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A B S T R A C T

Precision medicine seeks to tailor therapy to the individual patient, based on statistical correlates from patients
who are similar to the one under consideration. These correlates can and should go beyond genetics, and in
general, beyond tabular or array data that can be easily represented computationally and compared. For ex-
ample, in many types of cancer, cancer treatment and toxicity depend in large measure on the spatial disease
spread—e.g., metastasizes to regional lymph nodes in head and neck cancer. However, there is currently a lack
of methodology for integrating spatial information when considering patient similarity. We present a novel
modeling methodology for the comparison of cancer patients within a cohort, based on the spatial spread of the
lymph nodes affected in each patient. The method uses a topological map, bigrams, and hierarchical clustering to
group patients based on their similarity. We compare this approach against a nonspatial (categorical) similarity
approach where patients are binned solely by their affected nodes. We present similarity results on a 582 head
and neck cancer patient cohort, along with two visual abstractions for analysis of the results, and we present
clinician feedback. Our novel methodology partitions a patient cohort into clinically meaningful groups more
susceptible to treatment side-effects. Such spatially-aware similarity approaches can help maximize the effec-
tiveness of each patient’s treatment.

1. Introduction

The United States National Cancer Institute estimates that more
than 51,000 people in the United States were diagnosed in 2018 with
head and neck squamous cell carcinoma (HNSCC) [1]. Of these HNSCC
cases, more than 90% result as oropharyngeal carcinomas (OPC), which
include cancers of the larynx (voice box), pharynx (throat), lips, tongue,
and nose [2,3]. At the same time, the large number of HNSCC cases
makes possible the creation of big data repositories consisting of the
demographic and clinical characteristics, treatments, and outcomes of
patients undergoing therapy [4]. These repositories present opportu-
nities towards informing and further personalizing treatment on a per-
patient level, rather than relying on clinician experience or institutional
memory alone [5–7]. Under a healthcare model termed ”precision
medicine”, clinicians aim to use these patient repositories to tailor
therapy decision to the individual patient, based on data from patients
who are similar to the one under consideration [8,9]. Currently, these

correlates typically include age, performance status, clinical staging
information, and sometimes genetics—attributes that can be statisti-
cally aggregated, matched and analyzed.

Yet, similar to most other cancer types, HNSCC treatment and side
effects depend in large measure on the spatial location and spread of the
cancer. In particular, for more than 50% of OPC patients, the treatment
and side-effects are heavily influenced by the spread of disease to lymph
nodes (LN) and their corresponding areas (levels), at risk for metas-
tases. OPC generally metastasizes to regional LNs following the lym-
phatic drainage of the head and neck [10], often resulting in chains of
affected LNs along the drainage pathway. These chains correspond to
the spread of disease to specific locations of the head and neck and are
thus defined by their spatial attributes. Therefore, for those patients
receiving intensity-modulated radiation therapy (IMRT), these chains
represent additional targets that must receive radiation treatment.
Further complicating matters, the soft tissue structures of the head and
neck (organs, muscles, etc.) are highly susceptible to both direct and
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indirect radiation exposure [1], and the increased toxicity to specific
regions has been shown to correlate with post-therapy quality of life
[8]. For example, aspiration and dysphagia side-effects affect as many
as 30%-50% of patients treated with IMRT [11]. Therefore, clinicians
believe that grouping patients by their patterns of nodal spread can help
improve treatment strategies regarding both efficacy and toxicity.

The state of the art in lymph pattern similarity uses either catego-
rical (i.e., nonspatial) matching of node labels, or relies on clinician
memory. The first approach does not capture the spatial patterns of
disease spread, and the second approach clearly does not scale well.
Because within a patient cohort there are many rare or unique combi-
nations of spatial affected chains, analyzing and interpreting the results
of any lymph similarity measure is further challenging. Precision
medicine stands to benefit from scalable, rigorous computing metho-
dology that takes into account both the information about metastasized
nodes and about the pathways that connect them, and facilitates the
analysis and interpretation of the resulting similarity measures.

At the same time, spatial similarity has been facilitated in many
domains such as mechanical engineering [12], bioinformatics [13], and
oncology [14,15] by encoding spatial relationships through either to-
pology-based or shape-based techniques. These techniques have the
ability to ”exhibit common classes of descriptive spatial (topological)
features that are quantified by definition of computable measures”
[16]. Both topology and shape-based techniques aim to extract spatial
attributes, then establish a relationship between corresponding attri-
butes in different patients. However, shape-similarity based methods
tend to focus on classifying models of very different shapes, and fall
short of distinguishing anatomical objects within the same class unless
the objects have easily identifiable structures, such as the mandible and
outer body contour [14,17,18]. In the case of lymph nodes, structures
are in the same class and do not have easily identifiable features.
However, OPC patient analysis presents an opportunity for topology-
based techniques.

In this methods paper, we present a novel topology-based modeling
methodology for the comparison of patients within a cohort, based on
the spatial pattern of lymph nodes affected by disease. As part of this
methodology, we construct a topological map, we define computational
representations, and we introduce a novel graph-based measure to de-
rive patient LN spread similarity. We further construct a novel visual
interface to interpret the spatial similarity results, followed by a novel
dendrogram visual encoding to communicate the results to clinicians.
We use a cohort of 582 post-therapy OPC patients to evaluate the
benefits of this methodology over the nonspatial approach, and to il-
lustrate its potential for clinical application. We first contrast the novel
spatial measure results against the results obtained using a nonspatial
(categorical) labeling of the nodes. We then hypothesize that the un-
derlying spatial information contained within the chains of affected LN
levels would significantly correlate with post-therapy side-effects
known to arise due to radiation toxicity. This novel computing meth-
odology should further allow for binning of patients in cohorts deemed
by clinicians as significantly more informative than nonspatial (cate-
gorical) binning.

2. Materials and methods

2.1. Method overview

Our methodology is constructed as follows (Fig. 1): the LN levels for
eligible patients are manually segmented from contrast-enhanced
computed tomography imaging data. We then construct a LN topolo-
gical map, based on the level location and its surrounding local
neighborhood, and using the medical literature [19] and clinician input
[20]; because of left-right symmetry in the human head and neck, this is
a 2D map with cells for each node region. To facilitate patient com-
parison using the spatial information, we next define and construct a
dual-graph representation over the topological map; this representation

captures the neighbor relationships among the lymph nodes. We use a
novel graph-based representation and spatial measure to compute the
pairwise similarity between patients. Next, we perform hierarchical
agglomerative clustering and visual analysis on the similarity output
and compare the resulting patient groupings. The results are then
presented to the clinicians for interpretation of the rankings and clus-
ters of patients. Finally, we perform a statistical analysis to determine if
our spatial measure is significantly correlated with post-treatment
toxicity outcomes. We describe below in detail each component of this
method.

2.2. Patient cohort

Oropharyngeal cancer (OPC) patients who were treated at the MD
Anderson Cancer Center between 2005 and 2013 were retrospectively
reviewed under an approved IRB protocol. Out of the 644 eligible pa-
tients who had a pathologically proven OPC, either with a positive
biopsy or a surgical excision and received treatment (i.e., radiotherapy
+/- chemotherapy) with a curative intent, 582 patients had affected
lymph nodes and were included in this study. Affected lymph node (LN)
levels were collected from contrast enhanced computed tomography
(CECT) diagnostic scans which took place at patients’ initial visit for
staging and disease assessment. LN levels (retropharyngeal (RP), sub-
mental (Ia), submandibular (Ib), upper, medial and lower jugular (II,
III, IV respectively) and level V a, b) were defined based on anatomical
landmarks and were coded in relation to tumor position. Patients’ re-
levant demographic, clinical, and toxicity data (toxicity of interest were
feeding tube and aspiration at six months) were retrieved from elec-
tronic medical records. Only the LN information was used as input to
our method.

Table 1 shows the post-therapy side-effect counts and patient
characteristics across the cohort. Of the 582 patients who underwent
intensity-modulated radiotherapy, 163 patients suffered from either
post-therapy dysphagia side-effects, with 95 (16.32%) patients re-
porting aspiration (breathing a foreign material to the airways, such as
saliva) and 99 (17.01%) requiring a feeding tube six months after the
end of radiotherapy treatment (Feeding Tube at 6 months).

2.3. Topological map

To enable spatial comparison, we first defined and constructed a
novel 2D topological map over the LN levels, based on the consensus
guidelines for the delineation of the head and neck [19], and using the
left-right symmetry of the human head and neck, as well as input from
our clinician collaborators. Each cell in this topology, shown in gray in
Fig. 2 (right), corresponds to an LN level in the human head and neck,
based on the spatial location and local neighborhood of each level. Over
this topology, we then defined a dual graph representation, shown in
red in Fig. 2 (right), where each cell was represented as a node in an
undirected graph, and edges were created between each pair of ad-
jacent faces. Using this novel abstraction, a chain of disease spread
would follow the links between the adjacent faces; for example, the
path connecting LN levels 2B-2A-3 corresponds to a lymph chain of
spread. We decided to place the Retropharyngeal (RP) LN, a LN group
near the base of the skull, as a disconnected node in the graph (upper
left) because metastasis to this group bears a poor prognosis to OPC
patients and requires specialized treatment.

Next, the graph template (Fig. 2 Left) was encoded as an adjacency
matrix (Fig. 3). In the adjacency matrix M, each row and column cor-
respond to one of the LN levels in the graph, whereas individual cells
encode the edge information (a.k.a., adjacency) in the graph, as follows:

= ⎧
⎨⎩

= =
M i j

LN LN i j
( , )

1, if and are connected by an edge OR
0, otherwise

i j

(1)
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where LNi and LNj are lymph node levels in the graph.
Since the RP LN level appears as a disconnected node on the graph,

we handle it as a special case. Therefore, the resulting matrix M has
dimensions of 9x9, for the nine groups of lymph nodes that are con-
nected in the graph representation. The adjacency matrix is by con-
struction symmetric.

2.4. Patient spatial data encoding

Using the adjacency matrix thus defined, we then encode the LN
spatial spread of disease, or lymph node involvement, for each patient.
From a radiation oncology perspective, neck lymph nodes are classified
and treated on the basis of the level where they are located; the location
is determined through physical examination and/or radiological ima-
ging. If at least one lymph node in a given level is affected with cancer

Fig. 1. Pipeline detailing the steps and data flow of our presented methodology. After receiving the contrast-enhanced computed tomography (CECT) images from
the clinicians, we construct a topological mapping of each patient’s affected nodes and the connections between them. The result matrices are used to compute
similarity using a distance coefficient; hierarchical clustering is performed on the ranked patient scores to determine patient groups; statistical and visual analysis is
performed on the groups to determine groups with higher toxicity outcome rates, and validate the results.

Table 1
Patient Characteristics and Post-therapy Side Effects.

Characteristics N (%)

Post-therapy Side Effect
Feeding tube at 6 mo. 99 (17.01%)

Aspiration 95 (16.32%)
No side effect 388 (66.67%)

Gender
Male 512 (87.97%)

Female 70 (12.03%)

T-category (T)
Tx 1 (0.17%)
Tis 1 (0.17%)
T1 129 (22.16%)
T2 245 (42.10%)
T3 121 (20.79%)
T4 85 (14.61%)

N-category (N)
N1 72 (12.37%)
N2 492 (84.54%)
N3 18 (3.09%)

Fig. 2. Topological map and graph representation.
(Left) A novel topological map was constructed
over the lymph node regions (shown in gray),
overlaid with a dual graph representation (red) of
the map showing the connectivity between the
lymph node levels. The Retropharyngeal (RP)
lymph nodes are a group of nodes near the base of
the skull and are disconnected from the dual graph
because when affected by disease, they require
specialized treatment. (Right) A compact visual
representation was derived from the red graph re-
presentation to visually illustrate metastasis over
both sides of the head and neck, using symmetry
and color to distinguish between left (green), right
(purple), and bilateral (blue) spread. (For inter-
pretation of the references to color in this figure
legend, the reader is referred to the web version of
this article.)

Fig. 3. Adjacency matrix encoding edge connections between nodes in the to-
pological map. Rows and columns in this matrix correspond to the LN nodes in
the map. A matrix element is either 1 when there is an edge connecting its row
LN with its column LN in the map, or 0 when there is no connection. For clarity,
main diagonal elements are set to 1 here (all nodes are self-connected), but
could alternatively be used to encode the involvement status of each LN.
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cells, radiation oncologists refer to the corresponding node level as
being involved with disease, and they involve the whole node level in
treatment.

Let us consider first, for clarity, the case of a patient who has nodes
affected on one half of the head only; we will handle the full case of a
patient with nodes affected on both sides of the head via symmetry. To
encode the spatial involvement of lymph nodes for such a patient, we
construct a vector based on the involvement status of that patient’s LN
levels, and using the adjacency matrix, as illustrated in Fig. 4. First, we
consider the patient’s involved LN levels and construct a vector of af-
fected node levels, as follows:

= ⎧
⎨⎩

i
LN p

N ( )
1, if is involved in patient
0, otherwisep

i

(2)

where iN ( )p is the vector element that corresponds to the involvement
status of the LN level LNi for the specific patient p.

Next, to incorporate the topology information, we encode the edges
to and from the involved LNs in that patient, using the template ad-
jacency matrix. As illustrated in Fig. 4, we enumerate as a bigram label
[21] each pair of LN levels connected by an edge in the template map.
We then construct a bigram vector with these bigram labels. In the
bigram vector, i jB ( , )p is the bigram vector element that corresponds to
the involvement status of the i j( , ) edge for that patient p, i.e., either 1 if
both end node regions are involved, or 0 otherwise:

= ⎧
⎨⎩

i j
LN LN p

B ( , )
1, if AND are involved in patient
0, otherwisep

i j

(3)

for all i j( , ) pairs, ≠i j, for which = =M i j( , ) 1 in the adjacency matrix,
and LNi and LNj correspond to the LN levels i and j.

We choose not to enumerate further than the two-node combina-
tions because of the small number of nodes in the graph—if all n-grams
were enumerated, the similarity distance between patients would in-
crease, and the similarity score for partial pattern matches would de-
crease. Furthermore, permutations of each bigram are considered once,
e.g., bigram permutations between LN levels 2A and 2B, 2A-2B and 2B-
2A, are considered as being the same.

Generalizing to the full case of a patient with lymph node in-
volvement on both sides of the head (Fig. 5), we construct one node-
bigram vector for the left side of the head of patient p, and one node-
bigram vector for the right side of the head. Using matrix notation,
where x y[ , ] denotes the concatenation of vectors x and y, and the Np
and Bp formulas above, the left-side node-bigram vector and the right-
side node-bigram vector are:

=−v [N , B ]p p pleft left (4)

=−v [N , B ]p p pright right (5)

Because in this application the oncologists were interested in de-
tecting both straight and symmetric similarity, i.e., also situations
where one patient’s left spread matches (potentially partially) another
patient’s right spread, we then add the left and right information into
the same vector representation. Through the summation procedure, the
two vectors are added, as illustrated in Fig. 5, to account for symmetry.
Thus, in the general case, each patient is described by:

= +− −v v vp p pleft right (6)

where −vp left is the node-bigram vector for the left side of patient p, and
−vp right is the node-bigram vector that corresponds to the right side of

patient p, calculated as described above. Through this concatenation
and summation procedure, in total, 9 node weights and 13 bigrams
weights are included into the patient vector, representing the 18 nodes
and 26 bigrams on both sides of head and neck.

Fig. 4. Construction of chain (bigram) involvement for Patient #14 (Fig. 7 top
left). First, affected nodes are identified for the specific patient (top left).
Connections between nodes in the topological map, represented here by the
global adjacency matrix (top right), are used to identify the 13 possible node
connection. Finally, a 13-dimensional bigram vector is constructed, where each
value corresponds to a 1 when both nodes connected by a given edge are af-
fected, and 0 otherwise.

Fig. 5. Construction of the spatial and nonspatial vectors for patient #14 (Fig. 7 top left). First, affected lymph nodes are encoded in a separate vector for each half of
the head. Bigram involvement is then encoded into a vector for each side of the head using the matrix in Fig. 3. The final vectors are then constructed by adding the
involvements for both sides of the head together to account for symmetry. Spatial vectors are constructed by augmenting the nonspatial node vector with the bigram
involvement.
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Last, we encode the special-case RP status via two boolean flags
related to the left and right involvement (Fig. 6). For later analysis, we
furthermore encode the laterality of nodal involvement for each patient
using the position of their primary tumor: for patients with right-sided
primary tumors, right-sided LNs are encoded as ’ipsilateral’ structures
with tumor on the right; for patients with left-sided primary tumors,
left-sided LNs are encoded as ’contralateral’ structures with tumor on
the left. We also encode with an additional variable the total number of
bilaterally affected nodes in the patient’s head. That is, a patient with
nodes 2A and 2B affected on both sides of the head would have an
additional variable with the value of 4. In this way, we bias the simi-
larity measure to capture users with similar overall nodal spread that
may have few true matches due to having uncommon or extensive
nodal involvement.

2.5. Similarity computation

Using the vector representations derived above, we compute the LN
similarity between any two patients using the Tanimoto coefficient
[22]. The Tanimoto coefficient is an extension of the Cosine similarity
and the Jaccard coefficient [23] for non-binary attributes. The Tani-
moto coefficient is widely used in chemi-informatics [24], and also in
image analysis [25], intrusion detection [26], and data mining in
general [27,28]. We chose the Tanimoto coefficient based on its ability
to handle non-binary data, because our folded vectors include non-
binary elements (i.e., values of 2, in addition to 0s and 1s). The cohort
was ranked in pairwise-fashion by computing the Tanimoto coefficient
between each of the newly constructed vectors:

=
+ −

T (v , v )
v ·v

‖v ‖ ‖v ‖ v ·vp q
p q

p q p q
2 2 (7)

where the function T (v , v )p q returns the Tanimoto coefficient between
the vectors v of patients p and q.

We note that while other distance coefficients could be used, the
rankings resulting from the application of these coefficients would be
similar to each other [24], given the limited range of values in our
feature vectors (0,1, or 2). Thus, the use of a different coefficient would
not affect the clustering results; we used Tanimoto because it was a
more correct choice for our problem, and widely used in the literature.

In order to investigate whether incorporating spatial information
about the lymph node chains (i.e., the spatial location and neighbor-
hood of the nodes involved) partitioned patients more meaningfully
than only considering the level itself (i.e., nonspatial labels), we next
constructed a vector using only the involvement status of the LN level
labels in the nonspatial (categorical) representation, and again ranked
the cohort in pairwise-fashion by using the same formula. This second
calculation considers each patient’s LN level involvement status only
(i.e., only the affected nodes in the graph representation), as opposed to
a combination of status and pathways (affected nodes and edges in the
graph representation).

To illustrate, in contrast, how these two approaches, spatial and
nonspatial, work, let us consider patients #14 and #245 from Fig. 7
(top left). Patient #14 possesses a bilateral involvement of LN levels 2A,

2B, 3, 4, and 5B, and a unilateral involvement on one RP LN level, while
Patient #245 possess a bilateral involvement of LN levels 2A, 2B, 3, and
4. Fig. 6 illustrates the corresponding vectors that are constructed for
the spatial (Fig. 6a) and nonspatial (Fig. 6b) approaches. Computing the
distance coefficient between both sets of patient vectors results in a
similarity score of 0.87 for the spatial approach, and 0.76 for the
nonspatial approach.

After ranking each patient, we construct two similarity matrices,
one for each of the spatial and nonspatial approaches, using the simi-
larity scores between each patient pair in the cohort. The result of this
step is a similarity matrix for each approach, with the number of rows/
columns in each matrix equal to the number of patients in the re-
pository. These matrices are then used in the hierarchical clustering
analysis. The patient similarity was implemented using Python 2.7.

2.6. Hierarchical clustering

Once a spatial measure is obtained, stepwise clustering techniques,
such as hierarchical agglomerative clustering (HAC), are a quick yet
practical approach to group similar subjects without a priori knowledge
of the underlying data distribution [29,30]. For example, recent studies
[31,32] have used hierarchical clustering to define anatomical sub-
groups of patients, and test for clinical significance. Furthermore, Bruse
et al. [32] investigated which distance/linkage combinations would
provide the most ”clinical meaningfulness” when applied to a cohort of
healthy and pathological aortic arches post-surgical repair patients.
Their results show that hierarchical clustering using Spearman, Corre-
lation, or Cosine metrics [33] combined with a weighted-linkage [34]
function can yield significant patient subgroups based on spatial fea-
tures. We use our earlier defined spatial similarity measure, and adopt
the weighted-linkage function for determining the distance between the
groups when performing our hierarchical clustering.

Following a bottom-up approach where each patient was first re-
presented as a singleton cluster, we used a hierarchical agglomerative
clustering (HAC) algorithm to iteratively combine clusters in a pairwise
fashion, based on the computed similarity scores and linkage distance
function. Based on the results from Bruse et al.’s study [32], we chose to
use the weighted-linkage function [34] when determining the distance
between clusters. At each iteration, the weighted-linkage function cal-
culates the distance between every pair of clusters, i and j, by com-
puting the arithmetic mean of distances (i.e., similarity scores) between
all points in i and j. The algorithm then combines the ”nearest”
(smallest distance) two clusters and continues iterating until only a
single cluster remains. We report clustering results for up to six groups,
because below this level some of the groups are too small to accurately
assess the significance of the associations with the toxicity outcomes.
Clustering was performed using the Matlab r2018a machine learning
toolbox [35].

Results from hierarchical clustering are commonly summarized
using a dendrogram, a tree-like structure that displays how the ele-
ments are partitioned into groups based on the computed similarity and
linkage functions [36,37]. We construct such a dendrogram as de-
scribed further below.

Fig. 6. An illustration of the involvement
vectors v constructed for Patient #14 and
Patient #245. (a) The vectors v constructed
for the spatial similarity measure. (b) The
vectors v constructed for the nonspatial mea-
sure. Note that the spatial vectors (a) include
bigrams, and thus spatial structure, while the
nonspatial vectors (b) do not.
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2.7. Statistical analysis

The patient groupings were further compared using the Rand Index
[38] to determine the measure of similarity between the two measures’
(spatial and nonspatial) clustering output. This measure quantifies the
number of pairing agreements between two clusters into a frequency
between 0.0 and 1.0, where a value of 0.0 indicates that the clusterings
disagree on every pairing of samples and a value of 1.0 indicates that
both clusterings are the same. Additionally, the Fisher’s exact test [39]
was performed on the spatial clustering to assess correlation with
toxicity, as described in detail in our results. Statistical tests were
performed using the Matlab 2018a statistical toolbox [35].

2.8. Visual analysis

To facilitate the assessment of our approach by clinicians, we have
constructed an application to help interpret the abstracted nodal in-
volvement of each patient in the cohort in the context of the computed
similarity between patients. The visual interface (Fig. 7) consists of
small multiple representations of the abstract topological map (Fig. 2
Right), and control menus which allow a specific patient to be selected
and viewed. To keep the representations compact, only one side of the
head and neck was abstracted; color was used to distinguish between
left (green), right (purple), and bilateral (blue) involvement. The visual
interface was implemented using the web technologies JavaScript,
HTML, CSS, and the D3 [40] Javascript library.

To further convey the patient clustering and statistical analysis re-
sults, we created an additional informational dendrogram (Fig. 10). The
dendrogram shows a tree structure that captures the paths through

which smaller clusters are merged, during hierarchical clustering, into
the =k 6 final clusters. The tree root corresponds to the entire dataset
of 582 patients, whereas branches shown underneath the root corre-
spond to the clusters formed through hierarchical clustering, and leaves
at the lower-level of the tree diagram correspond to the smallest sub-
clusters considered. The resulting six groups G1-G6 of patients
(227 + 174 + 28 + 77 + 51 + 25 = 582 patients) are highlighted in
color, along with their contributing subclusters. Toxicity statistics,
along with the patient count, are displayed as minitables atop each of
the six groups. An orange background in the minitable cells indicates
significant correlation with specific toxicities.

Because the clustering and statistical analysis are performed over
the entire dataset, and clusters often include similar, but not identical
patient patterns, it is not possible to illustrate the dendrogram clusters,
in the same view, with graph representations for every single patient in
that cluster, in the style of the topological map visual abstraction de-
scribed earlier (Fig. 2 Right). Instead, we created a thumbnail variation
of the topological representation, based on the consensus nodal in-
volvement of the patients within each subcluster (Fig. 8). This re-
presentation was derived and illustrated by considering the frequent
patterns within each subcluster, as well as the less common patterns
within the subcluster. First, the most frequently occurring involvement
pattern for each subcluster was determined based on the consensus
nodal spread in that subcluster. The consensus was determined based
on a two-thirds majority involvement status (i.e., a LN level is included
in the graph if 67% of the patients within that subcluster share that
involvement). Next, we determined the nodes affected in less than 67%
of the patients in that subcluster. We then encoded this information
visually as follows: the thumbnail consensus graphs are a variation of

Fig. 7. Example similarity ranking. Patient #14 (shown top left) is unique within the cohort, in that no other patient in the 582 patient cohort exhibits the same ten
bilateral LN levels and RP involvement. Following Patient #14 are the seven closest-ranked patients (shown in left-right and top-down order) based on our spatial
similarity measure. The two most similar patients share eight bilaterally involved LN levels; the next two have similar bilateral chains but either share fewer involved
LN levels (Patient #10128) or possess two additional involved LN levels (Patient #84); while the last three similar patients have similar involvements but with
significantly fewer LNs levels.
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the previously described graph representations (purple for the right side
of the head and neck, green for the left, while accounting for symmetric
matches). In this new representation, solid and outlined nodes are
consensus nodes, affected in more than 67% of the patients in that
cluster, while square marks indicate nodes affected in less than 67% of
the patients in that cluster. Because overlapping color information is
hard to read at miniature scale, unilateral involvement on only one side
of the head and neck is shown by a single consensus graph, while bi-
lateral involvement is shown by two stacked miniature graphs, one for
each side of the head and neck. One such miniature graph structure is
shown for each subcluster, along the X-axis of the dendrogram re-
presentation. We note that the miniature consensus graphs do not
provide a complete descriptor of cluster membership.

3. Results

Because there is no other established computing methodology based
on spatial information for assessing LN similarity, we demonstrate the
merits of our approach using a hybrid quantitative and qualitative
scheme, using real data. This scheme is further informed by the large
nature of the dataset, which exceeds in scale the manual capabilities of
human domain experts; and by its large number of unique and partially-
matching spread patterns, which would be difficult to replicate via si-
mulation. Under this scheme, we first demonstrate, in conjunction with
clinician feedback, our method’s ability to correctly discriminate pa-
tients, and we contrast this ability against a nonspatial approach. Next,
we quantitatively examine the overlap between the discriminative
ability of the spatial and of the nonspatial approach. We then examine
quantitatively the structure of patient groupings generated by our
method, and show its ability to identify groups of patients that have an
increased risk of developing one or both of two known toxicities. Last,
we report on the technical performance of our method.

3.1. Spatial vs. nonspatial patient discrimination

We used our spatial method to group the 582 patient dataset into six
clusters ( =k 6), as earlier described. We then used the nonspatial (ca-
tegorical) approach to also group the dataset into six clusters. Since
physician-based assessment was the only other existing approach for
spatial LN similarity detection, a group of four radiation oncologists, all
with head and neck expertise, assessed the ability of the two approaches
to correctly discriminate patients. In particular, the domain experts
examined in detail the pairs of patients that had been, incorrectly in
their opinion, deemed similar by the nonspatial approach, and endorsed
their discrimination into different clusters by the spatial approach.
Similarly, they examined non-trivial sets of patients clustered together
by the spatial approach, and again endorsed the result. We reproduce
below and in Fig. 9 one such example of a detailed analysis.

Detailed case analysis: Fig. 9 shows a case analysis that is a re-
presentative example of the value of spatial-measure over the non-
spatial measure. Shown are two patients that have drastically geome-
trically different LN level involvements. The spatial approach
successfully discriminates between these patients (Fig. 9, bottom left).
In contrast, the nonspatial approach erroneously bins together these
patients (Fig. 9, bottom right). During the case analysis, the oncologists
noted that Patient A possesses a bilateral involvement (gray-blue), as
well as a LN level 3 unilateral involvement (green). Involvement of
level 3 implies potential radiation dose to laryngeal structures and is
thus a potentially meaningful correlate of radiation-associated sequelae
[41]. Likewise, RP node positivity implies potential radiation dose to
the superior pharyngeal constrictor muscle, which is atypical, and has
the potential for specific toxicity discrimination [42]. While beyond the
scope of this work, this hypothesis should be explored in a future study.
In the clinicians’ assessment, these are important distinctions, given
prior data that shows differential swallowing toxicity as a function of
superior pharyngeal constrictor versus cricopharyngeus muscles
[43,44]. Furthermore, in the spatial measure, Patient A was also

Fig. 8. Miniature consensus graph pairs for two
subclusters. In this new representation, solid and
outlined nodes are consensus nodes, affected in
more than 67% of the patients in that subcluster.
Square marks indicate nodes affected in less than
67% of the patients in that subcluster. Unilateral
involvement is shown by a single consensus graph
(purple), while other-side involvement (green) is
indicated by an additional miniature graph stacked
underneath. (For interpretation of the references to
color in this figure legend, the reader is referred to
the web version of this article.)
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clustered together with other patients that have node 3 involvement,
while Patient B was clustered together with no other patients that have
node 3 involvement. Conversely, Patient B was primarily clustered to-
gether with patients with RP involvement (67% with RP involvement),
while Patient A was not (16% with RP involvement).

During the evaluation process, the clinicians further noted that it is
common practice to delineate patient groups based on bilateral in-
volvements and the nodal spread between LN levels 2 and 3. Of the two
approaches to group patients based on their lymphatic nodal spread,
the clinicians indicated that the spatial similarity measure, which in-
herently separated patients between uni- and bilateral involvements as
well as the LN level 2 and 3 nodal spread, most closely represented
what is expected in a clinical setting. Due to the multiple instances of
incorrect binning in the nonspatial approach, the clinicians did not
recommend the further use of the nonspatial approach.

3.2. Hierarchical clustering analysis

In sum, our spatial approach was able to successfully discriminate
patients based on spatial involvement in cases where the nonspatial
approach failed. For example (Fig. 10 bottom rows), the spatial mea-
sure was able to discriminate between patients with significant bilateral
spread and patients with no or light bilateral node involvement by
placing them into separate cohorts. The spatial measure also dis-
criminated between specific node involvement versus no involvement,
regardless of pattern spread complexity. Consequently, this approach
allowed for binning of patients in cohorts that were deemed by clin-
icians and end-users (co-authors CDF, HE, BE, AM) significantly more
informative than nonspatial binning. In addition to comparing patients
of the cohort, the clinicians also identified several patients whose LN
levels had been previously mislabeled in the dataset due to segmenta-
tion or data processing pipeline errors.

Fig. 10 displays the informational dendrogram resulting from pa-
tient binning using the spatial measure. Miniature graphs along the
bottom axis indicate the most common patterns present in each sub-
cluster. In this dendrogram, we identified three large distinct categories
by focusing on the miniature graph representations shown on the

bottom. First, the branching that separates groups G2-G4 from G5, also
partitions the cohort according to the degree of involvement laterality:
groups G1-G3 consist of patients with no or light bilateral involvement,
groups G4 and G5 of patients with significant bilateral involvement or
extremely heavy unilateral involvement, and group G6 of patients with
unique (singular to the cohort) nodal involvement. Next, the branching
that separates groups G3 and G4, also discriminates based on LN level 3
involvement. The branching also separates the groups with no LN 3
involvement (G1, G3) from the remaining groups.

In contrast, and as discussed in detail in Section 3.1 above, the
nonspatial approach failed to capture a meaningful demarcation be-
tween LN level 2 and level 3 involvement, as well as patterns of bi-
lateral involvement. Because the nonspatial binnings were proven in-
correct above (Section 3.1), whereas the miniature consensus graphs in
our informational dendrogram do not provide a complete descriptor of
cluster membership (as discussed in Section 2.8), constructing and re-
porting an equivalent informational dendrogram based on nonspatial
information only is not justified.

Measure Agreement: In terms of agreement between the spatial
and nonspatial approaches, we identified two identical groups between
the spatial- and nonspatial-approach clusterings (G1 and G6). While
these two groups represent 43% (252 patients) of the cohort, the con-
sensus nodal involvements in each are also the simplest patterns in the
cohort. For example, all 227 patients in both G1 groups possess a uni-
lateral LN level 2 involvement, and no other node levels are involved.
Similarly, the G6 patients do not have LN level 2 involvement.
Furthermore, G6 groups together all the 25 unique LN level involve-
ment patients in the cohort. Outside of these two groups, the non-
spatial-approach did not have the discriminatory value of the spatial
approach advocated in this paper.

After removing the two groups G1 and G6 from each of the clus-
terings, the computed Rand index between the spatial and the non-
spatial results was a similarity measure of 55%. This value indicates
that outside of the two groups G1 and G6 of simple patterns, the two
approaches are significantly dissimilar in terms of how they group the
patients within the cohort.

Fig. 9. Two example subjects with different groupings based on the similarity measure. Patient A (top left) possesses a bilateral nodal spread with LN level 3
involvement while Patient B (top right) only possesses a unilateral nodal spread with LN level 3 involvement. Because the spatial measure uses the geometrically
different nodal involvement, it separates Patient A and B into the two main clusters, G3 and G5 (bottom left). In contrast, the nonspatial measure combines the two
patients under the same main cluster, G4 (bottom right). Shown along the bottom of the X-axis are the miniature consensus graphs for the corresponding subclusters.
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3.3. Statistical analysis results

We use Fisher’s exact test to compute and analyze the frequencies of
toxicity outcomes in the different patient groups that were identified
through the spatial-measure based clustering. To this end, we used two
toxicity binary variables (Y/N) provided with the cohort: the post-
treatment aspiration symptoms, and feeding-tube necessity at six-
months. We chose the more computationally-expensive Fisher’s exact
test over a standard Chi-squared test because the high variation of
nodal involvement patterns within the cohort yields small numbers of
expected values within each group. Whereas when using Chi-squared
the number of expected values for each group should be at least 5, to
guarantee the significance of the p-value (otherwise a small p-value
could be in fact not significant), Fisher’s exact test works well on small
numbers of samples.

The null hypothesis under the test is that there is no difference in
the proportion of toxicity outcomes (feeding tube and aspiration rate)
between the different patient groups. Statistical significance is reported
assuming a level of <p 0.01. We note that because the nonspatial
binnings are proven incorrect in Section 3.1, and because p-value
testing does not capture strength of correlation, reporting an equivalent
p-value analysis based on nonspatial information would be incorrect.
The spatial-measure groups’ p-values for feeding tube (FT) placement
and aspiration rate (AR) were =p 0.0004 and =p 0.0003, respectively.
The small p-values provide evidence to reject the null hypothesis,
concluding that there is a statistically significant correlation between
the patient groups and the toxicity outcomes.

Moreover, the odds ratio computed for the different patient groups
also shows a strong association with the toxicity outcomes (Table 2).
The odds ratio is defined as the ratio between the odds of having the
toxicity outcome when the patient belongs to a group, and having the

toxicity when the patient does not belong to the group. An odds ratio of
1 means the probability of having the toxicity is independent of the
group membership. In terms of the toxicological outcomes, for FT, the
spatial measure was able to identify two cohorts (G4, G5) with almost
double the outcome incidence compared to the other four (G1-G3, G6).
G4 and G5 had FT placement rates of 27.3% and 33.3%, respectively,
while G1-G3 and G6 had rates less than or equal to 17.9%. The FT odds
ratio for patients in G4 and G5 is 2.04 and 2.74, respectively. This
means that patients in G4 and G5 are 2.04 and 2.74 times more likely
on average to require feeding-tube at six-months. Additionally, the
spatial measure identified one group (G5) with more than double the
aspiration rate (41.2%) compared to the other five groups (with odds
ratio 3.864). Patients in G5 are on average about 4 times more likely to
develop post-treatment aspiration symptoms than other patients.

Performance: We performed all computation on a 4.0 GHz Quad
Core i7 machine with 32G of RAM. The average runtime to compute the
similarity on the cohort of 582 patients was approximately 90 s per

Fig. 10. Hierarchical clustering showing k = 6 patient spatial groups (yellow, pink, green, blue, gray, and brown), along with their toxicity correlates (mini-tables).
Orange in a mini-table indicates statistically significant correlation between that group and feeding tube (F.T.) and/or aspiration (Asp) toxicities. Colored branches
indicate the hierarchical clusters contributing to each of the six groups. Miniature consensus graphs along the x-axis further illustrate the sub-types present among the
patients in each group. Clear distinctions are apparent, for example, between patients with bilateral vs. unilateral nodal spread (G4 and G3), or between patients with
vs. without LN level 3 involvement (G4 and G5). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
article.)

Table 2
Toxicity Outcome Distributions of the Spatial-Measure Groups.

Feeding Tube Placement Aspiration

Group Patients W/ outcome % W/outcome W/outcome % W/outcome

G1 227 24 10.6% 27 11.9%
G2 174 31 17.9% 28 16.1%
G3 28 3 10.7% 4 14.3%
G4 77 21 27.3% 14 18.1%
G5 51 17 33.3% 21 41.2%
G6 25 3 12.0% 2 8.0%

Total 582 99 17.0% 96 16.5%
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similarity measure. The hierarchical clustering and statistical analysis
averaged 45 s to partition the patients into groups, compute the Chi-
squared and Fisher’s exact test, and output the statistics and dendro-
gram per measure.

4. Discussion

The spatial approach we introduced in this methods paper captures
and ranks patients, based on their LN disease spread, correctly and
more clinically accurately compared to the nonspatial (categorical)
approach. Furthermore, we have shown that our novel graph-based
similarity measure partitions an OPC patient cohort into clinically
meaningful groups. In particular, we have shown that our spatial ap-
proach can capture groups of patients more susceptible to dysphagia
toxicity (aspiration and feeding tube) based on the pattern of nodal
involvement. Qualitative feedback from repeated evaluation with our
collaborating clinicians further emphasized the usefulness of this ap-
proach. When presented with the informational dendrogram (Fig. 10,
the most senior clinician (CDF) stated that he felt confident he could
take the visualization back to his clinic that day and use it when de-
scribing the potential outcome risks alongside proposed treatment plans
to his patients. Our analysis of results and the domain expert feedback
support our claim that spatial correlates can provide insight into
therapy strategies where treatment depends on the spatial patterns of
disease, such as intensity-modulated radiation therapy for HNSCC.

We note that our results report clusters of patients that are strongly
correlated with two specific outcomes. We emphasize that our method
does not use the outcome information in any way to generate these
clusters: the only input to our method is the LN disease spread.
However, and whereas beyond the scope of this methods paper, the
exploration of additional toxicities is a promising direction of future
work.

In this work, we furthermore employed a Tanimoto coefficient to
quantify similarity, once we constructed our feature vectors. Other
coefficients may apply to variants of our problem—for example, si-
tuations that do not involve symmetry and thus do not result in non-
binary vectors. We note that, whereas the exact distance coefficient
used has little impact on patient rankings [24], in contrast, the spatial
information we incorporate provides a mechanism to boost the simi-
larity of connected components, and allows to differentiate patients
with isolated node involvements.

In terms of limitations, our approach notes but does not explicitly
incorporate into the similarity measure, the tumor location with respect
to the lymph-structures (which is typically upstream in the head and
neck). Other clinical applications may feature higher variability in the
tumor location, and in those cases, the location of the tumor may need
to be explicitly incorporated into the similarity measure. Next, we note
that our evaluation was limited to one moderately sized cohort of pa-
tients. Many of these patients were referrals whose data was collected
outside of the treatment facility. As a result, a significant amount of
time spent working with this cohort was spent cleansing the data of
malformed classifications. Furthermore, our expert feedback was lim-
ited to radiation oncology clinicians who were all members of the same
clinical lab. Last but not least, our approach is constructed around a 2D
graph representation that takes advantage of the symmetry about one of
the principal axes of the structural model. While this approach is ideal
for domains where symmetry is inherently built into the model (e.g.,
symmetry about the head and neck), it may also be easily extended to
non-symmetric situations. In contrast, extending this approach to si-
tuations where 3D location is important would require modifications to
the underlying graph representations and similarity measure.

Last but not least, while the end goal of precision medicine is per-
sonalized risk prediction and classification based on big data re-
positories, reaching that goal requires methods for assessing patient
similarity, such as the method introduced in this paper. Our method
effectively reduces complex spatial similarity to a single label, that can

be used to quantify this aspect of patient similarity. We see this LN
similarity method as complementary to, not competing with, radiomics
similarity and genetic similarity methods [45–48]. Our similarity
measure captures one of the many features that can be used in therapy
response-driven decisions and predictive outcome models. While toxi-
city is heavily predicated on the relationship between the spatial lo-
cation of involvement and the administered radiation dose, many
therapy outcomes and side-effects result from other nonspatial features.
A direction of future research, while beyond the scope of this work,
would be to combine our spatial similarity scores with other relevant
nonspatial features, such as genomics, radiomics, T-Category or patient
age [49], to create a more semantically meaningful view of the patient
regarding treatment response and survival. Similarly, while beyond the
scope of a methods paper, an analysis of survival outcomes in-
corporating the spatial information, respectively the exploration of the
mechanistic connections between specific toxicities and the clusters
produced through this method, are important directions of future work.

5. Conclusion

In conclusion, we have introduced and evaluated a novel metho-
dology to compare head and neck cancer patients based on their spatial
patterns of LN involvement. Our approach demonstrates how the spa-
tial location and neighborhood of the head and neck LN levels can be
abstracted to a 2D topological representation, which can then be used
to quantify similarity within a cohort of patients based on their ex-
tracted spatial attributes. This work also contributes two novel visual
representations that provide clinicians with response-based correlates
within the ranked cohort. Statistical analysis and expert feedback in-
dicate that our spatial methodology can be useful in clinical settings.
Furthermore, we show that our spatial methodology provides superior
patient similarity and groupings in terms of clinical relevance when
compared to the nonspatial (categorical) approach.

In an effort to make the application of this method more accessible,
we also provide, in a public repository (http://github.com/uic-evl/
LymphaticCancerViz/), our source code for computing and visualizing
LN similarity. Whereas obviously there will be differences between
different datasets and problems, we hope that knowing how to imple-
ment this method in one problem instance might help the reader more
easily transfer that knowledge to another problem. The presented
methodology may find application beyond the 2D head and neck lymph
node analysis in other domains that feature topological structures.

Few, if any, studies have attempted to use spatial-similarity tech-
niques to compare post-diagnosis patients and ”close the gap between
mere data and useful knowledge, as desired in current Precision
Medicine” [32]. Moving forward, we aim to integrate our proposed
measure into a risk-prediction model. We believe that when applied to
spatially-driven diseases such as OPC, approaches such as ours can play
a vital role in fulfilling precision medicine’s goal of maximizing the
effectiveness of each patient’s treatment through customized care [50].
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