
UIN: 669242905 Galen K Thomas-Ramos

MS Project Report
E-cigarette Survey Prompt Application for

Android Mobile Devices

Author: Galen K. Thomas-Ramos

UIN: 669242905

College of Engineering

Department of Computer Science

University of Illinois-Chicago

Semester of Graduation: Summer 2014

Advisor: Dr. Andrew Johnson

Secondary Committee Member: Dr. Robert Kenyon

1

 Table of Contents Page

1. Abstract………………………………………………………………………………………………………...3

2. Introduction………………………………………………………...4

a. Importance of Project………………………………………………………………………….4

b. Previous Work……………………………………………………………………………………5

3. Project Outline…………………………………………………………………………………………….....7

a. Needs of the Research Group………………………………………………………………7

b. Development Package…………………………………………………………………………8

i. Android SDK…………………………………………………………………………….9

ii. PhoneGap…………………………………………………………………………………9

iii. jQuery Mobile…………………………………………………………………………..9

c. Hardware…………………………………………………………………………………………10

d. Application Outline…………………………………...12

i. Registration and Login…………………..12

ii. Interviews……………………………………………………………………………...14

iii. Tobacco Use Interviews………………………………………………………….15

iv. Random Prompt Interviews…………………………………………………....17

v. Time Functions……………………………………………………………………...18

vi. Suspension Notifications………………………………………………………..18

vii. Putting Application Asleep……………………………………………………..19

viii. Notifications…………………………………………………………………………..24

viii.1 Random Prompt Notification………………………………………….25

viii.2 Wake Time Alarm Notification……………………………………….26

viii.3 Notification Mechanics…………………………………………………..27

ix. Reference Page……………………………………………………………………...28

x. File Structure………………………………………………………………………...29

xi. Encryption and Decryption…………………………………………………....30

xii. Administrative Functions……………………………………………………....31

viii.1 Prepare Files………………………………………………………………...31

viii.2 Delete Files…………………………………………………………………...32

e. Changes and Concessions………………………………………………………………...33

4. Conclusions………………………………………………………………………………………………..37

5. References……………………………………………………………………………………………....…38

6. Appendices………………………………………………………………………………………………...40

Appendix A Code Snippets…………………………………………………………….….40

Appendix A.1 Logging in to the Application………………………….....40

Appendix A.2 Submitting Interview Answers……………………....….47

2

Appendix A.3 Resetting and Adding Daily Notifications………….51

Appendix B Questions for the Tobacco Use Interview…………………….....54

Appendix C Questions for the Random Prompt Interview………………....58

Appendix D Example Data Output for the Tobacco Use Interview……...61

Appendix E Example Data Output for the Random Prompt Interview...62

Appendix F External Documents…………………………………………………...…63

3

1. Abstract

The e-cigarette survey prompt application is designed for Android smartphones. This mobile

application allows researchers at the University of Illinois at Chicago to gain self-regulated data

from all users involved in the study. This report details a previous project application, from

which the application was design. A detailed explanation of the capabilities and user

interactions with the application is documented through figures and text. Finally, the changes

and complications which arose during the application’s development are discussed, with the

final product outlined at the end of the report.

4

2. Introduction

2.a. Importance of Project

The effects of tobacco use have been long studied and are well understood. The carcinogens

from smoking tobacco have been associated with a wide swath of terminal or debilitating

ailments. Because of the serious health risks associated with smoking tobacco, cigarette use

is well-regulated with long-standing legislation in place to help reduce its impact on

individuals and the public.

Recently, E-cigarettes have been developed and advertized as an acceptable, healthier

alternative to smoking traditional tobacco cigarettes. However, there is no regulation in

place for the use of e-cigarettes. E-cigarettes and electronic vaporizers are fairly new to the

market and as of yet there are no warning labels on electronic tobacco paraphernalia, nor is

there a ban on the sale of E-cigarettes to minors. [1, 2] In order for the Food and Drug

Administration to regulate the manufacturing, marketing, and consumption of e-cigarette

products, data must first be gathered on the characteristics of its users.

Some of the main users of electronic tobacco products are young adults and people who

want to quit smoking. [3, 1, 4] A pervasive public opinion of e-cigarette users is that the

vapor which they produce is not as harmful as the carcinogenic tobacco smoke of regular

cigarettes. [3]Unfortunately, not enough research reports have been published to

substantiate this belief. [5, 2]The aim of this project was to better understand the usage

patterns of young e-cigarette users and supply the federal Food and Drug Administration

with these data.

5

2.b. Previous Work

Previous research using Personal Data Assistants (PDAs) to garner connections between

adolescent smokers and their environment has been long standing and well-practiced [6, 7].

The ability of PDAs to gather real-time data from its users has provided researchers with a

powerful tool in time-sensitive data collection [8]. One drawback to this approach, however,

is the necessity of having to carry an additional device. Because of this, development of a

similar application using which utilizes one’s own phone was desired.

Figure 1: Photograph of the PalmPilot device running the previous tobacco-use survey application.

The precursor to the Android smartphone application outlined in this report was

developed for a PalmOne PalmPilot (Figure 1). The project was funded by the US Food and

Drug Administration and described as an Ecological Momentary Assessment. [9] Three

core components were outlined for the development of the application: random prompt

notification capabilities, suspension of notification capabilities, and two types of tobacco

event reporting: random prompt event reporting and user-initiated event reporting. In

addition to these core functions, the previous application boasts the ability to turn off

notifications while a user sleeps with its ‘Bedtime’ menu option. A user could also report a

problem with the application and take an example tobacco use survey from the main menu

by accessing the ‘Demo’ feature (Appendix F.1).

6

Application development using the Palm Pilot platform allowed the research team a great

amount of freedom and control over the device’s operation. Users could not diminish the

volume of the device and were therefore apt to answer more notifications. Also,

researchers were able to restrict the control of power to the PalmPilot: once the device was

turned on, and the application started, users could neither turn off the device by pressing

the power button nor could they access other areas of the Device. Those involved in the

user study were constrained to using the device for the application alone. This was

enforced not only in the application—there was no option within the application to go back

to the PalmPilot’s main menu—but also in the hardware of the device, as user interaction

with the buttons at the bottom of the device was disabled. Such control over the device

proved to be a great benefit to data collection.

7

3. Project Outline

3.a. Needs of the Research Group

At the onset of the project, the research group spent the first two months outlining the

needs of the application. The core functionality of the smartphone application had to

mirror that of its PalmPilot progenitor, i.e., the application had to support random prompt

notifications, the suspension of those notifications, and incorporate two separate tobacco

use interviews: random prompt interviews and user-initiated interviews. Aside from the

above, core functionality, several additional functions were desired by the research group:

putting the device to sleep, encrypting and hiding all user data, and delaying any current

notification within the application.

From the first meeting, building a cross-platform application which would work on both

Android and iOS was lauded as a chief desire. Because of this, the group decided to pursue

application development using a web-based approach and settled on using PhoneGap in the

creation of the application because of its advertised cross-platform development

capabilities.

8

3.b. Development Package

In using PhoneGap as the development platform, the research group was committing to a

hybrid avenue of software engineering (Figure 2). The method for developing PhoneGap

applications required the use of several different programming languages and Application

Programming Interfaces (API), as well as an intimate knowledge of WebView execution

priorities within a given Mobile Operating System (OS). PhoneGap relies heavily on open

source, community maintained plug-ins for certain extensible features not supported by

PhoneGap.

PhoneGap utilizes several different languages during development, including Android,

Javascript, HTML and CSS. An intimate knowledge of asynchronous code execution is vital

to the desired application performance. Also, having a firm understanding of the lowest

levels of mobile OS operations in relation to maintaining a WebView application proved

paramount to the application’s reliable and intended operation.

Below are the architectural components of the E-cigarette Survey Prompt Application:

Figure 2: Diagram of the PhoneGap application and Mobile Operating System interface. Counter-clockwise from the Web
App container: The Web App contains all of the web based code within the PhoneGap application—this is where the

9

majority of the application’s code can be found. Through HTML and PhoneGap APIs, the Web App communicates with the
HTML rendering engine to display the application as a WebView—exactly like any browser application displays web
page contents. ; The Mobile OS provides access to its services and sensors through the operating systems APIs. ; Similarly,
the Mobile OS also communicates with PhoneGap plug-ins—through the device’s native language—in order to extend
PhoneGap functionality. ; Finally, the PhoneGap plug-ins are able to communicate and reflect changes in the WebView
through PhoneGap’s Native APIs.

3.b.i Android SDK

The Android Software Development Kit (SDK) provides the necessary tools to create

applications for Android devices. The API used in this project was API 16, the repository

developed for use with Android 4.1.2 devices. Direct development in Android was seldom

necessary during this project because the PhoneGap API bridged communication between

the mobile OS and the web application.

3.b.ii PhoneGap

According to the PhoneGap website, “PhoneGap is an application container technology that

allows you to create natively-installed applications for mobile devices using HTML, CSS,

and Javascript.” [10]Regarding the PhoneGap API, “…enables you to access native operating

system functionality using Javascript. You build your application logic using Javascript, and

the PhoneGap API handles communication with the native operating system.” [10] This

means that there are two separate APIs that constitute PhoneGap: one Javascript API that

provides an interface for the developer, and another API that is written in a language native

to the mobile OS of the device. This second API is rarely interacted with, save for the

development of PhoneGap plug-ins.

One of the most important aspects of PhoneGap is its ability to host user-made plug-ins.

This allows the open-source PhoneGap community to extend the use of PhoneGap by

enabling native features which are not accessible with the core package. Developing

PhoneGap plug-ins does require platform-specific knowledge because the plug-ins

communicate directly with the mobile OS using the device’s native language.

3.b.iii jQuery Mobile

jQuery Mobile is advertised as, “an HTML5-based user interface system designed to make

responsive web sites and apps that are accessible on all smartphone, tablet and desktop

devices”. [11]This Javascript and CSS library is dependent on an additional Javascript

library, jQuery [12], which expands the use of Javascript by diversifying selectors, event

handling, and Ajax manipulation. jQuery Mobile is a UI library which utilizes jQuery to

implement robust widgets and widget use within any mobile web application.

10

3.c Hardware

Figure 3: Photographs of the Android device, a Motorola Razr M. From left to right: the back and front of the smartphone
followed by the main menu of the e-cigarette application running on the device.

The Android smartphone device leased by the research group for this project was a

Motorola Razr M. [13] This phone used Android 4.1.2 –or Jellybean—as its active operating

system. Relevant hardware specifications for this phone can be found below (Figure 4).

11

Figure 4: Specifications for the Motorola Razr M used in the development of the e-cigarette survey prompt application.
[13]

Data loss due to unreliable network connectivity was a chief concern of the research group,

specifically, in regards to meeting the Institutional Review Board’s project approval.

Therefore, the application was developed without network connectivity in mind. Each

phone has access to 3G and 4G networks, as well as Wi-Fi networks, but their availability

had no influence on the application’s performance.

12

3.d. Application Outline

3.d.i. Registration and Login

Figure 5: Screenshot composition of login pages within the running e-cigarette survey application. From left to right: the
initial login screen for the application; the screen for new user registration.

The login and registration pages of the e-cigarette survey prompt application (Figure 5)

had the following features:

 The login screen changed depending on whether or not the user has already registered

and had a username and password saved to the device.

 If the user was new and did not have login credentials, a new user registration screen

appeared asking the user to register their information (Figure 5).

o A user must enter a username, with no restrictions to the name itself.

13

o A user must also enter a 4-digit pin number used during subsequent logins. If a

pin was entered incorrectly the process started again and the application asked

the user to re-enter their credentials.

o A user could not access the main portion of the application without having

registered as a new user.

 Once a user registered their login credentials, a different login screen allowed the user

to enter the application (Figure 5).

 The only time that a user could revisit the new user registration screen was if a member

of the research group deletes their credential data.

 User credential data were saved to a ‘log.log’ file which held a single line of text in the

form of ‘userID, xxxx’; where xxxx was the user’s 4-digit pin. A comma was used as the

active delimiter.

 The presence of the ‘log.log’ file determined whether the login screen defaulted to the

new user registration screen or the user login screen.

 If a user entered the incorrect pin number at the user login screen, they were notified of

the error and asked to try again.

 The only way for a user to access the main portion of the application was to correctly

enter the registered pin number.

14

3.d.ii. Interviews

During the preliminary study of this project, eight young adults were given a Motorola Razr

M Android smartphone pre-loaded with the e-cigarette survey application. These users were

of an ideal set of students as they were involved in the previous PDA study mentioned

above. They were to have the smartphone available to answer survey questions during all

waking hours. Data on e-cigarette usage were collected using two types of surveys. One

survey (the Tobacco Use Interview) was to be completed after each usage of a tobacco

product. For the second survey (the Random Prompt Interview) the user was randomly

alerted by the smartphone through a loud notification that the user should log onto the

application to take a survey.

Figure 6: Screenshot composition of the different widget types within the running e-cigarette survey application. From
left to right: the main menu of the e-cigarette survey prompt application; radio widget group; customized slider widget
group; and checkbox widget group.

15

3.d.iii Tobacco Use Interviews

 Tobacco Use Interviews were surveys to be completed by the user on the smartphone

after finishing a tobacco product.

 This set of questionnaires was different than the Random Prompt Interview survey

(Appendix B).

 The survey was initiated by logging into the application and pressing the button

labelled ‘Tobacco Use Interview’ from the main menu (Figure 6).

 The user was guided through a series of questions which utilized checkboxes, radio

boxes, and sliders to record their responses. If a user did not answer all of the questions

within a given page of the survey, they were not allowed to continue to the next page.

Figure 7: Screenshot composition of the running e-cigarette survey application. Two possible interview questionnaire
routes; the top results in additional pages of survey questions, while the bottom does not.

16

 Depending on their answers, users might have to fill-out one or two additional

questions within the survey (Figure 7).

 The survey input was only recorded to the .tob file (the file which keeps a record of all

of the user’s Tobacco Use Interview answers) once they answer ALL questions within

the survey.

 If a user leaves a Tobacco Use Interview survey, the application will NOT record the

survey as having been abandoned or missed (Discussed below). This mechanic only

applies to Random Prompt Interview surveys.

 If a user logs in to the application within three minutes of a notification firing they will

be taken to the starting questionnaire of a Random Prompt Interview, and not be

allowed to access the Tobacco Use Interview from the main menu.

17

3.d.iv Random Prompt Interviews

 Random Prompt Interviews were surveys to be completed by the user within three

minutes of a Random Prompt Notification firing.

 This set of questionnaires was different than the Tobacco Use Interview survey

(Appendix C).

 This survey could be initiated by logging into the application within three minutes of a

notification firing.

 If there were multiple notifications within Android’s notification area, the user would

only be able to initiate the Random Prompt Interview based off of the most recently

fired notification. All other notifications were recorded as having been missed

(Discussed below).

 The user was brought through a series of questions which utilized checkboxes, radio

boxes, and sliders to record their responses.

o If a user did not answer all of the questions within a given page of the survey,

he/she was not allowed to continue to the next page.

 Depending on the answers, the user might have been requested to fill out one or two

additional questions within the Random Prompt Interview survey (Figure 7).

 The survey input was only recorded to the ‘.rpt’ file (the file which kept record of all of

the user’s Random Prompt Interview answers) once they answer ALL questions within

the survey.

 If a user wanted access to the main menu of the application within three minutes of the

last notification firing, he/she first had to take a Random Prompt Interview survey.

o If a user began, but did not finish a Random Prompt Interview survey by exiting

out of the application in the middle of the Random Prompt Interview survey, the

survey was recorded as having been abandoned along with a timestamp at the

point of abandonment (Discussed below).

o The user did NOT receive an alert that the survey has been recorded as

abandoned.

 If a user began a Random Prompt Interview Survey but did not finish it within five

minutes, that survey was recorded as having been abandoned (Discussed below).

o This could only occur if the display setting of the Android device was set to

remain open for at least five minutes.

o The user DID receive an alert that they had taken too long to complete the

survey and had been recorded as abandoned.

18

3d.v Time Functions

Two functions within the application were developed for the convenience of the user.

These functions allowed the user to cater local notifications around their own schedule.

One such function suspended future notifications for a selected short period of time. The

other function allowed a user to put the application to sleep for a longer period of time,

during which time they did not receive any notifications. An alarm signaled the user that

they had begun to receive notifications again.

3.d.vi Suspending Notifications

Figure 8: Screenshot composition of the the running e-cigarette survey application’s suspension of prompt notifications.
From left to right: initial Suspension Prompt Notification page; time options drop down widget; reason for suspension
drop down widget; resultant login screen after suspending notifications.

 A user could access the suspension function from the main menu of the application by

tapping on the ‘Suspend’ button.

 The user was taken to the ‘Suspend Prompt Notifications’ page where he/she could

change options related to the suspension (Figure 8).

o A user had to choose an amount of time for which they wanted to suspend

notifications.

o A user must also choose a reason for the suspension.

 If a user did not enter both an amount of time for suspension and a

reason for suspension, he/she was alerted and not allowed to suspend

any notifications.

 This information was not recorded because the research group did not

regard it as important.

19

 Once a user completed the steps to suspend notifications, they were brought back to the

login page of the application (Figure 8).

o The login page now conveyed the suspended status of the application with a red

themed border profile.

o There also was text on the page to indicate the suspension.

 ‘Notification Suspended’ was displayed at the top of the page.

 A date and time were displayed below the login form to tell the user when

to expect Random Prompt Notifications to resume (Figure 8).

 The time displayed did not reflect when the next notification would occur.

Instead, it showed the beginning of the next randomized notification

period.

3.d.vii Putting Application to Sleep

Figure 9: Screenshot compositionof the Wake Time alarm configuration page of the e-cigarette survey application; from
left to right: initial Wake Time page; setting the wake time with the MobiScroll time scroller widget; waketime
confirmation popup.

 A user could put the application to sleep to avoid receiving notifications for an extended

period of time. This feature could be accessed from the main menu of the application by

tapping ‘Set Wake Time’.

 Once a user was within the ‘Wake Time’ page, he/she could tap on an input field to

bring up a three-columned time picker widget (Figure 9).

o This widget comes from a polished Javascript widget library, MobiScroll [14].

20

o The time range was in non-military format and the minutes changed in five-

minute increments.

o Once a time was chosen the user had to tap the ‘Set’ button to continue with the

current wake time setting, or ‘Cancel’ to reset the widget’s time and clear the

input field.

 Before the application could be put to sleep, the user had to select ‘Submit wake time’ in

the lower right hand corner. This resulted in a pop-up asking the user whether or not

they truly wanted to put the application to sleep (Figure 9).

o If a user chose ‘Put to sleep’, no further notifications would be sent until the

registered wake time was met.

o If a user chose ‘Cancel’, then the user would simply be brought back to the ‘Wake

Time’ page.

Figure 10: Screenshot of the Wake Time function of the e-cigarette survey application. From left to right: resultant login
screen after setting a wake time alarm; alert after logging in while application is still asleep.

21

 Once a user put the application to sleep, the user would be brought to a purple colored

login screen (Figure 10).

o The header, body, and footer text of the login page would change to convey the

new status of the login page.

 ‘App is Asleep’ appeared on the header and ‘Log in to break bedtime’

appeared on the footer of the page.

 Most importantly, a date and time that the user could expect to receive

notifications again appeared below the login button.

 When the Wake Time set by the user had been reached, a unique three-minute long

wake time ringtone accompanied the wake time notification, alerting the user that again

local notifications could be received.

 The user could interact with the accompanying notification; however, this interaction

would not result in the user being able to take a random prompt interview like after

other notifications. Instead, the user would be taken to the main menu upon logging in.

 If a user decided to take the app out of sleep at a time earlier than the set Wake Time,

the user only had to enter their login information at the login screen.

o An alert would appear informing the user that the application was now awake

and that the user was receiving notifications again (Figure 10).

o At this time, all previous notifications were cleared and two days of randomized

notifications were added.

o The time span for these new notifications ranged from the time of logging in,

until 48 hours later.

22

Figure 11: From left to right: alert after trying to enter a wake time within 4 fours of the current time; alert after tring to
enter a wake time outside of 19 hours from current wake time.

 There were two limitations enforced by the wake time function (Figure 11).

o The user could not enter a wake time that was less than 4 hours from the time

that the user had put the application to sleep.

o Also, the user could not enter a wake time that was more than 19 hours from the

time the user put the app to sleep.

o Both of these limitations were enforced by alerting the user to the issue.

23

Figure 12: Screenshot composition of the defunct Delay Notifications capability within the e-cigarette survey application.
From left to right: initial Delay Notification prompt; resultant login screen after delaying a notification.

An additional time function was added to the application which allowed a user to delay any

notification as it fired (Figure 12). By tapping on a notification, a user would be brought to

a screen—prior to the login screen—which would allow them to choose whether or not

they wanted to delay the current notification. Not delaying the notification would result in

the user having to take a random prompt interview immediately. The user could delay the

notification anywhere from 5-30 minutes. Once a user delayed a notification, they would be

brought to the login screen where a blue color profile and text would inform the user of the

notification being delayed. Due to a necessary rework in notification mechanics within the

application, this delay functionality had to be stripped from the final product.

24

3.d. vii Notifications

Figure 13: Screenshot composition of local notifications within the e-cigarette survey application.(a) Enlarged
application & notification icon; (b) Highlighted status bar pop up upon receiving a notification; (c) Highlighted notification
message within Android’s notificaiton drawer.

25

3.d.viii.1 Random Prompt Notifications

 A user received up to ten Random Prompt Notifications every 24 hours.

 Each Random Prompt Notification appeared in Android’s notification area and featured

this icon:

 A three minute long ringtone that increased in pitch every minute accompanied each

notification.

 The text contained within the Random Prompt Notification requested that the user

tapped on a notification to begin a Random Prompt Interview (Figure 13).

 The time and id of the Random Prompt Notification would also be displayed within the

notification.

 Tapping on a Random Prompt Notification took the user to the login page of the

application.

 All notifications which populated the Android notification area were cleared only when

the user logged into the application.

 If any of the Random Prompt Notifications were older than three minutes, they were

recorded as having been missed.

 If a user logged in to the application within three minutes of the latest Random Prompt

Notification having fired, they were taken to the beginning of the Random Prompt

Interview survey.

26

3.d.viii.2 Wake Time Alarm Notifications

 This notification only appeared if a user set a Wake Time Alarm for the application from

the main menu.

 Each Wake Time Alarm Notification appeared in Android’s notification area and

featured this icon:

 A three minute long alarm ringtone accompanied each Wake Time Alarm Notification.

 This ringtone was different than the ringtone that accompanied Random Prompt

Notifications with a sound that mirrored a beeping alarm clock.

 The text contained in the Wake Time Alarm Notification prompted the user that the

application was now awake.

 The time of the Wake Time Alarm Notification was also displayed within the

notification.

 Tapping on a Wake Time Alarm Notification brought the user to the login screen of the

application.

 Wake Time Alarm Notifications differed from Random Prompt Notifications in the way

they were cancelled.

 Simply tapping on a Wake Time Alarm Notification would cancel the notification.

 There was no connection between Wake Time Alarm Notifications and Random Prompt

Notifications.

o Missing a Wake Time Alarm Notification would not be recorded as the user

having missed a notification.

o Interacting with a Wake Time Alarm Notification would not result in the user

having initiated a Random Prompt Interview.

27

3.d.viii.3 Notification Mechanics

 When a user started the application for the first time, the app populated two days-

worth of Random Prompt Notifications for a maximum of 20 notifications.

 If the application was started later in the day, earlier Random Prompt Notifications

which would have already occurred were not scheduled.

 This meant that the user usually received less than ten Random Prompt Notifications

for that first day.

28

3.d.ix. Reference Page

Figure 14: Screenshot composition of the Reference page within the running e-cigarette survey application; from left to
right: dropdown segment showcasing the interviews within the application; dropdown further detailing the question &
widget types which can be found within the interviews; dropwdown allowing a user to experience what a notification
looks and sounds like; dropdown explaining the bedtime—or Wake Time—function within the application.

To help assist users in using the application, a page was dedicated to displaying different

aspects of its performance. The reference section covered the general differences between

the two interviews, the intended use of the Wake Time alarm, and the operation of the

suspension function. This page also allowed a user to fire off an example notification in

order to familiarize the user with future notifications.

29

3.d.x File Structure

Figure 15: From left to right: From the root directory, a highlighted ‘alt’ subdirectory containing all user data for the
application; inside the ‘alt’ directory, containing all encrypted data files; within the user directory which contains all
relevant decrypted data.

The file structure which contained the data from the application was a simple one. From

the root of the Android device, a folder named ‘alt’ was created on the initial startup of the

application. All of the encrypted user data files were stored within ‘alt’. All of the names and

extensions within this directory reflected the nature of their content. For example: ‘log.log’

was the file that contained the encrypted contents of the current users login credentials,

while ‘tob.tob’ held the accumulated encrypted contents of that user’s tobacco use

interviews.

To help distinguish between the active encrypted user data and the prepared decrypted

user data, a subdirectory was created upon a researcher tapping ‘Prepare Files’ within the

administrative profile menu (Discussed below). The name of the directory was the current

user’s user id. All relevant data files from ‘alt/…’ were copied over to this directory,

decrypted, and renamed to the user’s id (Figure 15). For example: tob.tob became

userID.tob and log.log became userID.log (Appendices D and E).

Due to an odd error in Android’s storage system interfacing with Windows Explorer, an

extra step was necessary for the research group to grab the processed data off of the phone.

If a research member tried to grab the processed data from the newly created, decrypted

user directory, the data would not appear from their PC. The solution to this problem was

to archive the decrypted user directory. After archiving the user directory, the processed

data would be visible within ‘alt/…’.

30

3.d.xi Encryption and Decryption

Because users of the device had free reign to visit the directories where the user data was

stored, encrypting & hiding the data from users was essential for the research group.

Initially, we discussed nesting the data within sub-directories of the Android system and

hiding all files and folders. Unfortunately, this did not perform well as the folders and files

were still visible from the Android File Manager app and the method of retrieving the user

data proved too complicated for the research group. Instead, the previously mentioned file

structure was formed and no folders or files were hidden (Figure 15).

CryptoJS [15] was a Javascript library that contained a plethora of cryptographic algorithms.

128-bit AES encryption & decryption was implemented within the application using

CryptoJS. Unfortunately, the newline character was used as the active delimiter when

decrypting documents with CryptoJS and the decryption would only cover the first line of

the document. The research group desired decrypted user data with each entry on its own

line, so an alternate method of encryption & decryption had to be used.

Figure 16: Diagram exaplaining the Caesar cipher.

Caesar cipher was a simple method of encryption achieved by shifting the place of letters

by a certain number of spaces (Figure 16). This was accomplished in the application by

increasing the ASCII value of each character by 13. Decryption occurred by decreasing the

ASCII value of those characters by the same number. The original Caesar cipher Javascript

library used in the application [16] did not incorporate the shift for numbers or

punctuation marks, so the open source library was altered to support these additions

(Appendices D and E).

31

3.d.xii. Administrative Functions

In order for the research group to easily grab all of the user data from each phone, an

administrative pin number was hard-coded into the application. Logging into the

application with ‘45459’ would navigate the user to an administrative profile page where

researchers would be able to ‘Prepare Files’. This function was applied to all of the data to

be collected by the administrator of the group. An administrator could also delete all of the

data currently collected by the user.

3.d.xii.1 Prepare Files

 This function gathered all text files that have had data recorded to them, renamed the

files and migrated them according to the file structure outlined in an earlier section of

this report.
 As the data within the files were encrypted upon being recorded, the data needed to be

decrypted before being read by researchers.
o A reverse Caesar crypt was applied to the contents of each file.

 Due to a compatibility issue between Android storage devices and the Windows

operating system, a user had to archive the created user data folder before being able to

grab the data via Windows Explorer.
o The updated folder of data simply wouldn’t appear otherwise.

 The only way to cease all future scheduled notifications from the application was to

cancel all of them, so a final function call was made to cancel all future notifications.
o In the case that this was not the final use of the application, and future

notifications were desired, more notifications would be added upon the user

logging into the app.

32

3.d.xii. 2 Delete Files

Figure 17: Screenshot composition showing the progression of redundant screens that an administrator must traverse
before finally being able to delete all user data.

 This function simply deleted all of the data within the root folder of the application.
 This effectively reset the app so that it would be ready for a new user.
 Deleting the data files through this function call was final, so a warning screen was

developed in triplicate. This required a user to click through before actually deleting

any data (Figure 17).
 Similar to the ‘Prepare Files’ function, calling this method also deleted all future

scheduled notifications.

33

3.e Changes and Concessions

At the beginning of the project, the research team outlined their desires for the final

product. A responsive and intuitive cross-platform (Android and iOS) application was

wanted. Because of this, the group looked into PhoneGap as a development platform.

PhoneGap boasts the ability to more easily cross over mobile applications for Android, iOS,

Windows Phone, Blackberry, etc. during development [10].

Unfortunately, the PhoneGap package proved to be problematic throughout development.

Certain basic needs for the application were difficult to obtain and required outside plug-

ins in order for them to be realized. The plug-ins themselves proved problematic as well, as

they were often below version 1.0. Furthermore, each plug-in was dependent on the

version of Android and PhoneGap used during development which introduced a multitude

of compatibility issues to the project.

Figure 18: Flow chart of PhoneGap’s Javascript interface with mobile OS native code.

One reoccurring issue during development was coping with the interface between

PhoneGap, PhoneGap plug-ins, and the asynchronous nature of Javascript code execution

(Figure 18). Linear code operation was paramount to many aspects of the application

running reliably. The local notification plug-in proved problematic in this regard as many

functions within the application required clearing of prior notifications followed by the

addition of new notifications. Asynchronous execution sometimes resulted in the addition

of notifications in tandem with clearing notifications, which resulted in some or all of the

new notifications having been cancelled. To address this particular issue a timer was

instated before the addition of notifications so that no notifications would be added until

one second had passed since the call to clear prior notifications.

34

Due to the rigid permission and priority system of the Android framework, some of the

features available in the earlier Palm Pilot application were not viable for this project. Short

of rooting each phone, the research group could not have absolute control over the volume

of the phone nor the ability to stop a user from turning it off. This was remedied with

instructions to the user group; they should not diminish the volume of the phone, nor have

it turned off.

Each running process within an Android device was given a priority level. The priority level

of a process changed over time depending on the amount of memory it was using, how

often the process was visited by the user, as well as the nature of the process itself.

WebView processes had the lowest priority level of any active process. This meant that

when our application was pushed to the background of the Android device, it would

inevitably relinquish its space in memory. Because of this, the local notification capability

was particularly difficult to get in working order.

The initial method of handling local notifications relied on event listener functions, written

in Javascript, to cause desired events upon a notification being added, cancelled, or

triggered. The call to cancel a notification after three minutes would be added to the

onAdd() event listener, for example. Similarly, the onCancel() event listener housed code

that recorded whether or not the notification should be labeled as ‘missed’ by comparing

the cancel time of the notification to the trigger time of the notification. Due to the above

mentioned Android priority issue, these event listener functions would behave unreliably

as the code within would not execute once the application memory was released. The result

was that notifications would not faithfully cancel after three minutes, nor would

notifications have been recorded as missed.

A major change was made to the application which made local notifications more reliable,

more flexible, and still allowed the research group to keep much of the application’s

desired performance. Due to the need for this change, however, one facet of the application

was obviated; both the UI elements and mechanics behind delayed notifications were

omitted. The reason for this omission was again due to the low priority level of the

WebView application within the Android system once the application was pushed to the

background. The delayed notification mechanic relied on the same event listener functions

of the local notifications. Because of this, the delayed notification capability suffered from

the same erratic behavior as the initial local notification facility. For example, in order to

distinguish a missed notification from one that was delayed, an addendum was made to the

body of the onCancel() event function which made a comparison between the time the

notification was delayed and the time at which the delay should end, plus three minutes.

The result was notifications wrongfully being regarded as not having been missed once the

delay period had come and gone.

35

Figure 19: Screenshot composition outlining the flow of local notification interaction with regard to the revised
notification mechanic. From Left to right & top to bottom: User has received two notificaitons which they have missed;
user pulls down notification drawer to tap on a notification; the application is accessed with the login screen appearing
first; user enters login pin; user is alerted to having missed notifications and the times at which they were missed is
recorded, the missed notifications are cleared. At this time, the user is taken to the main menu of the application.

36

Due to the above mentioned change, the method for maintaining notifications within

Android’s notification drawer was altered as well. Luckily these changes resulted in a more

intuitive method for the user to handle any missed notifications. Before, notifications and

their accompanying ringtone would only last for three minutes, after which they were

cancelled and recorded as having been missed if a user did not interact with the

notification. The new method of handling notifications resulted in the notifications

remaining static within the drawer—they would not disappear after three minutes. This

produced a reminder to the user that they had missed a notification. In the case that a user

missed multiple notifications, they would be able to observe such, as the notifications

would stack within Android’s notification drawer, as well as the status bar at the top of the

phone. In order to record notifications as having been missed—with regard to this new

management of notifications—all of the times that notifications were scheduled to fire

were saved to an array of Moment objects—provided by a high-level Javascript Datetime

library, MomentJS [17]. If—at the time of login— one or more of those times was greater

than three minutes ago, the application would record all of those times to file as having

been missed and the user would be alerted.

Only one error persisted to the final release of the application; multiple jQuery Mobile

sliders grouped on the same page would result in a rarely occurring control issue. The issue

being that sometimes when a user changed control of one slider handle to another slider,

the newly controlled slider would regulate the position and value of the old slider as well. A

user could easily fix the issue by controlling the old slider to reselect their old value.

Researching and seeking help to fix this problem proved unfruitful as the underlying issue

lay with jQuery [12], and implementing a UI library which did not rely on jQuery—such as

Sencha Touch 2 [18]— would have resulted in a complete UI overhaul. A fix for the final

release of the app increased the performance and responsiveness of the sliders, however.

This resulted in a far less frequent occurrence of the problem.

37

4. Conclusions

By the end of development, the research group had a fully-functional mobile application

that allowed them to collect all of the desired data. In addition to reliable data collection,

the application boasted convenient functionality for both the users of the study group and

members of the research team. The administrative functions allowed members of the

research group to retrieve the desired data in a convenient format and file structure. These

administrative functions also allowed the research team to quickly and easily turn over the

phones used in the study group to a new user. The application provided convenience to the

user study group in the form of suspension and wake-time alarm functions which allowed

them to cater the app to their schedules when necessary.

The shortcomings of the application were few and born of necessity due to time constraints

or the limitations of PhoneGap—and PhoneGap plug-ins—as a development platform.

Unfortunately, taking advantage of PhoneGap’s cross-platform capability proved more

difficult than advertised and only an Android version of the application was developed.

Only one technical error saw its way to release in the application. The frequency of this

error was reduced with an interim solution, with an immediate fix to the occurrence of the

error being easily realized by the user. Finally, the ancillary function of delaying current

notifications was dropped due to the limitations of the local notification plug-in.

38

5. References

[1] Center for Disease Control, "Notes from the field: electronic cigarette use among middle and high

school students-United States," MMWR. Morbidity and mortality weekly report, vol. 62, no. 35, p.

729, 2011-2012.

[2] O. D. Flouris AD, "Electronic cigarettes: miracle or menace?," BMJ, p. 340:c311, 2010.

[3] J. L. Pearson, et al."E-Cigarette Awareness, Use, and Harm Perceptions in US Adults," American

Hournal of Public Health, pp. 1758-1766, 2012.

[4] G. S. Dutra LM, "Electronic Cigarettes and Conventional Cigarette Use Among US Adolescents: A

Cross-sectional Study," JAMA Pediactric, no. 168(7), pp. 610-6617, 2014.

[5] Z. G. Henningfield JE, "Electronic nicotine delivery systems: emerging science foundation for policy,"

Tob Control , vol. II, no. 19, pp. pp.89-90.

[6] D.A. Axelson, et al."Measuring Mood and Complex Behavior in Natural Environments: Use of

Ecological Momentary Assessment in Pediatric Affective Disorders," Journal of Child and Adolescent

Psychopharmacology, vol. 13, no. 3, pp. 253-266, 2003.

[7] F. B. Turner, et al."Individual and Contextual Influences on Adolescent Smoking," Annals of the New

York Academy of Sciences, vol. 1021, pp. 175-197, 2004.

[8] R. Mermelstein, et al."Real-time data capture and adolescent cigarette smoking: moods and

smoking.," The Science of Real-Time Data Capture: Self-Report in Health Research, pp. 117-135,

2007.

[9] Arthur A. Stone, et al."Ecological momentary assessment (EMA) in behavorial medicine," Annals of

Behavioral Medicine, vol. 16, no. 3, pp. 199-202, 1994.

[10] "Phonegap main page," Adobe, 2014. [Online]. Available: http://phonegap.com/.

[11] "jQuery Mobile 1.3.2 demo showcase," jQuery Mobile, 2013. [Online]. Available:

http://demos.jquerymobile.com/1.3.2/.

[12] "jQuery main page," jQuery, 2014. [Online]. Available: http://jquery.com/.

[13] "Motorola Razr M specifications page," 2014. [Online]. Available:

39

http://www.motorola.com/us/consumers/shop-all-mobile-phones/Droid-Razr-M/m-DROID-RAZR-

M.html.

[14] "Mobiscroll main page," Mobiscroll, 2014. [Online]. Available: http://mobiscroll.com.

[15] "CryptoJS v3.1.2 code repository," 2013. [Online]. Available: https://code.google.com/p/crypto-js/.

[16] "Caesar Cipher code repository," 2011. [Online]. Available:

http://nayuki.eigenstate.org/page/caesar-cipher-javascript2.

[17] "MomentJS v2.7.0 main page," 2014. [Online]. Available: http://momentjs.com/.

[18] "Sencha Touch 2.0 blog," 2012. [Online]. Available: http://www.sencha.com/blog/announcing-

sencha-touch-2/.

40

6. Appendices

6.A Appendix A Code Snippets:

 Appendix A.1 Logging Into the Application:

Listed below is the main function, checkLoginV2(), that was used to verify the pin entered

from a user while logging in. This function was called when a user tapped the login button.

Listed below the main function are all ancillary functions called within checkLoginV2().

41

42

43

44

45

46

47

 Appendix A.2 Submitting Interview Answers:

Listed below are the functions used to record interview answers for the Random Prompt

Interviews. Functions used to record interview answers for the Tobacco Use Interview

were not displayed because they followed the same code structure as the functions used to

record Random Prompt Interviews.

48

49

50

51

 Appendix A.3 Resetting and Adding Daily Notifications:

The following functions were used to clear prior notifications and add new notifications.

This combination of code was used throughout the application and was the only way to

update notifications. addNewNotifs() was always passed as a callback argument to

clearPriorNotifs(), with the result being that no notifications would be added until the old

notifications were first cleared.

52

53

54

6.B Appendix B Questions for the Tobacco Use Interview

The set of questions listed below were extracted directly from the FDA Communications

Ecological Momentary Assessment Interviews Codebook (Appendix F.1). This document

was authored by members of the research group: Dr. Robin Mermelstein and John O’Keefe.

This particular document is an altered form of a previous document which had been used

by the research group for over 10 years in similar tobacco use studies—including the

PalmPilot study mentioned above. Outlined below are the sets of questions featured in the

Tobacco Use Interview within the E-cigarette Survey Application.

55

56

57

58

6.C Appendix C Questions for the Random Prompt Interview Survey

The set of questions listed below were extracted directly from the FDA Communications

Ecological Momentary Assessment Interviews Codebook (Appendix F.1). This document

was authored by members of the research group: Dr. Robin Mermelstein and John O’Keefe.

This particular document is an altered form of a previous document which had been used

by the research group for over 10 years in similar tobacco use studies—including the

PalmPilot study mentioned above. Outlined below are the sets of questions featured in the

Random Prompt Interview within the E-cigarette Survey Application.

59

60

61

6.D Appendix D Example Data Output for the Tobacco Use Interview

Below are some example data outputs—both encrypted and decrypted—from the Tobacco

Use Interview. Please note that some of the questions have an answered value of 0, this

means that the previous choices of questions did not lead the user to encountering this

question (Figure 7).

Tob.tob (Encrypted):

tgubzn'!)/&%/'%&)_&:&%:'*! -! %! .! (! .! -! (! .!)! -! .! (! -! &! &! '! &! '! &! &! &! &! &! &! &! &!

'! &! '! &! &! &! %! &)! &! '!

&! &! '! .! (! .! (! -! .! -! (! .

userID.tob (Decrypted):

userID, 4/10/2014_1:10:25, 8, 0, 9, 3, 9, 8, 3, 9, 4, 8, 9, 3, 8, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2,

1, 2, 1, 1, 1, 0, 14, 1, 2, 1, 1, 2, 9, 3, 9, 3, 8, 9, 8,

3, 9

62

6.E Appendix E Example Data Output for the Random Prompt Interview

Below are some example data outputs—both encrypted and decrypted—from the Random

Prompt Interview. Please note that some of the questions have an answered value of 0, this

means that the previous choices of questions did not lead the user to encountering this

question (Figure 7).

Rpt.rpt (Encrypted):

tgubzn'!)/&%/'%&)_&:)*:'(! .! (! .! .!)! .! (! -! .! &! &! '! &! &! &! &! &! &! &! &! '! &! &! '! &! &!

&! &! &! '! &! &! &! &! &! &! &!

&! %! &&! '! &! '! '! &

userID.rpt (Decrypted):

userID, 4/10/2014_1:45:23, 9, 3, 9, 9, 4, 9, 3, 8, 9, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 2, 1, 1, 1,

1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 0, 11, 2, 1, 2, 2, 6.

63

6.F Appendix F External Documents:

The document cited below was referenced throughout the development of the E-cigarette

Survey Prompt application. This document is not available online and so it has been cited

within a separate appendix.

[1]Robin Mermelstein, John O’Keefe, “FDA Communications Ecological Momentary

Assessment Interviews Codebook”, External document, pp. 1-7, 2013.

