiving time and Tsnd is the time when 
the packet is sent by the source.  The propagation delay is 
attached to the corresponding acknowledgement and sent 
back to the sender by the receiver. For sender to obtain 
the most updated network dynamics, the protocol does 
not adopt delayed acknowledgment and requires the 
receiver to acknowledge every incoming packet. 
At the sender side: Sender obtains propagation delay 
from acknowledgement and saves it in its propagation 
buffer. At the same time, the sender updates its average 
propagation delay.  The length of the propagation buffer 
may be specified by the application1.   

Choice of parameters α and β 

                                                 
1 The threshold will be determined empirically for 
simulation results or real test bed experiments 

α and β have major influence on the performance of 
TCP-MEDX. For a MANET with high mobility, 
propagation delay changes frequently, so α should be 
higher, so that it can immediately reflect the most recent 
update of propagation delay.  However, network 
dynamics and characteristics inherent in wireless network 
affects propagation delay and in order to smooth out these 
noisy influences, α cannot be too high.  To balance its 
tradeoff, α is chosen between 0.2~0.8.  In our simulation, 
we choose α at 0.5. β reflects deviation of a propagation 
delay away from weighted average propagation delay. It 
can be chosen from experience from a specific network. 
We choose β at 1.2.   

3. SIMULATION ENVIRONMENT 

Our prior work with Colored Petri Nets (CPN) [11] has 
shown them to be a powerful tool for simulating and 
analyzing TCP protocols [9].  A simulation environment 
called Design/CPN [12] was used in that work. CPNs can 
conveniently express non-determinism, concurrency and 
different levels of abstraction that are inherent in 
protocols.  CPNs have a graphical form underlying on 
mathematical definition.  Design/CPN is a suite of tools 
for editing, simulating and analyzing CPNs, and it has a 
graphical editor that allows users to create and layout 
different net components.  One of its nice features is that 
Design/CPN uses pages to divide the model into smaller 
components, enhancing the maintainability and 
readability without affecting the execution or analysis of 
the model.  A CPN on a subpage, which provides a more 
precise and detailed description of an activity, is 
represented by a substitution transition on a higher-level 
page. A non-hierarchical view of the Design/CPN net 
would involve replacing the substitution transitions with 
their corresponding subpages. Another important feature 
of Design/CPN is its supports for timed modeling and 
simulation, which allows us to easily implement the fuzzy 
time functions [13].   

The TCP-MEDX protocol modeled here is an extension 
of our prior TCP model with two modifications to the 
channel module to simulate packet loss. These include:  

• modeling transmission errors with a probability 
(which is fixed during all the simulation time;) 

• designing a congestion pattern that can be easily 
modified to model different congestion situations.   

The revised channel module is shown in Fig. 1. It is well 
known that the transmission error rate of a MANET is 
substantial, and hence it is set at 0.2 in this model. The 
transmission error is modeled by the function attached to 
the arc from the transition: ‘Transmit Packet’ to the 
place: ‘arrive’. A bottleneck router is also imposed on the 
 



  
Fig. 1 Channel module of TCP-MEDX 

 
channel. The router has a First-In-First-Out (FIFO) buffer 
for saving segments temporarily. The maximum length of 
the buffer is 80 segments. We call the list of segments of 
the buffer, ‘lst’. When the buffer length is less than the 
maximum length, an arrived segment is added to the end 
of ‘lst’, but if the buffer is full, a newly arrived segment 
is discarded. This is done by the function attached to the 
arc from the transition: ‘Drop tail’ to the place: 
‘R_buffer’. 

Fig. 2 shows our data generation module. In this module, 
tokens represent segments in TCP protocol.  Based on 

characteristics of an application, segments may be sent in 
a burst mode or in a continuous mode.  In a burst mode, 
many segments are sent in a small interval and may result 
in congestion over the network.  Corresponding to these 
two modes, tokens can be of two types and are generated 
by transition: “Gen. Tokens with traffic type”.  Type “O” 
represents ordinary traffic and type “C” represents 
congestion traffic.  The proportion of these two types is 
specified by the arc inscription from transition: “Gen 
tokens with traffic type” to place: “with traffic type”: 

if CPN`randint(0, 999) < 900 then 1`(e, O) else 1`(e, C).  
   

 

 
 

Fig. 2 Data generation module of TCP-MEDX 
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Our congestion algorithm is shown in Fig. 3.  

update_prop_list() 
1   when (receives an acknowledgment) 
2 update propagation delay list; 
 
predict_loss_cause() 
3   if (packet is lost)  
4       bool congest ← false;  

 /* true means a network is in congestion state*/ 
5 if (the weighted sum of propagation delay in the list> Pβ ) 
6 congest ← true; 
7 for (all the propagation delay in the list) 
8                  if (propagation delay < previous propagation delay)  
9                        congest ← false; 
10                       break; 
 
Fig. 3 Congestion control algorithm of TCP-MEDX at the 

sender 
When an acknowledgment arrives at the sender, the sender 
removes the oldest propagation delay from head and 
appends the most recent propagation delay at the tail (line 
1,2). When a packet loss is detected, the sender checks if the 
congestion occurs or not (line 3~10).  If it predicts the 
occurrence of congestion, the function returns true.  

4. SIMULATION RESULTS 

In this simulation, the data generation module has options to 
work in two modes, normal and congested.  The mode thst 
the module is in depends on a probability.  In our 
simulation, we chose 90% for congested and 10% for 
normal, so that we can test the degree of correctness in 
predicting loss type.  In the normal mode, the data 
generation module generates a packet every 50,000 time 
units.  In a congested mode, the data generation module 
generates burst packet every 500 time units.   
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Fig. 4. Comparison of propagation delay for standard 

TCP and TCP-MEDX 

 
Model Criteria Revised Original 

Number of 
Segments 

1069 201 

Table 1. Throughput comparison 

Fig. 4 shows that propagation delays in TCP-MEDX are 
indeed much lower than those in standard TCP. The 
reduced propagation delay shows that when packet loss is 
caused by congestion, TCP-MEDX is able to detect it 
with a high degree of accuracy.  Let us assume for a 
moment that our mechanism misjudges packet loss 
caused by congestion, as loss caused by transmission 
error. When this happens the sender will not decrease its 
congestion window as expected. As a result, congestion 
will increase dramatically and many successive packets 
will be discarded, leading to many retransmissions, and 
thus increasing propagation delay.  Fig. 4 shows that this 
is not the case with TCP-MEDX.  

Table 1. compares the throughput between TCP-MEDX 
and standard TCP.  We used the same data generation 
model and a fixed simulation duration for the two TCPs.  
After running 4 seconds, we found the total throughput 
from the original TCP is: 201 segments, while the total 
throughput from the TCP-MEDX is: 1,069 segments. The 
increased throughput of TCP-MEDX is further evidence 
that the scheme is correctly identifying the cause of 
packet losses. If we were to assume for a moment that 
TCP-MEDX was mistaking the cause of packet loss from 
transmission error, as loss from congestion, the sender 
will always half its congestion window, thus lowering the 
throughput, which is contrary to the results in Table 1.   

Both results strongly suggest that TCP-MEDX can indeed 
identify the cause of packet loss accurately. 

5. RELATED WORK 

Prior proposals for improving TCP performance in 
mobile wireless networks [2, 3]  require cooperation from 
an intermediate node to generate a notification message 
when the node detects  congestion.  Shagdar et. al [2] 
proposes Explicit Wireless Loss Notification (EWLN), 
which uses information from the Medium Access (MAC) 
layer to distinguish between the two causes of packet 
losses.  Chawla and Nandi [3] propose Freeze and 
Explicit Congestion Notification (FECN) that uses 
Explicit Congestion Notification (ECN) [8] to monitor 
congestion.  These techniques improve TCP performance 
in MANETs under certain situations, but they incur 
implementation cost and energy consumption at mobile 
nodes along a transmission path.  Thus, they may be 
difficult to apply in practice because energy-efficiency is 
an important consideration in MANETs.  It is therefore 
meaningful for MANETs to adopt an end-to-end 



mechanism which imposes demands only on the sender 
or the receiver.  In this paper, we are primarily interested 
in an end-to-end solution.   
 
A number of effective end-to-end solutions have been 
proposed in the past [4] [7] .  Barman et. al [4] detects 
congestion using its correlation with RTT.  This approach 
is sound, but the probability of false detection can 
sometimes be high, which significantly reduces its 
performance.  Fu [7] applies multi-metric parameters 
instead of a single metric in [4] to detect the nature of 
packet losses and hence is able to improve detection 
accuracy .  But it also imposes high computation cost at 
the receiver because it must calculate at least two metrics 
when each packet is received.  Our reactive scheme is 
more energy-efficient because it calculates metrics only 
when a packet is lost. 

6. CONCLUSIONS 

We have proposed a method to revise TCP to meet the 
special characteristics of Mobile Ad hoc Networks 
(MANETs). TCP-MEDX works by properly identifying 
the cause of packet loss in a TCP stream, and shrinking 
congestion window only when it is caused by congestion 
rather than transmission error.  This has the effect of 
increasing throughput and decreasing propagation delay.   
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