A UNIFIED AND COLLABORATIVE APPROACH FOR ANALYZING

NETWORKS

BY

NAVEEN KUMAR KRISHNAPRASAD
B.E., Instrumentation and Control Engineering, University of Madras, Madras, India, 1998

TIHESIS

Submitted as partial fulfillment of the requirements
for the degree of Master of Science in Computer Science
in the Graduate College of the
University of Illinois at Chicago, 2001

Chicago, linois

Copyright by
Naveen Kumar Krishnaprasad

2001

To my parents,

Chandrika Prasad and

Krishnaprasad

iii

ACKNOWLEDGMENTS

I would like to start by thanking Jason Leigh for accepting me as a RA at EVL and at the
same time, Satheesh Ganapathy for recommending me to him, because coming into EVL has
been probably the most important thing that has happenned to me.

I am extremely thankful to my thesis committee - Andrew Johnson, Tom Defanti and Jason
Leigh, for their non-stop support and faith in me, always believing that I would make it here,
inspite of all the deadlines. I would also like to thank all the EVL staff and co-workers who
have, and continue, to make this a great place to work.

In all the time I worked on this thesis, I had some continuous support flowing in from
a bunch of people around me. In particular I thank, Brenda Silva for her artistic inputs into
uCAN, Alan Verlo for spending late nights and always trying to make sure the networks worked
for me, Lance Long for helping me out with the systems issues 1 had all along, Rajvikram Singh
and Vivek Rajan for their help in setting up the final experiment, Shashank Khanvilkar and
Kothonuzo Luruo for their valuable suggestions as network experts, and all the members of the
CAVERN group who have lent their hand at every point.

I also thank Satheesh and Vivek for being great companions at EVL in times ranging from late
night conversations to tight debugging situations.

I am grateful to my roommates for being there to understand and support me through many
tough times during my masters and making my stay here as wonderful as it was.

Being a mentor is role that takes considerable effort and devotion. I am indebted, and will

always owe a good portion of any future success to Jason, for being one.

v

ACKNOWLEDGMENTS (Continued)

I finally dedicate these last few months of my cfforts and whatever good that might turn

out of it, to my family, who have tolerated, pushed and moulded me all my life.

NKK

TABLE OF CONTENTS

CHAPTER PAGE
1 INTRODUCTION. i e 1
1.1 Collaboratories i 2
2 RELATED WORK AND ANALYSIS 3
21 Network Analysis -Tools and Sytems 3
2.1.1 Data Collection from Network Devices 3
2.1.2 Active Measurement Lo oo o oL 5
213 Passive measurement and monitoring 6
214 Network Visualization 000, 6
2.1.5 Application Performance Monitoring 7
2.2 Analysis 8
221 Lessonslearnt Lo o o 8
2.2.2 The Missing Pieces 9
2221 The Case for Unified Analysis 9
2222 The Case for Collaboration 11

3 THE VISION OF A UNIFIED AND COLLABORATIVE AP-
PROACH 14
3.1 The proposal L. o e 14
3.1.1 Why a Unified Approach 14
3.1.2 Why a Collaborative Approach 15
3.2 A High level Description of Framework Required 17
3.2.1 The objectives of an event reflector 17
3.2.2 The Framework for Event Reflection 18
3.3 Defining the Requirements for Collaboration 20
3.3.1 Sharing Interfaces o 0. 21

4 CAPTURING APPLICATION AND NETWORK STATE IN-
FORMATION et e e s e e e 25
4.1 Application Performance Monitoring 25
4.1.1 The Objectives o i e 25
4.1.2 Instrumentation: What is Measured 26
4.1.3 The Architecture 28
4.1.4 Visualizing Performance - QoSIMoTo 28
4.2 A Framework for Active Testing 30
4.2.1 The Objectives o i e 31
4.2.2 Pieces of the Framework 32
4.3 Ubiquitous Network Management 34
4.3.1 The Objectives i 35
4.3.2 What can be Obtained 35

vi

TABLE OF CONTENTS (Continued)

CHAPTER PAGE
4.3.3 Ubiquitous SNMP Query o000 oo oo 37
4.4 SUMMATY v o o o s e e e e e e e e e e e e e 39
5 COLLABORATING IN A VIRTUAL WORKSPACE 41
5.1 Building Collaborative Interfaces 41

5.1.1 Networking and Database Architecture for Event Sharing -
Implementation, 42
5.1.2 Event Handling, A Subject-Obscrver Design Pattern 45
5.2 Implementing Roles for Control in Collaboration 48
5.2.1 Implementation 0 0oL, 49
5.3 Building a New Shared Interface 51
5.4 SUMIMATY .« ¢ o v o e e et e e e e e 53
6 AN EXTENDABLE UNIFIED COLLABORATORY 54
6.1 Unification of tools: The Event Reflector. 54
6.1.1 Some API's 54
6.2 Joining the pieces for a collaborative session. 55
6.2.1 The Objectives i i e 55
6.2.2 The Connection Manager 55
6.3 Moulding into a Collaboratory 58
6.3.1 Writing DSO’s -Some API’'stoUse 58
6.4 Results and Analysis 61
6.4.1 Anexperiment 61
6.4.2 Analysis L 63
6.5 SUMMAary o v e e e 65
7 CONCLUSION AND FUTURE WORK 68
7.1 Conclusion o 68
7.1.1 Contributions L e 68
7.2 The Future 70
CITED LITERATURE 72
VITA . 76

vii

LIST OF FIGURES

FIGURE PAGE
1 The lessons learnt from past experience and the basis for a new analysis

700 10
2 The wCAN main menu. Conveying that, -u-can monitor an applica-

tion for its performance, test the network to verify network conditions,
manage your network and collaborate with others to analyze problems
better. o e e 18

3 The diagram shows clearly how the events might be used and sent by
processes. Events can also be sent from tests, snmp graphs and other
network monitors to applications to indicate some significant changes in
network state e e e 19

4 The graph in the diagram shows two type of points. The red points on
the graph indicate data values of bandwidth for the netperf test. The
green points on the graph represent events reflected. For example, In
this case, the first green point refers to an event sent from an snmp
interface when there was packet drop in the router. 20

5 The figure the basic idea behind a shared uscr interface in a collaborative
session. Apart from local events, handles have to be written that uses
high level events as recorded in user callbacks and handle events for

interfaces on remote machineso 0 0000 e 22
6 The figure shows an interface for snmp queries being shared with a re-

mote user. The shareView can be toggled to share updates with others

0 17 23
7 The figure shows the remote interface that appears for other users, when

the query interface in Figure 6 is shared. The updates occur as is seen on
the original interface. The user can also request control! from the owner

of the interface. e 24
8 The methodology for performance data collection and analysis. Any

number of analysis and visualization clients can connect to the perfor-

mance daemon and get the performance data gathered from applications. 29
9 The diagram shows the configuration interface for QoSIMoto. The lo-

cation of the performance daemon, the logfile, the size of visualization
and the axis parameters are the variables that can be controlled. . . . 30

viii

FIGURE

10

11

12

13

14

15

16

17

18

19

LIST OF FIGURES (Continued)

QoSiMoto’s 3D visualization of performance obtained by instrumenting
a tele-immersion server with multiple streams, which can be visualized
at the same time, leveraging 3D. The latency of each stream is plotted
against time, while color is used to represent jitter

The framework for testing - once a test is initiated, a test logger process
is started to log and visualize the test. The test daemon executes the
specified test on the test bed that should be preset. The results are sent
toall clients e

Figure showing a netperf test between two machines. The test can be
configured using the interface. The test graph shows a plot in real time
as the netperf test is executed on a remote test daemon.

The framework for SNMP Qucrics. Query clicnts can be on any machinc
and the actual query is made by the uCAN SNMP Query Daemon, which
is transparent to the user.

The interface for making SNMP queries. The system description is being
queried (query submitted with a single click on the variable) The Query
interface itself can be used on any machine to query any other machine
on the network. Queries are bridged through a query dameon. The
interface shows a sample set of queries for MIB-2 variables.

The networking and databasc framework for cvent sharing -the updatces
in each widget from an interface in control(an event client), is reflected
to other clients, through the event server

Algorithm explaining the implementation of the event server in a collab-
Orative SESSIOM e e e e e e e

The cvent handler and cvent clicnt arc implemented using the subject-
observer design pattern. A new event read by the event client automat-
ically triggers the update() call of each observer(event handler)

The diagram describing the lookup table in a event handler and how
updates are done whe new data comes in to the client

A control flow diagram represented as cvents - two clicnts arc represented
and both control denial and grant cases are shown. In the diagram, the
two states - IN.CONTROL and NOT_IN_CONTROL are activated after
the corresponding message reaches the client.

ix

PAGE

31

32

34

39

40

43

45

46

47

50

FIGURE

20

21

22

23

24

25

26

27

LIST OF FIGURES (Continued)

The figurc shows a request from the uscr on the right to the owner of
the interface(left), for granting control. The owner will lose control once
he grants control to the remote user

The figure shows the grant of control to the remote user. The remote
user is in full control over the interface and can perform operations as he
can from his own interface. The owner can override control at anytime.

The diagram explains how a collaborative session is managed with the
help of a connection manager. Once the user logs into a new session,
information about the session is transmitted to all his internal operations
-so that each interface can connect itself to the session

The figure shows a login interface, which is used to enter a collaborative
scssion. The uscrs can conference using the whitcboard. Once a col-
laboration session is started, all other processes get updated about the
session information. Lo L e e

The configuration interface shows how a new test can be added or an
existing test can be reconfigured. The configuration is saved for future
sessions. The user can either run a script or have the tool start another
executable for his own interface. DSO names of the test are used to refer
to the test. In this interface, the Netperf test has to be implemented in
a Netperf.s0. e e e e e

The figure shows a qosimoto visualization, with the configuration inter-
face in uCAN, visualizing two different streams used in the experiment.
Latency(seconds) is plotted versus time(in seconds) with the two streams
along the Z-axis. Color is used to represent jitter. As traffic conditions
on the router changed, the latency showed a sharp rise in the streams

as SHOWIL. e e e e e e e e e

The connection interface - an user logs into a collaborative session to
collaborate with a network manager to ’borrow’ some information about
incoming traffic related to his host machine

The network manager situated remotely brings up a graph to monitor
traffic inflow at the interface to which the user’s host is connected. The
graph shows a plot of pereentage increasc in the bandwidth (the percent-
age of the new input octets with respect to the total number of octets
at the interface) versus time. The query interface is controlled by the
manager here, while the results of the query can be seen by both of
them. The bandwidth rise showed a sharp increase, when traffic was
first introduced and the SNMP database was updated.

PAGE

51

52

56

57

59

62

64

66

LIST OF FIGURES (Continued)
FIGURE PAGE

28 The uscr then requests the nctwork manager control over the SNMP
query interface to make his own query to find out possible areas from
which traffic might arise from. The Figure shows that the user is in now
in control and has started a SNMP monitor on output traflic from turing
- the sender in the experiment. A comparison with traffic patterns in
laurel indicated that there could be a possible mapping between the two 67

29 Comparison with other approaches for Analyzing Networks, the relative
strengths and drawbacks and some missing criteria. The rows of the
table show the various approaches and the columns of the table show
the criteria of comparison.o o i e 69

xi

uCAN

CAVE

QOS

QoSIMoTo

SNMP

EVL

NLANR

CAIDA

MUD

CAVERN

API

DSO

NIMI

ATM

ULM

VNC

IP

LIST OF ABBREVIATIONS

Unified Collaboratory for Analyzing Networks

CAVE Automatic Virtual Environment

Quality Of Service

Quality Of Service Internet Monitoring Tool

Simple Network Management Protocol

Electronic Visualization Laboratory

National Laboratory for Applied Network Research

Cooperative Association for Internet Data

Analysis

Multi-User Domain

CAVE Research Network

Application Programmers’ Interface

Dynamic Shared Object

National Internet Measurement Infrastructure

Asynchronous Transfer Mode

Universal Logger Format

Virtual Network Computing

Internet Protocol

xii

SUMMARY

Analyzing fast-growing networks involves considerable complexity, with the number of net-
worked applications increasing exponentially. Existing techniques to analyze networks make
use of network data collection, measurement and visualization to understand the state of net-
works. However, performance problems in networks may be caused by specific interactions from
applications, which may or may not be running within a local network controlled by one net-
work manager. This calls for two primary capabilities not addressed by traditional approaches.
Network state information has to be first viewed and understood in the context of performance
of applications. In addition, the information that can thus be obtained has to be shared with
other remotely situated network managers, hence taking advantage of group collaboration to
accelerate problem solving. Working towards this goal, this thesis proposes an extendable,
unificd and collaborative approach for analyzing networks

The approach first proposes ubiquitous access to run active tests between machines on
a network and basic network management queries, using the Simple Network Management
Protocol(SNMP). A unified framework designed using a centralized server, allows simultaneous
analysis through message passing between processes that monitor the results of a network
test, and processes that monitor changes in a Management Information Base(MIB) entry of
any network device. The framework also allows any new application written, to connect to
the same centralized event server used, and send event messages concerning specific, possibly
undesirable, conditions reached while execution.

The unified framework is complemented and merged with a collaborative framework to

enable network managers to log-on to a group session and share the interfaces that control

xiii

SUMMARY (Continued)

the network operations. Users can view results of operations initiated by others and also
request control of interfaces that they see, to conduct their own tests on test-beds of other
users in the session. The thesis demonstrates the result of such a unified and collaborative
approach proposed by introducing a new type of network analysis tool called UCAN (Unified
Collaboratory for Analyzing Networks) implementing the capabilities described.

UCAN (or uCAN) employs a three-dimensional visualization tool to analyze network per-
formance of applications. A generic, configurable two-dimensional graphic visualizer is provided
to monitor active tests and changes in MIB infomation using SNMP. uCAN also contributcs
utilities implemented as a reusable set of C++ classes built over the CAVERNsoft high perfor-
mance networking toolkit(1) and the FLTK user interface library(2). The utilities are designed
to facilitate building new interfaces that can be shared in a group session as described above.
The goal is to help fit in new tools into the collabratory and give network administrators and

uscrs, a morc complete view of an entire network.

xiv

CHAPTER 1

INTRODUCTION

Analysis: "The resolution or breaking up of anything complex into its various simple ele-

ments; the exact determination of the elements or components of anything complex”
- The Oxford English Dictionary

Revisiting this familiar definition of analysis gives an intuitive introduction to the context
of analyzing networks. Networks are made of several components which interact and shape
the performance of end applications that usc it. The packets and strcams that come out of
an application travel a path riden by routers, hosts, switches, fiber and cables, crossing other
subnetworks on the way to the destination. These components are managed by network man-
agers and administrators of the corresponding domains. Hence, understanding and debugging
network performance problems in applications requires an understanding what the networks,
with all its components, does to the application. This has to be done by first measuring the
network performance in an application in terms of standard parameters like bandwidth, delay,
jitter and packet loss and then testing the network for those parameters.

Testing can be done by introducing new traffic to measure the network or using a portion
of the existing traffic. Though testing helps to measure and verify results from a network, a
large network cannot be managed by frequent human intervention, whenever problems occur,
with many applications running at the same time. Hence automated network management
becomes a necessary part of maintaining networks. Network management involves collection

of data from devices on the networks like routers, switches and hosts and defining automated

1

responses to the state information obtained from the data. In cascs of big networks, detection of
a bottleneck may not be entirely within the domain of a single network manager. In such cases,
there is a need for communicating results of network tests and interpretations to others involved.
Analyzing networks, therefore, has to be discussed in the context of all the components in a
network and also the above techniques and issues involved in measuring and understanding

networks.

1.1 Collaboratories

Collaboratories are defined(3) as systems that create integrated tool-oriented computing
and communication systems to support scientific collaboration. The main goal of collaboratory
projects has been to make use of communication and computational technologics to support
collaboration and thus enhance contributions to technology. In line with this goal, this thesis
also aims to explore the use of an integrated collaboratory of tools required for analyzing
networks.

To explain the context of the thesis, the advantages and disadvantages of existing techniques
and systems, and the need for a different approach are first discussed. The approach and the
initial big picture are provided in chapter 3. Chapters 4 and 5 that follow, describe the approach
in detail, in terms of the objectives and the design required to meet the objectives. Chapter 6
gives some sample results to demonstrate the usefulness of uCAN and describes the direction to
work towards building a framework that helps to fit in other new network tools for collaborative

analysis.

CHAPTER 2

RELATED WORK AND ANALYSIS

2.1 Network Analysis -Tools and Sytems

A number of network analysis systems and tools have been built in the past, using different
approaches to measure and monitor networks. To understand and analyze them better, they

should be classified broadly according to the methods they employ, namely,

1. Data Collection from Network Devices

2. Active Measurement

3. Passive Measurement

4. Network Visualization

5. Application Performance Monitoring

2.1.1 Data Collection from Network Devices

Collecting data from routers, hosts and other network devices is one of the least expensive
and convenient methods of network analysis, since it uses existing equipment in a network and
can be done by anyone.

SNMP is one of the most commonly used protocol to exchange management information
between devices on the network. Several commerical and free tools have been developed that
use SNMP and provide user interfaces and programming libraries that are simple to use. Open-

View(4) by Hewlett Packard is a network management and monitoring tool that does real-time

mcasurcment and non-rcaltime data collection. It can also detect abnormal network cvents and
indicate through alarms to the user, along with providing user defined automated responses
to such events. Comparable to HP’s OpenView in the Network Management category is Cis-
coWorks(5) by Cisco Systems. CiscoWorks has a bunch of tools including a real time fault
detection manager and a flow traffic analyzer. It also provides low-level control of networks and
allows network administrators to set Quality of Service (QoS) parameters to analyze traffic-
shaping and performance. There are also plenty of public domain SNMP libraries and related
network monitoring software, a list of which can be referred on (6) and (7). Some popular SNMP
libraries are Scotty(8), the Multi Router Traffic Grapher (MRTG)(9) and the NET-SNMP(10)
software libraries.

Although SNMP is a convenient way of network management, there is a compromise on
the information about the individual flows in the traffic. Another standard called NetFlow(11),
Cisco’s technology for collecting router data, provides the metering base for a varicty of ap-
plications including network traffic accounting, usage-based network billing, network planning,
network monitoring and data also mining capabilities. NetFlow works by identifying different
types of flows from its routers and switches which are instrumented to provide the relvant data
required. Examples of tools available that collect and analyze NetFlow data from routers are
cflowd(12) from the Cooperative Association for Internet Data Analysis (CAIDA) and Flow-
Boy(13) from the National Center for Supercomputing Applications(NCSA). A disadvantage of
the NetFlow method however, is that it can only randomly sample a percentage of the actual

link load.

2.1.2 Active Measurement

Active measurement tools work by generating network traffic to measure network parame-
ters. Active measurement tools follow well standardized methods and are often used by network
analysts to obtain information about a network’s connectivity and the overall performance. Pop-
ular active testing tools used include the Netperf(14) benchmark tool for bandwidth measure-
ments, the Ping(15) utility program for round trip time measurcments and the Traccroute(16)
utility for determining routes between machines on a network.

There have been several large scale projects in the past to measure and characterize the In-
ternet. The Surveyor(17) and the Réseaux IP Européens (or RIPE) Traffic Test Project(18) are
both examples of projects that measure one-way latencies and loss using the Internet Engineer-
ing Task Force (IETF) Internet Protocol(IP) Performance Metrics Standard(19). The National
Laboratory for Applied Network Research (NLANR) is working on the Active Measurement
Project(20) which consists of a distributed network of approximately 130 active monitors across
the United States performing scheduled measurements between each other. The problem with
the methodology in the above projects was that the infrastructure of tests were controlled by a
single entity, thus not providing ubiquitous access to all participants. This need was addressed
by the National Internet Measurement Infrastructure (NIMI) system(21). The NIMI consists of
a sct of measurement servers, configuration and control software running on a number of hosts
in a network. NIMI aims on providing scalability to thousands of probes within the infrastru-
cure. Another important consideration by NIMI is the delegation of different control powers to

different participants via cryptographically secure credentials.

2.1.3 Passive measurement and monitoring

Since active measurements retreive information by adding interference into a network, they
dont give accurate indications of what the network does to an application while the application
is running. Passive measurement systems overcome this problem by using splitters that dump
packets from the network, with negligible interference. The OCxMon (22) is a set of monitoring
tools that make usc of passive Internet monitors built from PC hardwarc and ATM Nectwork
Interface Cards, employing optical splitters to snoop on fiber. The packets thus obtained can
be collected and analyzed with the aid of tools like Coralreef(23) and the Network Traffic Flow
Measurement Tool (NeTraMet)

Tcpdump(24) is another popular passive monitoring tool used to echo packet information up
to and including payload content, to standard out or a file. The packet information is gathered

from the local network interfaces after it has been placed in promiscuous mode.

2.1.4 Network Visualization

Despite the advancements in techniques for measuring and managing networks, there is
always a need for an intuitive visual representation of the information gathered. Hence network
visualization has been a very important part of analysis. Graphic visualization has been used
to understand the nature of traffic flows as well as network topologies. The Cichild(25) 3D
Visualization software developed at NLANR is a comprehensive tool written based on OpenGL
and MesaGL graphics libraries, which can visualize arbitrary data coming from the network from
any sourcc. It provides 3D bar charts and topology maps which the user can interact with in real
time. GraphViz(26) developed at the ATT Research Labs, is a package that provides a bunch of

automatic graph generation tools. It addresses the problem of visualizing structural information

by constructing geometric representations of abstract graphs and nctworks. GeoBoy(27) and
VisualRoute(28) are examples of tools that provide different types of visual representations of

traceroute results.

2.1.5 Application Performance Monitoring

All the different approaches for network measurement and analysis discussed above give us
a wealth of network state information. But in most big networks today, there are applications
interacting with each other over the network and also with the systems at their ends. So there
can be a number of complex interactions which can increase exponentially with the number
of applications and the number of network flows in them. Hence it is clear that in order to
understand the interactions of the application with the network, the application has to be first
instrumented for performance analysis. Though there have been systems that help to charac-
terize end-end performance of distributed applications, with a focus on CPU utilization(29),
there seems to be very few systems that characterize network performance. NetLogger(30) is
one such system that proposes a methodology to understand behaviour of all elements in the
application-to-application communication paths. It provides timestamped logs of interesing
events at critical points of the distributed system. All tools in the NetLogger toolkit share a
common log format called Universal Logger Format (ULM)(31) for logging and exchange of
messages. All applications that run on a network can send their performance data to a server
daemon that collects data to analyze it together. The Netlog library(32) developed at the Na-
tional Center for Supercomputing Applications is a C language library that can linked to an

existing network application to provide some instrumentation of network performance. It also

comes with a visualization tool called Viznet that understands the log format from Netlog and
provides a 2d graph visualization.

It can be inferred from NetLogger and Netlog that understanding performance needs a
visualization tool to give meaningful intuitive representations of data.While NetLogger and
NetLog come with useful 2d visualizations, in cases of complex networked applications like tele-
immersion(33), there is a need to leverage 3D to facilitate simultaneous analysis of multiple
network streams in the application. QoSIMoto(34) ., developed at the Electronic Visualiza-
tion Laboratory is a 3D visualization tool that undcrstands ULM type of log data from a
performance-server daemon and can be used for both real-time and non real-time analysis. The
3D graphs can be viewed in a CAVE"™(35) like immersive virtual environment, in which the

user can interact with the 3D visualization. QoSIMoTo also provides event based analysis, as

proposed by NetLogger.

2.2 Analysis

2.2.1 Lessons learnt

A study of all the several types of network analysis tools indicates clearly that there have
been many approaches, which were useful to people for different purposes. It can be observed
that active testing has been very useful in cases where accuracy and convenience of testing was
concerned. Though passive testing is the most suitable for analyzing the interactions between
the network and the application, past experiences have shown(36) that passive testing is not
standardized and is usually tough for cveryone to conduct, owing to the apparent sccurity and

billing issues involved. Experiences with the NIMI system(21) indicate that ubiquitous access

and subscquent delegation of control is an important feature not incorporated by many network
measurement systems.

Comparing the methods for collecting router data, NetFlow is more suited for applications
where knowledge of the flows and more low level control is needed. But a disadvantage of
using NetFlow is that only a portion of the router traffic can be sampled and there exists an
unnecessary load on the router for the traffic to be forwarded to a collector(11). SNMP is still
widely used owing to its simplicity, convenience and the wide number of publically available
tools and librarics. With respect to monitoring applications, NetLogger demonstrates the use
of an event based analysis by instrumenting distributed applications. Also NetLogger’s idea of
using a server daemon to collect logged traffic from different machines in a network, for real
time and non-real time analysis, is useful. It is also quite obvious that network visualization
has to aid the information collected by network performance tools.

Hence, to summarize(visually), we can arrive at the basis for a new nctwork analysis tool

as follows:

2.2.2 The Missing Pieces

2.2.2.1 The Case for Unified Analysis

The summary of different types of tools and techniques available for network analysis as
discussed above, indicates that all types of approaches are useful to people in different circum-
stances. But most of the techniques available become really very useful and sufficient when one
has narrowed down and defined the problem that exists in the network and the probable source
of the problem. However in most circumstances in which several applications interact with a

network at the same time, there are usually many interactions between components that are

10

Ileasurement. Wetlibgger MNetwork
atiagemet
Methodologies Systems
Diele zation of e Bl Gl Ly
: andard control and vent bage eed for some opularity o
Su;g]t'eh’;;s oy | Uniuitous access analysis visualization SHIMP
artive like NINI
Tngasire rment

VA

Basiz for a new tool

Figure 1: The lessons learnt from past experience and the basis for a new analysis tool.

not known ahead of time. Hence in addition to identification of a bottleneck in an application,
simultaneous state analysis of the relevant network parameters also has to be done while an
application is running. This leads to a need for a unified platform to analyze an application’s
performance simultaneously with the network state information obtained through tests or data
collected from routers and other devices. This is a problem that has not been addressed by

traditional approaches. NetLogger proposes an event based analysis of application flows along

11

its path in a distributed system, but still assumes the identification of the network bottleneck
after the identification of a performance problem.

The unified analysis approach proposed by this thesis starts with NetLogger’s philosophy,
taking events captured from the application to be viewed in the context of information about the
backbone network, obtained from SNMP data and active tests. The goal is to help each different
approach mentioned above, complement the others. The focus is on designing a framework by
which other new network tools can be fitted in for such a unified analysis. Detailed accounts of
the individual components of the framework design along with the implementation in uCAN,

supplemented with screenshots are given in Chapters 3 and 4.

2.2.2.2 The Case for Collaboration

Real-time collaboration helps problem solving when there is a need for sharing information
between geographically seperated parties. Computer Supported Cooperative Work(CSCW) has
shown that there is trend towards sharing information to share and ultimately gain intellectual
expertise(37). Virtual Network Computing(38) and TeamWorkStation(39) are recent examples
of shared desktop systems which demonstrate clearly how shared workspaces can aid in infor-
mation sharing and group collaboration. Experiences also show that collaboration has been a
very useful tool for exploiting different perspectives of participants in a shared environment(40)
and in cooperative computer aided design(41)

It can be argued that in the case of small networks or private organizations, where control
of a network might happen at one place, collaboration may not be needed. But for most big
networks, network analysis deals with many situations where problems can be anywhere on

the network. In most cascs, nctwork managers who control different sites and subnetworks

12

arc often geographically seperated and have to communicate and collaborate with cach other
for problem detection and maintenance in big networks. The case for collaboration is also
conceivably strong in the context of research networks and consortiums like the Internet2(42)
and the Science, Technology, And Research Transit Access Point(STARTAP)(43). These type of
research networks involve tighter collaboration between participating institutions and deal with
International partnerships with overseas couterparts. Hence in research networks as these, the
corresponding network managers are more geograhically seperated and sometimes in different
countrics.

The United State’s Department of Energy’s Science Grid(44) aims to provide the advanced
distributed computing infrastructure needed for the scientific community based on Grid mid-
dleware and tools. The aim of the Grid is to make better use of distributed computing and
collaborative environments to facilitate computing and accelerate research. Working on the
same lincs, is another project funded by the Department of Encrgy, called Access Grid(AG),
which has been gaining popularity in the recent past. The Access Grid(45) provides human
interaction interfaces across the Grid like video/audio desktop conferencing tools to encourage
group to group communication like virtual meetings between research collaborators and dis-
tance learning. The fast growing AG community has 60 domestic and international partners,
including research institutions and universities. So, viewing network analysis in the context of
this trend towards group communication and collaborative environments, one can appreciate
that solving performance problems in big networks will need support for tighter collaboration

than what exists currently, between the participants.

13

The thesis proposcs a collaborative approach by which participants can connect to a col-
laborative session and share their network analysis tools. Remote participants can therefore
view test parameters and graphical views of tests initiated by others. They can also request
control over a test to reconfigure and control it from their ends. wCAN implements this ap-
proach and also aims to contribute a set of utilities to help build collaborative tools, including
a generic interface for building shared network widgets using the FLTK(2) interface library and
an API for building collaborative testing tools, by which users can also add their own tests to
a test pancl and make it collaborative. The goal is to cncourage collaborative tool building
and work towards a seamless shared workspace which gives a more complete view of the entire
network, where both network information and performance profiles from applications of interest
are shared amongst all the network analysts concerned.

A detailed account of the collaborative framework, its components and some screenshots to

illustrate collaboration arc provided in chapters 3 and 5.

CHAPTER 3

THE VISION OF A UNIFIED AND COLLABORATIVE APPROACH

This chapter cxplains why a unified and collaborative approach will be uscful for problem
solving and introduces the general solution proposed. The details of design and implementation

are left to the following chapters.

3.1 The proposal

3.1.1 Why a Unified Approach

An analysis of most network measurement and monitoring techniques, indicates that every
technique has its strengths in the context of certain type of problems and is required in different
ways, for obtaining different kinds of information. A unified approach will make better use of
these techniques by combining them in a way so that one can obtain more context information.
For example, consider this rough scenario in which two networked applications communicate
which each other, exchanging infromation through different types of flows. Hypothesize that

the following information can be obtained:

1. A SNMP trap is set on the number of packets dropped by a router on an interface.

2. An application, if its instrumented to know its network performance, is programmed to
identify any particular condition that caused an exception, while execution, like a missing

piece of information not transmitted from another application on the network.

3. A non intrusive ping test is started to give an idea of the latency between two machines

on which the applications are executed.

14

15

The idea is to put all these picces of information together, understand the context better

and identify a bottleneck faster. The source of the problem could be for example,

1. A congested condition at the router involved (which can be immediately detected by

SNMP queries)

2. Irreponsible use of the network by applications (this can be verified by an cvent based

analysis of performance data from applications)

3. An undesirable link condition on the path to or from a router along the path(this can be

verified by active tests).

In the case of small networks or very simple applications, simple components of analysis
would suffice. But this thesis aims at bigger networks and more complex networked appllications
like tele-immersion(33), where several types of flows can be possible in an application and
increasing the interactions with the network. Hence it can be clearly understood from the
scenario that a unified approach to obtain information from both networks and the applications

that use it, will help in a much better understanding and faster problem identification.

3.1.2 Why a Collaborative Approach

Collaboration helps when sharing information aids in understanding and solving problems.
Network analysis is certainly an area complex enough to look for such ways to accelerate
problem solving. The main motivation to consider collaboration is that big networks always
involve management by more than one particular site. So in reality, there will be several network
managers who have access to routers and hosts that occur on the path of a network, through

which data from applications get transmitted. The fastest way of identifying bottlenecks is there

16

fore through a rcal-time collaborative framework for group collaboration. Access to network
operations is provided to everyone in a group, thus allowing all network managers to contribute
by analyzing portions of networks that they control, and also being able to perform operations
on other networks with the permission of the corresponding network managers.

Now for a reconsideration of the scenario mentioned in the previous section, but assuming
that two network managers control two different portions (or sites on which the applications
run) of a network. Assuming that it is possible to obtain the same information described earlier,
but in this case, nctwork managers contribute by sharing the SNMP and active test information,
or the application’s performance visualization from their corresponding sites. The result would
be that both network managers involved can see results of operations initiated by each other.

A sample set of the source of the problem could be,

1. A congested condition at the router involved, managed by the first network manager(which
can be immediately detected by his SNMP queries, which can be shared with the second

network manager)

2. Irreponsible use of the network by applications in the domain of the second network man-
ager(this can be verified by an event based analysis of performance data from applications

on his domain, shared with the first network manager)

3. An undesirable link condition on the path to or from a router along the path(both iden-
tification of a bottlencck in the link, and the verification can be done with active tests

carried by both network managers).

There can be many permutations to the source of the problem and it can get much more

complex, but it is evident that real-time collaboration would make it much faster to identify

17

and solve a problem. Current means of collaboration, between network engineers/rescarchers
require a considerable amount of initiative from participants to communicate and share results
of their experiements. The collaborative approach proposed also includes role based access to
operations. Users viewing operations started by others, would have to request control over the
operation from the corresponding network manager. The grant of control of an operation to
others is left to the discretion of the concerned administrator who initiates the operation.

The usefulness of such a unified and collaborative approach discussed, forms the foundation

for a new type of networking tool that cnables:

1. Monitoring applications for their performance and visualize information
2. Testing networks for its parameters
3. Managing networks, querying network devices

4. Collaborating with remote users, providing them views and access to all these operations

The tool implements the notion of a unified framework for these operations and also pre-
senting them in a collaborative environment, thus, in short creating a Unified Collaboratory for
Analyzing Networks (Figure 2)

3.2 A High level Description of Framework Required

3.2.1 The objectives of an event reflector

1. There should be a framework to exchange events between applications and network net-

work state monitors.

2. It should be simple to send events from any new application which is not part of the

uCAN framework.

18

.=.§ uCAN | = ;D_j

UC AN

3 @ Collaborate

Figure 2: The uCAN main menu. Conveying that, -u-can monitor an application for its per-
formance, test the network to verify network conditions, manage your network and collaborate
with others to analyze problems better.

3. This internal event-control framework should also allow other messages to be passed
other than events. This becomes useful in acheiving collaboration between the individual

elements, as explained later in Section 6.2.2.

3.2.2 The Framework for Event Reflection

Figure 3 gives the general idea behind the internal event reflector and the clients. Events
in this context refer to conditions reached in the network state -either a state value change in a
network parameter to an abnormal condition, or the entry into a collaborative session, indicating
the central collaboration server to connect to, or conditions in the state of an application of
interest. A reflector is cssentially a scrver that manages a list of clients that conncct to it.

An event message sent from one client is reflected to all other clients by the reflector. The

19

An active test Application
araph
!
plot event i
|
A SNMP Announce Event Send fjﬂ._'eut:i: based on some
momnitor " events Reflector -::mlclhhqns 1‘ea-::he‘d 11 the
application’s performance

plot event

Application

A shared
Interface

Display information to user
or transmit to remote sites

Figure 3: The diagram shows clearly how the events might be used and sent by processes.
Events can also be sent from tests, snmp graphs and other network monitors to applications to
indicate some significant changes in network state

use of such an event-based analysis can be understood from Figure 4, which shows the two-
dimensional graph visualizer provided by uCAN. The graph shows a sample bandwidth test,
plotting the results of the bandwidth(as red dots) and at the same time marking events on the
same graph, which can in this case be produced by a SNMP trap message(as green dots). This

sample graph indicates when packets were dropped at a router, in the context of a bandwidth

20

test that indicates a low bandwidth. Hence it can be clearly understood how simultancous

analysis based on events can be useful in identifying problems.

e
I N

Figure 4: The graph in the diagram shows two type of points. The red points on the graph
indicate data values of bandwidth for the netperf test. The green points on the graph represent
events reflected. For example, In this case, the first green point refers to an event sent from an
snmp interface when there was packet drop in the router.

3.3 Defining the Requirements for Collaboration

The particular remuirements for real-time collaboration in uCAN are:

21

1. The analysis opcrations should be shared with others -to start with, there is a need for a

collaboration framework for sharing interfaces and graphs in a Multi User Domain.

2. The collaborators should be able to view as well as control remote interfaces that drive

tests and network monitoring operations initiated by others.

3. The initiator of an interface should have the option of sharing his interface in a collabo-

rative session

4. Since there has to be way of controlling the collaboration, roles have to be defined so
that a participant who initiates an operation has the power to take back control and to

delegate control to someone else at any time.
5. Participants need to have knowledge of who are the other collaborators in the session.
6. Interaction should involve quick small updates rather than bulk transfers

7. It will make a uscful contribution to provide an cxtendable collaborative framework for
building shared widgets, so that new interfaces can be built for new operations and can

be made collaborative.

3.3.1 Sharing Interfaces

As per the requirements, a general shared interface scheme can be thought of as given in
Figure 5.

Figure 6 and 7 give a sample collaborative session where a snmp query session is shared
between two users. The user who has initiated the SNMP query, shown by the interface in
Figure 6, can decide to share or not share his interface updates at any point. When the
updates arc shared, the remote interface that other users sce(Figure 7) gets updated, letting

everyone see what this user sees.

22

Clhient 2

Client 1 Remete Rellm"r.e
Event Intertace
handler | yypdated
Local
Intertace
up dated Other clients
Client N
updates
Résiiote Remote
Event Intertace
handler | yypdated

Figure 5: The figure the basic idea behind a shared user interface in a collaborative session.
Apart from local events, handles have to be written that uses high level events as recorded in
user callbacks and handle events for interfaces on remote machines

23

Total number of LIDP

datagrams delivered to
UDP users

ipCutDiscards

ipCuthloRoutes

ipRoutingCiscards

icmplntisgs

icmplnDestUnreachs

icmpInEchos udp.udplinDatagrams.0 =
icmplnEchoReps Counter3Z: 27649364

icmpOuthisgs
tcpRtokdin
tcpRtokiax
tophdaConn
tcpActivelpens

Figure 6: The figure shows an interface for snmp queries being shared with a remote user. The
shareView can be toggled to share updates with others or not.

24

Total number of LIDP

datagrams delivered to
LUDP users

ipCutDiscards

ipCutMoRoutes

ipRoutingDiscards

icmplnkdsgs

icmplnDestlUnreachs

icmplnEchas udp.udplnDatagrams.0 =
icmplnEchoReps Counter3z: 27649564

icmpJuthdsgs
tcpRokdin
tocpRiohkda
tophdaxConn
tcpActiveOpens

Figure 7: The figure shows the remote interface that appears for other users, when the query
interface in Figure 6 is shared. The updates occur as is seen on the original interface. The user
can also request control from the owner of the interface.

CHAPTER 4

CAPTURING APPLICATION AND NETWORK STATE INFORMATION

This chapter encompasses the core components of the unified approach proposed. The focus
is to explain in detail about the methodologies involved in obtaining performance data from
an application and information about the network state. Details include how applications have
been instrumented, performance monitoring can be done using an event based method, visualize
results collaboratively, describe methodologies for ubiquitous SNMP queries and active tests.
Each section defines the objectives of the concerned module and the design to acheive the
objectives.

4.1 Application Performance Monitoring

High performance systems and other complex networked applications have several types of
flows that interact with the network. To understand and tune the performance of application,
a knowledge of the performance of the application is essential. So, most of the interactions
of applications must be captured while an application is running. Apart from obtaining infor-
mation, there should be an easy way to understand the informaion obtained and characterize
performance. These needs help define the objectives of application performance monitoring in
uCAN.

4.1.1 The Objectives

1. Instrumenting applications with performance monitoring routines should give all required
information nceded to understand performance of the different data strcams in an appli-

cation

25

26

2. The instrumentation should be implemented in a transparent manner and control should

be handed to the application programmer to gather statistics anywhere in the application

3. There has to be a way of analyzing performance later in time

4. Finally, there is a need for visualizing performance from any convenient location

4.1.2 Instrumentation: What is Measured

A typical high performance application like tele-immersion has several streams and there is
a need for a standard representation of performance across all streams and applications. uCAN
measures performance using the Universal Format for Logger Messages (ULM)(31). The latency
and jitter measurcments require sending and receiving ends to be time synchronized, which may
be done with a protocol like the Network Time Protocol(46). A sample log stream is given below:
TIME=955664372.441101 SELF 1P=131.193.48.163 REMOTE 1P=131.193.48.164 SELF_PORT=
9977 REMOTE_PORT= 1811 STREAM _INFO= 131.193.48.164_AVATAR _SERVER COMMENT=
TRACKER_UDP MIN_LAT= 0.000318 AVG_LAT=0.002742 MAX_LAT=0.069904 INST _LAT=
0.000734 JITTER= 0.001046 MIN_IMD= 0.000093 AVG_IMD= 1.902742 MAX_IMD= 480.669540
INST_IMD= 0.000715 AVG_RBW=11.573473 INST_RBW= 44754.160720 AVG_SBW=401.712774
INST_SBW=733308.778808 BURSTINESS= 30118.629172 TOTAL_READ= 8258 TOTAL_SENT=

306604 PACKETS_READ=376 PACKETS_SENT=7860

A brief account of the parameters measured along with their units of measurement and the
formulae used is given as follows:
Latency(oneway) =Ty — T,

where T is the Time recorded at the sender’s end and 7, is the time recorded at the receiving

27

end. The unit of measurement is scconds. The minimum (MIN_LAT), average (AVG_LAT),
maximum (MAX_LAT) and instantaneous (INST_LAT) latencies are calculated and provided
for further analysis.

Jitter = E[(L; — E[L])]
where E is the Expectation of a data set, L is the set of 100 most recent instantaneous latency
samples and L; is the instantaneous latency. The unit of measurement is seconds.

InterMessageDelay = Ti 1 — T;
where T; and 7341 arc instances of two consccutive messages received. The unit of measure-
ment is seconds. Like latency, the minimum (MIN_IMD), average (AVG_IMD), maximum
(MAX_IMD) and instantaneous (INST_IMD) inter message delays are calculated and recorded.
The unit of measurement is seconds.

Bandwidth = [%]
where dd is the data in bytes, received/sent over a time 6¢. The unit of bandwidth is bytes/scc.
AVG_RBW, INST RBW. AVG_SBW and INST _SBW represent the average and instantaneous
values of read and send bandwidth, respectively.

Burstiness = E[(B; — E[B])]
where F is the Expectation of a data set, B is the set of 100 most recent instantaneous band-
width samples and B; is the instantaneous read bandwidth. The unit of measurement as in
bandwidth is bytes/sec.

In addition to the performance paramecters, some more variables that arc uscful in identifi-
cation of streams and bottlenecks are provided. The time field (TIME), the IP numbers and the

ports of the hosts between whom the data stream is sent(SELF_IP, SELF_PORT, REMOTE_IP

28

and REMOTE_PORT), the information about the data strcam instrumented (STREAM_INFO)
and a special event-comment (COMMENT) field which can be used by the application devel-
oper to provide event information in the application. These events can also be further used,
as illustrated in later chapters to help analyze network measurements in the context of the

application.

4.1.3 The Architecture

The architecture of performance monitoring in uCAN is based on the architecture imple-
mented in CAVERNsoft. CAVERNsoft provides performance monitoring routines that can
easily turned on in an application using CAVERNSsoft’s networking modules. The performance
data collected from applications can be used cither for plain output for users, or logged to a file
for further analysis. All CAVERNsoft networking modules have a sub-module that instruments
network streams and measures network parameters. The applications can hence get perfor-
mance information transparently, without having to instrument or include any measurement

routines. The basic architecture is explained in Figure 8.

4.1.4 Visualizing Performance - QoSIMoTo

The log streams in the format as shown above have all the information a person would
need to analyze performance. But going through several hundreds of lines of log entries and
trying to form a mental picture of the performance becomes a very tough task. The analysis
is highly enhanced with the use of QoSIMoTo, a CAVE based 3D dimensional tool developed
at the Electronic Visualization Lab to visualize use of network Quality Of Service by high
performance applications like tele-immersion. QoSIMoTo helps analyze multiple streams in an

application simultaneously and provides the user interaction mechanisms to scale, play, stop

29

Performmarcs

Ferfarmence 4 Lot
t -
Pert-mon data - — mec-dur[nl:n
mzdule p Perlommance r’,x”/ onlicati
DI C ST
Applicatien T -
Daemon
/-' u,
f/ —— \'\
¥ ",
Performanee \\\
data gathered / Logtile N, Ferformance
}f/ . . data gathzred
s \
4 -
Analysis / 3D Analysis / 3D

Tisualizalion Visualization

Figure 8: The methodology for performance data collection and analysis. Any number of anal-
ysis and visualization clients can connect to the performance daemon and get the performance
data gathered from applications.

and rewind the visualization. Both real-time and non-real-time analysis can be done, as it can
listen to data streams and visualize them as and when they are delivered by a performance
daemon and also log the collected data for analysis at a later time.

The interface to configure QoSiMoTo and a sample visualization that QoSIMoTo can provide

are given in Figures 9 and Figure 10

30

1

= uCAN Application Performance Monitoring | « i[;]_j

Perf daemon P ‘zbox.eul.uic.edu

Perf daemon port‘ElEDD

Log file

(to write out) ‘I’cpCllent.Iog

Mumber of flows ‘ 100

Time — Z Stream_Info

% Bancdwidth —1| Color Jitter —

hanitor o

Figure 9: The diagram shows the configuration interface for QoSIMoto. The location of the
performance daemon, the logfile, the size of visualization and the axis parameters are the
variables that can be controlled.

4.2 A Framework for Active Testing

Active testing produces highly accurate results for measurements and there are many stan-
dardized techniques and tools publically available. Active tests form an important part of
network analysis, since after the detection of a bottleneck in a network, accurate measurement
of the network is always required to confirm the location of a performance problem in the

nctwork.

31

Figure 10: QoSiMoto’s 3D visualization of performance obtained by instrumenting a tele-
immersion server with multiple streams, which can be visualized at the same time, leveraging
3D. The latency of each stream is plotted against time, while color is used to represent jitter

4.2.1 The Objectives

1. Make testing possible from any machine, without having to run scripts manually on each

machinc

2. The test results should be shared by other clients who are interested too, bringing the

test analysis to a multi-user domain

3. There has to be a way of analyzing measurement results later in time

4. There is a need for visualizing test results

32

5. The visualization should be configurable by the user, to adjust to the range of data

measured

6. All of the above should be reusable standard features of a framework that a user can use

again for a new test

4.2.2 Pieces of the Framework

Linlk to
the test
DSO0 Test

Daemon
Test DSO

Execute test
with given
parameters

Initiate a Test Femote

-spesiyiak ‘ i iy
Sapt / test bed
parameters ‘

Clientl est results Test result. Client2?
View
Eead Test-Logeer Test-Logger
parameters Visiializating Wisualization paimmeters
from user ' read from
remote user
i Iy
i i
i e S e e e S e e e e wil

Share information about test and test-
bed through this channel

Figure 11: The framework for testing - once a test is initiated, a test logger process is started
to log and visualize the test. The test daemon executes the specified test on the test bed that
should be preset. The results are sent to all clients

33

The architecture of a typical uCAN test scssion is shown in Figurc 11. The first part
congists of the interface for the user to configure a test and initiate it. Once a test is initiated
by the user, a seperate process for logging and visualization is spawned. The parameters sent
to the test daemon include what type of test is to be run and the test parameters encoded
as a set of strings. The test daemon links to the test which should be written as a Dynamic
Shared Obbjet(DSO). Using Dynamic Shared Objects is a modern and popular mechanism to
to build a piece of program code in a special format for loading it at run-time into the address
spacc of an cxccutable program. A good cxplanation of Dynamic Shared Objects and support
specification is given in (47) This would help the new user to fit in his own tool reusing the
existing framework and not worry about recompiling the uCAN distribution. The test daemon
will load the test during runtime, given the name of the DSO to link to. The test results are
packed and sent to all the clients connected. The test daemon iteratively executes the test
and rcflects the results to all clients connected, until a KILL command is rcad from onc of
the clients. The daemon also listens to new connections and dynamically adds them after each
iteration of the test. So a new test client essentially joins a tests session to listen to the latest
test results.

The test logger is an interface between the user and the test daemon. It reflects user’s
commands to the test daemon and visualizes the test results coming from the test daemon in
real time. A generic 2-dimensional graph widget is provided along with set of utilities. The
graph widget allows the user to plot any two paramcters, adjust the scale valucs, shift the origin

to meet a desired range of data, log the test results for later analysis and also provides data

34

TestTitIe|Netaerf—Iotus and turng | :

Test kvachine 1
[serder)

Test hachine 2
("ecever)

Socket Bufter|c 7.4 [| Browse

Packet SizelEHQZ

| lotus.stertapnet

[turing.evl.uic edu

7.1
62
Logﬁ|e| h 4

Test duration| 1

45

Tesl Slream TGP LIDP -
Ty B £==

Pl i

SIS

Kl | 09

i e T 1 1+ S | 1 e i+ v i

% =how Graph & Shal

Figure 12: Figure showing a netperf test between two machines. The test can be configured
using the interface. The test graph shows a plot in real time as the netperf test is executed on
a remote test daemon.

displays with interactive mouse over motions. Figure 12 shows an interface for driving netperf

tests and the graph widget for visualizing results from such active tests.

4.3 Ubiquitous Network Management

Network management has become an important part of trouble shooting and maintain-
ing most nctworks today. SNMP is the most popular protocol used for cxchange of network

management information between network devices, owing to its portability and ease of use.

35

4.3.1 The Objectives

1. Any node on the network should be able to access network management information,

restricting access with the SNMP community string
2. Visualizing a changes in a variable that is monitored

3. Allowing ease of changing the Management Information Base(MIB) to a desired enterprise

MIB in the future

4. Flexibility of using a different SNMP library

4.3.2 What can be Obtained

SNMP provides different types of information organized as variables and groups in the
Management Information Base (MIB), a virtual database present in all machines on a network.
MIB-II, defined in detail in (48), is the most standard MIB present on all devices. A description
of SNMP’s functions, practical aspects of implementation and the operations of the protocol are
dealt in detail in (49). Highlights of each type of group and the type of information obtained

from them can be listed as below:

1. The systems group consists of general information about the managed system -like its
description, location, contact person and the amount of time the system has been up since

it was last reinitialized.

2. The interfaces group consists of generic information about the physical interfaces of the
entity, including configuration information and statistics on the events occuring at each
interface. Examples of variables that can be obtained arc the type of the interface, the

protocol it follows, the physical address, operational status, current capacity in bits per

36

scond, the number of octets, multicast, unicast packets transmitted or discarded and the

Maximum Transmission Unit(MTU) size, etc.

. The address translation group consists of a single table, each row of which corresponds
to onc of the physical interfaces of the system. The network addresses and the corre-

sponding physical addresses translated into are provided.

. The ip group consists of information relevant to implementation and operation of IP at
a node. Some variables that can be obtained include the IP routing table, the routing
protocols for each entry, the number of packets forwarded, discarded, delivered, received,

fragmented, etc.

. The icmp group consists of information relevant to the implementation and operation of
the Internet Control Message Protocol(ICMP), used for transmitting messages between
routers and hosts, providing feedback about problems in the communication. The icmp

groups gives various counter values of the different types of icmp messages sent

. The tcp group consists of information relevant to the implementation and operation of
TCP at a node like the values of timers, number of segemented, retransmitted packets, a

tcp connection table with the details of each coninection, etc.

. The udp group consists of information relevant to the implementation and operation of
udp at the node like the number of input and output datagrams, crrors and a table with

the addresses and ports of connections made.

. The egp group has information relevant to the implementation of External Gateway
Protocol (EGP), with a table containing information about cach of the neighbour gateways

known to this entity.

37

9. The snmp group consists of information relevant to the implementation and opcration
of snmp at the device, giving the nunmber of requests coming in, the errors, the number

of traps set, etc.

The MIB variables and their Object Identifiers are written in a configuration file, that is
loaded by a SNMP query client. The configuration file can be changed to load variables from
another MIB other than MIB-II(which is currently the only MIB supported in uCAN), thus
allowing flexibility of using the same interface for different MIB’s. This can be a very useful
fecature since in many circumstances, enterprisc MIB’s other than MIB-II come in handy to
obtain specific details about network devices and interfaces. uCAN currently has a database
of a sample set of the variables from each group in MIB-II. Figure 14 shows a SNMP query
interface with a query being made to obtain the value of the system description from MIB-IL.

The database can be easily extended to support all other MIB-II variables.

4.3.3 Ubiquitous SNMP Query

This section explains the unique feature of wCAN’s SNMP query. Traditionally SNMP
queries are made from the machine that the user runs his query program. Network managers
will have to authorize every machine that should be allowed to query a particular device such as
the router. This may not be very practical since it can be a potential security threat to distribute
access to several machines. Instead if one machine can be made to query all machines on a
network, a query daemon can be run on that machine to reply to queries coming from other
machines. This is acheived in uCAN by implementing the SNMP query module as a Remote
Procedure Call(RPC) server and any other machine using uCAN can make a query to the RPC

scerver, which acts as a bridge. So, the SNMP query interface in uCAN on any machine rcads

38

the MIB variables and the corresponding Object ID’s from a configuration file and sends the
query as a rpc call to the uCAN SNMP Daemon. The uCAN SNMP Daemon interacts with the
SNMP Daemon that resides inside the network device thats is queried and returns the result
to the user. This transaction remains transparent to the user, when he submits a SNMP query.
The above description can also be understood clearly from Figure 13.

CAVERNsoft’s RPC modules have been used for the implementation of the SNMP Query
Daemon. The SNMP Get method is managed as a call on the CAVERN RPC server, which
can be remotely called by SNMP query clients. The implementation of SNMP queries was done
using the NET-SNMP library(10) which is an open source library also available as a standard

package provided with RedHat Linux distributions.

uCAN SNMP
Clients —query
from user

RPC Client

Query results

Query (mpe call)

39

uC AN SNMP
Clients —query
from user

uC AN SNMP
Daemon
(RPC Server)

| SNLP

EPC Server

RPC Client

Query results

Resident

Daemon

Network Device

Figure 13: The framework for SNMP Queries. Query clients can be on any machine and the
actual query is made by the uCAN SNMP Query Daemon, which is transparent to the user.

4.4 Summary

The core network analysis techniques implemented in WCAN has been described. This

chapter’s goal was to cover the objectives of testing, network management and performance

monitoring modules, the architecture and the unique features of each module. The next chapter

introduces a new capability that would add a new dimension to all these capabilities explained

so far.

40

& description of the entity,
S such as hardware, 03
[e

sysContact

syshlame

sysLocation

ipForvarding

iplnReceives

iplnDelivers system.sysDescr.0 =
iplnDiscards Silicon Graphics IRIS G2
ipOutRequests running IRl version 6.5
ipQutDiscards

ipQuthoRoutes

ipRoutingCiscards

icmplntisgs

icmplnDestUnreachs

Figure 14: The interface for making SNMP queries. The system description is being queried
(query submitted with a single click on the variable) The Query interface itself can be used on
any machine to query any other machine on the network. Queries are bridged through a query
dameon. The interface shows a sample set of queries for MIB-2 variables.

CHAPTER 5

COLLABORATING IN A VIRTUAL WORKSPACE

As opcrations arc usually driven by uscr interfaces, uCAN aims to help with the process of
helping build shared interfaces suitable for the collaborative environment. This chapter follows
the requirements of collaboration described in chapter 3, describing the framework design for
building shared interfaces, the event sharing methodology involved and how roles can be defined
in a collaborative environment for analyzing networks.

The objective of collaboration is to build a virtual desktop space for people involved in
anlayzing networks. Amongst other similar systems, VNC(38) provides higher level solutions for
desktop sharing, providing a more general solution. VNC still does not have Multi User Domain
support and has high bandwidth requirements since transfer of frame buffer information requires
very high throughput. But the particular requirements of collaboration in uCAN include multi
user support, quick small updates and also the ability to exchange control between participants,
so that only one person remains in control over an interface at a time. For these reasons, VNC

did not qualify as an idcal tool for this type of collaboration.

5.1 Building Collaborative Interfaces

In general controlling network tests and monitoring through user interfaces is more conve-
nient than using scripts and manually editing options each time. Among user interface libraries
available for programmers, FLTK(2) has been a popular open source library for building user

interfaces very quickly. uCAN uses FLTK to build interfaces for controlling tests, adding new

41

42

tests, configuring visualization paramcters for performance monitoring in QoSIMoTo and also
for SNMP queries, as can be seen from snapshots in the previous chapter.

The requirements of collaboration as discussed include providing access to analysis opera-
tions to collaborators on a remote site. The first step was implementing collaborative interfaces
that can be shared and controlled in a Multi User Domain. Sharing interfaces means letting a
remote person control an operation with the permission of the user who initiated the operation.

The sharing of interfaces leads to a need for a event management system to transmit events
from onc interface to another and still give the user, control over when the events should be
passed. A challenge for implementing such a scheme was to design the event management
framework so that it can be re-used for building new interfaces for sharing in a collaborative

environment.

5.1.1 Networking and Database Architecture for Event Sharing -Implementation

The networking and database architecture is based on CAVERNSsoft’s object-oriented design
for building collaborative environments(1). Figure 15 gives a simple diagram of the architecture
for sharing events in a multi user domain. The interfaces and graphs used for analysis in a
collaborative session form the event clients. The user in control sends updates of the changes in
widget values to the event server in terms keys, which correspond to an entries in the databases
of event-clients and the event-server. A collection of keys are stored under a path in the
corresponding databases. uCAN makes use of this architecture to store widget updates as keys
inside a unique path for each interface. The event server reflects the incoming key updates to

all other cvent database clients, thus updating their local databascs for the widget valuces.

43

. Event
U:.s_n‘:l' 11ullm Databasc
Colrro s
Tser m Conlrol Client
-
y / \
i
-
Event ® ®
Database Event Widget lavs
C'lient T Diatabage reflect i ’
Update Server update
/ \ key
Ty
® » / \ ~
. ; ® ®
Widezt kevs in . Event
5 5 Widget Leys
the databage z c Databaszec
Tser nwl m Client
Control
L L

Viid get leevs

Figure 15: The networking and database framework for event sharing -the updates in each
widget from an interface in control(an event client), is reflected to other clients, through the
event server

The user in control of the interface has control over sending the event updates whenever he
decides to. The simplest way to send updates will be during callbacks set for the widgets. This
can be done by calling this api
eventClient — put(pathname, widgetname, data, datasize)
where eventClient is the event database client used for collaboration, pathname is the name
of the path for a particular interface, widgetname is the name of the widget which is used to
register a widget with the database (this is explained in the following section) and the data of

sizc given by datasize, is sent as the cncoded cvent update. For cxample, input widgets can

44

send the string in the widget as data, while buttons can send a SET or an UNSET state as
defined in the event client C++ class.

Sharing an interface is a choice left to the user. Collaborative interfaces have a share state
which can be toggled. If the share state is turned on, all updates from the client reach the
server. Otherwise only local updates are done. (The share state is represented in Figure j; by
the share view check button which can be toggled)

The updates from remote clients, coming from the server, can be read by calling this api
eventClient — process()

To understand the implementation of the event client, a knowledge of how the event server
works is helpful. The algorithm in Figure 16 explains the inner-workings of the event-database
server, which is an implementation of the CAVERNsoft’s database server. The event-database
server has a database look up of different keys for the widgets registered for each interface. Any
new update from a client is reflected to all other clients. Clients can also request for the latest
value of a key(usually state value of a widget). The event clients listen to messages which have
encoded information about an event from a remote interface. The event handler is triggered
to react to the event(which is detailed in the next subsection). Another implementation issue
is, giving a late joiner in a collaborative session, all current values of the keys corresponding to
the values of widgets in an interface. This is done by having a key giving the list of keys(for
the widgets) in an interface and updating that list key when a widget is updated for the first
time. A new client will therefore fetch the value of this list key when it enters a collaborative

session.

45

Implementation algorithm for the event-database server

Given: A list, L of N event clients

Objective : To handle incoming event updates and requests and manage new clients

// PUT_MESG is the command to reflect the update to all clients
// FETCH_MESG is the command to obtain the latest value of a key
in the database of the server

01. while (forever) do

02. begin

03. check for any new clients

04. if a new client has joined

05. add the new client to L

06. endif

07. fori<+1toNdo

08. begin

09. Read from the client; for any new message

10. if there is a new message and if it is a PUT_MESG
11. then update database, reflect updates to other clients
12. endif

13. else if the new message is a FETCH MESG

14. return the latest value of the corresponding key
15. end elseif

16. end

17. end

Figure 16: Algorithm explaining the implementation of the event server in a collaborative
session

5.1.2 Event Handling, A Subject-Observer Design Pattern

The subject-observer design pattern is used in object-oriented design to establish an one-
to-many dependency between objects so that when one object(the subject) changes state, all
its dependents are notified and updated automatically(50). The event handler in uCAN is
implemented as an observer that is attached to the event client(the subject). Any new update

about a key that the event client receives is given to the event handler for a rcaction on the local

46

interface. Figurce 17 cxplains the subject-observer relation for the event handler and Figure 18

describes the way in which the event handler updates an interface of events.

e i
Observer Attach() Subject
Update()
Remote ¥ Event Database Client
Events .
Subject — A
Remote Event
Listener
Update() Update()
Observer — An Observer — An
Event Handler Update() Event Handler

Observer — An
Event Handler

Figure 17: The event handler and event client are implemented using the subject-observer
design pattern. A new cvent rcad by the cvent client automatically triggers the update() call
of each observer(event handler)

A widget can be added to the lookup table of the event handler by the following api:

eventHandler — manage(keyname, widget, handlingRequired,

Obzerver — An
Event Handler

newEvent(char*
eventData)

Lookup table for event handling

Deduce active | Type of Widget Handling | Callback User callback to be
widget # from required required called
eventData
Wdget] Eg: INPUT_TYPE, If Yes, If Yes, If Yes, call
CUTPUT TYPE, set walue{) | docallback{) | userCallbackieventData,
BUTTOMN _TYPE, for widget | for widget userdata) for the widget
BEOWIEE_TYPE
etc.
Widget2
i
1
i
i
WidgethT ¥

47

Figure 18: The diagram describing the lookup table in a event handler and how updates are

done whe new data comes in to the client

typeOfHandling, do_callback, userData, userCallback)

The manage api adds the widget instance(widget) with the corresponding(keyname) in a

lookup table. The type of handling(typeO f Handling) depends on the nature of the widget.

There are predefined types for standard widgets like the Input, Output, Button, Check Button,

Radio Button, Browser types and Choice Menus. handlingRequired is a flag that should be

turned on if the handling is to be done by the event handler(which manually sets values for

these widgets, by reading the data assuming its in a default format). The callback of the widget

48

can also be called from the event handler. This is made possible by the good object oriented
design of the FLTK library, wherein all types of widgets are inherited from an abstract widget
class, where most functions are virtual and the appropriate methods of the derived types are
called. The user is also given freedom to implement his own handling to an event, by providing
a userCallback which is called with the userData provided and the data(encoding the event
update) got from the client.

As for graphs in a collaborative environment, they are initiated for monitoring at one site
and arc generated at remote sites in the same way. So cach client is in control of the graphs at

their end and can interact with the visualization without any control transfer.

5.2 Implementing Roles for Control in Collaboration

The previous section deals with how collaborative interfaces have been implemented. Since
network analysis can be a sensitive issue in terms of control, there has to be a way of allowing
the person initiating a network operation have control over the operation at anytime. Hence
control states and roles have to be defined.

A participant in a collaborative session who initiates (or had initiated the interface before
entering a session) is termed as the owner of the interface. Any participant in a session can
request control over an interface from the owner and control can be granted or denied by the
owner. The owner of the interface, if he grants control to another participant, can override
others and take back control at any time. Hence this places the control of an operation to
the person who initiates it, while at the same time, the owner can also let the operation be

controlled by others and possibly gain from the expertise of the collaborator.

49

5.2.1 Implementation

uCAN has an inbuilt default control exchange in the event handler of the uCAN event client.
This can be used by setting a widget (usually a button to request control as shown in Figure
14)as a CONTROL_TY PE widget. In general all shared interfaces in uCAN have two modes -
IN CONTROL and NOT_IN CONTROL. As they might suggest, the user who initiates an
opcration is by default IN_CONT ROL and when an interface is shared, it appears on remote
sites in the NOT_IN _CONT ROL mode, where widgets are disabled and other users have no
control over the interfaces. FLTK allows a collection of widgets to be used and referred to as a
group. uCAN makes use of this to defined a activeGroup and an inactiveGroup of interfaces
in the event handler. So, the freedom is left to the user to set any number of widgets as part of
an activeGroup, which is inactivated for users who are not in control or vice versa by defining
widgets as part of the inactiveGroup. The set ActiveGroup and setInactiveGroup api’s are to
be used for this.

The control transfer can be represented as an event diagram as in Figure 19.

Figures 20 and 21 illustrates the control transfer in a collaborative session

Request owner for control

NOT IN_
CONTROL
NOT IN Control denied by owner
CONTROL
Clent 1 Che1
Request owner for control
NOT IN_
CONTEROL
“ontrol granted by owner
m’_c1 {:}NTR{:}L --- P
Acknowledgement of Control
NOT IN_
o CONTROL s s

Time

Control overrided by owner

50

| IN_CONTROL

1t 2 (Owner)

IN_CONTROL

NOT IN
CONTROL

IN_CONTROL

Figure 19: A control flow diagram represented as events - two clients are represented and both
control denial and grant cases are shown. In the diagram, the two states - IN.CONTROL and
NOT_IN_CONTROL are activated after the corresponding message reaches the client.

51

100

T e

Boncvicth | Color dner |

Figure 20: The figure shows a request from the user on the right to the owner of the inter-
face(lett), for granting control. The owner will lose control once he grants control to the remote
user

5.3 Building a New Shared Interface

The networking and database architecture and the event handling, including defined control
transfers are reusable portions of uCAN’s framework. A new interface designed by the user to
configure a new kind of test or visualization, can also use the above features and make their
interface shared like other uCAN interfaces. To do this, the shared interface must be written

as a C++ class inherited from wCAN _sharedInter face_c and they automatically inherit the

52

3500 9500

Figure 21: The figure shows the grant of control to the remote user. The remote user is in full
control over the interface and can perform operations as he can from his own interface. The
owner can override control at anytime.

functionality of an event client for sharing with remote interfaces and a event handler to listen

to events defined by the user, as shown in Figure 18.

Here’s a sample usage of the api’s to make a new interface, say newSharedInter face collabo-

rative:

class newSharedInterface : public uCAN_sharedInterface_c //Inherit from the base type
eventClient = new uCAN _eventDBClient_c //Creates a new event client

eventClient — shareMyStuff() //Connects to a collabortive session

53

eventClient — triggerThisUI(this) //delivers the updates to the widgets managed

The widgets in the interface should be managed by the manage() api described in the
previous section. The events to the managed widgets are delivered as specified. The user can
control the updation of the interfaces by using the eventClient — process() api.

Thus a combined view of these three sections gives a good picture of how collaboration is
implemented in uCAN to share interfaces and how the framework can be extended to build

new shared interfaces.

5.4 Summary

The design and implementation of collaborative services has been discussed in detail. The
chapter’s aim was to explain breifly, the issues in creating a shared workspace type environ-
ment and to define needs of collaboration in the domain of network analysis. A treatment of
the design has been given without too many implementation level details, but with just the
detail required to understand the basic functionality.

So far, the emphasis has been on exploring the core capabilities of network analysis, concen-
trating on the depth of each area. The next chapter describes the missing pieces needed to

come to the final picture of an extendable unified collaboratory.

CHAPTER 6

AN EXTENDABLE UNIFIED COLLABORATORY

This chapter describes the implementation of the framework in uCAN, focussing on the
areas that have been designed to be reused and extended. A results section has been provided,
giving some sample results from an experiment.

6.1 Unification of tools: The Event Reflector

The use of multiple tools in a collaboratory is highly enhanced when they can be made to
complement cach other’s capabilitics. This is the motivation behind using an cvent reflector
to transmit event messages between processes. The objectives of the event reflector include
providing simple methods to pass events and allowing an external application to connect to
the event reflector to pass events. The implementation of these features is explained in the
following section.

6.1.1 Some API’s

An event can be sent can be sent to the event reflector using the following api’s:
uCAN_internalClient_c * internalClient
internalClient — init()
internalClient — sendEvent(description)
where the init() api connects the internal event client(internalClient) to the internal event
reflector on the local host and sendFEvent() sends a timestamped event with the description
string that describes the event to all other connected clients(processes which include graph

widgets used for active tests, snmp queries and shared widgets)who are listening to events from

54

55

other processcs.

The shared interfaces that wish to listen to events from the event reflector should implement
the following api:

announceEvent(timeStamp, description, typeOfEvent)

where the tirnestarmnp corresponds to the time when event was sent from a process, description
describes what the event is and the typeO f Event can be a default event or a specific event that
maybe understood and implemented by this process, either to return a particular value or do
something after checking for a condition. This can be conceivably very uscful in the context of
applications requesting for values of network parameters from tests or from a snmp variable.

6.2 Joining the pieces for a collaborative session

This section explains the management of a collaborative session, including logging into a

new section and managing new interfaces in a collaborative session.

6.2.1 The Objectives

1. Once an user is logged into a new collaborative session, all other interfaces should be

updated about the central server and can connect to it at anytime

2. When a new interface is shared from a remote end, it should be run on the local host in

the inactive mode.
3. BEach participant should know the list of participants in a collaboratorive session

4. A white board feature will be useful for exchanging messages between collabroators

6.2.2 The Connection Manager

The connection manager module in uCAN coordinates between shared widgets and is built

to meet the objectives as mentioned. A login interface used is shown in Figure 23. Participants

56

Shared Interface
driving an active

test
T T ; Entered a - :
Shared Update Event Connection
Illterfflce :ﬁ"lll' session mfo Re:ﬂectﬂ[new scssion manager
SNMP queries

connect

Anv other Share interface (connect i ,
} o PLEL) Collaboration

shared mterface server
b3

Figure 22: The diagram explains how a collaborative session is managed with the help of a
connection manager. Once the user logs into a new session, information about the session is
transmitted to all his internal operations -so that each interface can connect itself to the session

can log on to a known collaboration server to join others in a session. Once a connection is
established, the location of the server and the port is reflected to all other shared interfaces
on the local host, via the internal communication channel (through the internal event reflector
described in the previous section). This is explained in Figure 22. A interface, once shared,
connects to the collaboration server and is a new client in the session. For each new interface

shared, a new remote interface is created on other sites by the respective connection managers.

57

=-] HCAN Colfaborate — Connection U] a i D.i

Join Zession

Server
Mame

Port|5778

|torrance

Connect

Zend hessage

User|John Set
MName

sers
John
George : Hi George
John @ Hi, check the value on this snmp
query

Enter| ST
msg

Figure 23: The figure shows a login interface, which is used to enter a collaborative session. The
users can conference using the whiteboard. Once a collaboration session is started, all other
processes get updated about the session information.

An implementation issue, in creating remote interfaces dynamically, is to keep track of the num-
ber of interfaces and to start remote interfaces for each interface shared from other machines (it
should be taken care that interfaces on the local host are not duplicated). This is implemented
by maintaining a list of interfaces on the collaboration scrver, that is updated cach time a new

interface enters a session. The list entry consists of the identification of the interface(essentially

58

a unique path for the interface) and the host name of the machine on which the interface (and

potentially, a corresponding network operation) was initiated.

6.3 Moulding into a Collaboratory

In the trend towards collaborative computing and tool building, there exists a need for col-
laboratories that integrate different tools and encourage new tools to be added to the repository
of collaborative tools. The final vision of uCAN is to attempt to mould a system along these
lines, by designing a framework to add new tools and make it collaborative. An implementation
shows a collaborative test repository and a way to configure new tests and add to the collab-
oratory. Figure 24 shows the configuration tool for tests. Though the framework is meant for
tests, most parts of it can be reused to use it in the future for a more generic collaboratory for

network operations.

6.3.1 Writing DSO’s -Some API’s to Use

Active tests are implemented as Dynamic Shared Objects(DSO’s). The DSO written should
be made to extend a generic collaborative test C++ class in uCAN, namely uCAN _collab_test_c.
This has a few API’s that help run a new type of test easily. Once the parameters for a test has
been supplied, the test is automatically run a test machine that the user has specified. This
is acheived by passing the name of the DSO to link to. A test daemon should be run on that
machine that would link to the corresponding DSO at run time, assuming it has been compiled
and available on that machine. The Figure 11 given in chapter 4 explaining the architecture of
the test daemon may be referred in this context. Some API’s that are useful for fitting a new
tool are given as follows:

initTest(dsoName, hostName, ifScript, logfilename, parameterSize)

59

4

=.§ tCAN Config or Add a Test | a igj
Test Panel
[Netpert | Test TitIe|Bandwidth Test between zht
ping
Test DS0
Name|Netperf
Test :
hachine |zbox.eu|.um.edu

Log ﬂle|

stata _|Script [Interface

Command netperfll

line

Execute ‘ kil

Add a Mew Test ¢ Show Graph <

Figure 24: The configuration interface shows how a new test can be added or an existing test
can be reconfigured. The configuration is saved for future sessions. The user can either run a
script or have the tool start another executable for his own interface. DSO names of the test
are used to refer to the test. In this interface, the Netperf test has to be implemented in a
Netperf.so.

This should be done to initialize a test. The parameters needed are, the name of the DSO that
should be used for the test(dsoName), the name of the test machine(hostName),the name of
the logfile -if the test has to be logged, the paramcter size of the test paramcters that will be
passed and whether the program is a script or an interface. By default the function will be
mostly used by programmers who design their own interface. Scripts are dealt differently, as

explained later in this section.

60

The test to be run is encoded in a sct of strings(say argv). If arge indicates the number of
these strings which form the command, a test can be triggered by the user with the following
APIL:

runThisTest(argc, argv)

The test command thus provided is packed and sent to the test daemon. The rest daemon links
to the appropriate DSO for the test and executes the test using a

executeTest(argc, argv)

which should be implemented in the new test defined.

The results of the test have to be deciphered by the user. and the value to be packed to be sent
for analysis. The buffer is packed at the testdaemon using a packTest Results(buf fer, size) api
and unpacked at the user end by an unpackT'estResults(buf fer, size) api. The results of the
test thus packed are automatically sent to all clients interested in receiving the resulting test
data.

The results of the test will be plotted on a graph(unless the user decides to disable the graph
option) The coordinates of the graph, the scale and origin are configurable.

Most network researchers who carry tests on networks, use scripts, usually tailored to meet
their needs. It becomes important to support scripts to be run directly without minimum extra
effort. For a script to run on a remote test machine, the user will have to specify the script
command line with the configuration tool as showin in Figure 24. The script will be run in
a sceperate shell and the user will just have to implement the pack and unpack methods for

interpretation of the tests.

61

The main idea behind this framework is that the new test thus added using the configuration
tool is automatically made part of the integrated and collaborative framework of existing tests.
So, if the user decides to share the results of a test. the test panel for others in the collaborative
session will be updated to add the new test and a graph will be started that will be automatically
updated with the results of the tests, assuming the DSO for the test exists on all machines.
Also the graph plotted will be enabled to receive events from the event reflector to help in

simultaneous analysis.

6.4 Results and Analysis

6.4.1 An experiment

An experiment was conducted between an SGI Onyx2(sender) and a SGI O2(receiver), both
with 100 Mbps ethernet cards connected to a Cisco 7507 Diflserv enabled router. The aim of
the experiment was to demostrate utility of uCAN to quickly arrive at a possible solution. The
scenario explained in this case is very simple. But the thesis is that in the case of more real
complex networks, another tool required to gather more information, can be used to fit into
the collaborative and unified framework of uCAN.

The machines were used to run a simulated, scaled down version of a tele-immersion ap-
plication, using the sender as the client and the receiver as the server. The application is
multi-processed, with each process consisting of a different type of flow. The performance
information collected from the two (reliable and unreliable) channels instrumented, was visu-
alized using QoSiMoTo (Figurc 25). The first process consisted of a reliable communication
loop, in which TCP was used to send some data continuously. The flow corresponding to this

process is labelled as Control_flow_reliable_channel in Figure 25 . The second process consisted

of an unrcliable message communication loop using UDP. Such a channel is typically used for

sending traced positions of users in applications like tele-immersion. This flow is named as

Avatar_Tracker_channel in Figure 25. The third process consisted of a file download loop which

was left to run in the background. The performance visualization of the streams, with latency

and jitter versus time, of multiple flows, is seen in Figure 25.

= OpenCAVESim

e CAM Application Performance Monitoring

e 100

ol

= Time

Log file
(to write out)

Murmber of flows |1E|E|

Perf daemon IP |zbox.eu|.uic.edu

Perf daemaon port|EIEEIEI

|uCARNLlog

— £ Stream_Info

Latency

Y Latency

I

— Color Jitter

anse !

I

Yisualize

<

Bovs, Tovadnas, Dl

| a—

| e e

Figure 25: The figure shows a qosimoto visualization, with the configuration interface in uCAN,
visualizing two different streams used in the experiment. Latency(seconds) is plotted versus
time(in seconds) with the two streams along the Z-axis. Color is used to represent jitter. As
traflic conditions on the router changed, the latency showed a sharp rise in the streams as

shown.

63

Now background test traffic, which consisted of jumbo UDP packets at rates starting from
20 Mbps to 100 Mbps was sent in the same direction -from the sender to the receiver used for
the above application.

A sequence of steps listed below, is hypothesized, simulating a real environment (to indicate

that this sequence of steps is possible) to demonstrate the use of uCAN in an application.

1. The QoSiMoTo visualization shows a sharp rise in latency in the application flows.

2. The application developer/user contacts the network manager who handles the router
management and use his help in identifying what could be the source of the traffic situa-

tion.

3. The manager brings up a SNMP monitoring tool to query the incoming traffic at the
sender machine(laurel in Figure 27). He shares the query interface with the user, and the

user sees the graph shown in Figure 27.

4. The user and the manager interact to find out from other interfaces to see if any activity
indicates a relation with the condition in the receiver’s interface. After this, the user
requests control from the manager and decides to make his own query, querying the

sender’s interface (turing in Figure 28).

5. The traffic pattern matches in the output traffic from turing and input traffic on laurel
indicate a possible relation, thus helping in narrowing down possible sources of bottle-

neccks.
6.4.2 Analysis

The sequence of the experiment demonstrates very clearly that use of an unified, collab-

orative tool like uCAN can accelerate arriving at the source of a problem. However in the

64

=-] HCAN Colfaborate — Connection Ul] a i D.i

Join Zession

Server
Mame

Port5778

|cray

Connect

Zend hessage

User

Narme | Jerry Set

lUsers
Jderry
Jderry Hi Bob
Jerry | am getting some strange values
of latency and jitter in my applications
Jerry | am not sure ifthere is a
congested condition
Jerry : Can you show me a view of
incoming traffic if you can query from
there?
Bob : What is the machine you are
running on? I'll check the interface
Jerry ! laurel.evluic.edu

Enter| =T
msg

i T

Figure 26: The connection interface - an user logs into a collaborative session to collaborate
with a network manager to ’borrow’ some information about incoming traffic related to his host
machine

case of more complex networks, several interfaces exist in a router and each one with several
suibnetworks, passing traffic to many such machines. In such cases, the use of a passive mea-
surement visualizer to identify flows in the traffic will be very useful. Also a map of the topology
of the network or of bandwidth utilization of several interfaces on a router, will also help in
identifying locations of problems that was trivially done in this experiment. The thesis of the

experiment again stands to prove that such a unified and collaborative approach is useful and

65

gives a new powerful platform to use other such new tools in future to identify more realistic

traffic problems.

6.5 Summary

The focus of the chapter has been on describing the unification of tools in uCAN and the
methodolgy to add a new tool into the collaboratory. The results section demonstrates the
advantage of using a unified and collaborative approach in understanding network problems

related to applications.

66

Cescription

HostiName| 131.153.75.17 The = :
an |4 QCAN Graph View

inclufg

EEEEES

Community

IvIB Chjects
sysDescr -
sysConfact
syshlame
sysLocation
[finOctets laurel
iflnCctets.turing inter
ifoutOctets laurel =gl
ifQutCctets uring
ipForvarding
iplnFeceives
ipInDelivers
iplnDiscards
ipCutRequests

ipCutDiscards
inCithlnBEntes hl

Set Walue Submit

Toggle Monitoring

Request Control

Figure 27: The network manager situated remotely brings up a graph to monitor traffic inflow
at the interface to which the user’s host is connected. The graph shows a plot of percentage
increase in the bandwidth (the percentage of the new input octets with respect to the total
number of octets at the interface) versus time. The query interface is controlled by the manager
here, while the results of the query can be seen by both of them. The bandwidth rise showed
a sharp increase, when traffic was first introduced and the SNMP database was updated.

67

Host Mame|131.193.76.17

Communify [***+**

IIB Chjects
sysDescr
sysContact
syshame
sysLocation
ifinOctets laurel
iflnDctets turing
ifOutOctets laurel

ipFonvarding
ipinFeceives
ipInDelivers
ipInDiscards T | | '-.
ipCutRequests ' ! Boa A1 doal
ipQutDiscards /

inCithlnEnte

Set Valuel Suhb

@ Toggle Monitoring

|
T

Request Control

Figure 28: The user then requests the network manager control over the SNMP query interface
to make his own query to find out possible areas from which traflfic might arise from. The
Figure shows that the user is in now in control and has started a SNMP monitor on output
traffic from turing - the sender in the experiment. A comparison with traffic patterns in laurel
indicated that there could be a possible mapping between the two

CHAPTER 7

CONCLUSION AND FUTURE WORK

7.1 Conclusion

On a concluding note, a second look at the formal definition of analysis helps to summarize
the context and focus of this thesis. The purpose of a unified and collaborative approach is
mainly to understand diferent perspectives of analyzing networks, exploring how they can merge
together to work hand-in-hand and aim towards building a collaboratory of nctwork tools that
can be shared in a group environment. A detailed treatment of the active testing, network
management and performance monitoring capabilities has been provided. The focus has been
to stress on unique features and reusable framework design at places applicable.

7.1.1 Contributions

The main contributions of this thesis can be listed as follows:

1. Provides ubiquitous active testing capabilities
2. Proposcs an active testing framework for adding new testing tools
3. Proposes ubiquitous network management in replacement for traditional management

4. Provides an event based analysis methodolgy for applications and a 3D visualization
capability using an existing tool
5. Proposes a unified methodology for analyzing network events along with events from

applications

6. Proposes collaboration and a role based remote acess control for analyzing networks

68

69

7. Proposcs a collaborative framework, with utility tools for building collaborative applica-

tions

A comparison of such a unified and collaborative approach with other traditional approaches
and techniques can be made as given by the following table. As the table indicates, the strongest

point of the approach is that, it combines the strengths of other approaches and aims to explore

more ways of using one approach to complement the others.

Feature Primary Primary Ubiquitous Event Collaboration
Strengths Drawhacks Access bhased
Approach analysis
Active Accurate Generates traffic — YTes (has Mo Mo
Mesurement measurements, not smtable for been done
Fe: NIMI standardized testing along with | by MM
methods applications
Passive Suitable for Mot stanardized, Mo Can be Mo
Mesurement background difficult to done
Eg: OCxMON, | measurement with implement,
PMA applications security problems
Router Data SHMP —Standard, SHMFE not Mo Mo Mo
Collection convenient specific to Hows
Eg:SNMF, MNetFlow —can MNetflow — not
NetFlow analyze flow supported widely
Application Indicates events in Lack of enough Tes Yes Mo
Based applications and networl state
Performance | analyzes interactions information to
Analysis that lead to change in complement
Fa:NetLogger networlk state
The proposed | Combines strengths COWercomes Tes Tes Yes+
Unified, of other approaches, | drawbacks of one proposes
Collaborative MNetworks analyzed component with framework for
Approach with applications, the strength of collaboration
Eg:uCAN collaboration another

Figure 29: Comparison with other approaches for Analyzing Networks, the relative strengths
and drawbacks and some missing criteria. The rows of the table show the various approaches
and the columns of the table show the criteria of comparison.

70

7.2 The Future

The thesis has been an attempt to define an approach and formulate a framework for using
the approach further to use different tools. Therefore, the focus will be on building the toolset
and experimenting more with different type of tools. Users’ perspectives to the tool will be very
vital to make the design more generic and acceptable to new tools. A primary focus is therefore
to help analyze performance in a rescarch network between EVL and another institution.

The unified framework has inevitably led into the other side of analysis -helping an applica-
tion react to performance problems that have been detected. The event reflector scheme that
has been discussed should include more features to help applications suery values of network
parameters that interest the application and set trap-like events that give an automatic indi-
cation back to the application when a network parameter or a monitored MIB variable crosses
an acceptable limit.

In the case of large collaborative environments, the scalability of the collaboration server
might become an issue. Though the performance scales fairly well for around 10 clients, higher
numbers might benefit from a peer-peer selective update method or use of multicast support
for managing clients.

Considering the sensitivity of network information and the possible concerns this approach
might raisc in the networking community, an implementation of a cryptographically sccure
server for collaboration and also extending it for access to SNMP wueries, tests etc, should be

an important step.

71

Finally, cxperiences with uCAN will lcad to placing it as a Grid tool to aid acceleration in
understanding networks, which will ultimately help networks and applications work together

smoothly, in a better understood context of each other.

10.

11.

12.

13.

14.

15.

CITED LITERATURE

. Leigh, J. et al.: Cavernsoft g2, a toolkit for high performance tele-immersive collaboration,

http://www.openchannelsoftware.org/projects/cavernsoft_g2.

. Spitzak, B. et al.: The fast and light toolkit, http://www.fltk.org.

. Wolf, W. A. et al. National Collaboratories: Applying Information Technology for

Scicentific Rescarch. National Academy Press, 1993.

. The HP OpenView Homepage, http: //www.openview.hp.com.

. The CiscoWorks 2000 Homepage, http://www.cisco.com/warp/public/cc/pd/wr2k/index.html.

. Cottrell, L.: A list of network monitoring tools from the stanford linear accelerator center,

http://www.slac.stanford.edu/xorg/nmtf/nmtf-tools.html.

The simpleweb, list of network management software, http://www.simpleweb.org/software.

. Schonwalder, J. and Braunschweig, T.: Scotty, Tcl Extensions for Network Management

Applications, http://wwwhome.cs.utwente.nl/ schoenw/scotty.

. Oetiker, T.. Rand, D., et al.: The Multi Router Traffic Grapher network monitoring tool,

http://mrtg.hdl.com/mrtg.html.

The NET-SNMP Project Homepage, http://net-snmp.sourceforge.net.

White Paper on NetFlow Services and Applications.

cflowd: Traffic Flow Analysis Tool, http://www.caida.org/tools/measurement /cflowd.

Haberman, M. et al.: flowboy, an object-oriented framework for generic network flow
management. In Proccedings of the Passive and Active Mceasurements Workshop,
Hamilton, New Zealand, 2000.

Jones, R. et al.: The public netperf homepage, http://www.netperf.org/.

The ping page, http://www.ping127001.com/pingpage.htm.

72

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

73

The traccroute page, http://www.traccroute.org.

Kalidindi, S. and Zckauskas, M. J.: Surveyor: An infrastructure for internet performance
measurements. In Proceedings of INET"99. 1999.

G, F. et al.: Providing active measurements as a regular service for isp’s. In Proceedings
of PAM 2001, 2001.

Almes, G. et al.: A One-way Delay Metric for IPPM, RFC 2679, September 1999.

Hansen, T., Otegro, J., McGregor, T., and Braun, H.-W.: Active measurement
data anlaysis techniques. In The Proceedings of the International Conference on
Communications in Computing (CIC’2000), Las Vegas, Nevada, June 2000.

Paxson, V., K.Adams, A., and Mathis, M.: Experiences with nimi. In Proceedings of PAM
2000, 2000.

Apisdorf, J. et al.: Oc3mon: Flexible, affordable, high performance stat istics collection.
In Proceedings of the USENIX LISA X, 1996.

The Coralreef Measurement software, http://www.caida.org/tools/measurement/coralreef.

The tcpdump public repository, http://www.tcpdump.org.

Brown, J.: The Cichild Visualization Software, http://moat.nlanr.net/Software/Cichild.

Ellson, J. et al.: GraphViz Home Page, http://www.research.att.com/sw/tools/graphviz.

The GeoBoy2 Homepage, http://ndgsoftware.com/ ndgprod/pagel5.html.

The VisualRoute Hompage, http://www.visualware.com/visualroute.

Browne, S., Dongarra, J., and London, K.: Review Of Performance Analysis Tools for
MPI Parallel Programs, http://www.cs.utk.edu/ browne/perftools-review, 1997.

Gunter, D. et al.: Netlogger: A toolkit for distributed system performance analysis.
In Proceedings of the Eighth International Symposium on Modeling, Analysis and
Simulation of Computer and Telecommunication Systems, 2000.

Abela, J. and Debeaupuis, T.: Universal Format for Logger Messages, IETF Internet
Draft, http://www.ietf.org/internet-drafts/draft-abela-ulm-05.txt.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

74

Gates, M., Warshavsky, A.; and Welch, V.: The nctlog library libray for performance
monitoring, http://dast.nlanr.net/projects/netlog.

Leigh, J., Johnson, A.. Defanti, T., et al.: A review of tele-immersive applications in the
cave research network. In Proceedings of IEEE VR99. Mar 1999.

Park, K.: Qosimoto 3d visualization tool, http://www.evl.uic.edu/cavern/qosimoto.

Cruz-Neira, C. et al.: The cave: Audio visual experience automatic virtual environment.
Communications of the ACM, 35:65-72, June 1992.

Miller, G.: A vperspective on passive measurement -a presentaion at the caida,
http://www.caida.org/outreach/isma/9901/slides, 1999.
Azabu, M. and Minato-ku: From wealth to wisdom: A change in social paradigm. In

Proceedings of CSCW 92, 1992.

Richardson, T. et al.: Virtual network computing. IEEE Internet Computing, 2:33-38,
Jan/Feb 1998.

Ishii, H.: Teamworkstation: towards a seamless shared workspace. In Proceedings of
CSCW ’00. 2000.

Park, K. et al.: Exploiting multiple perspectives n tele-immersion. In Proceedings of IPT
2000, 2000.

Shu, L.: Groupware experiences in three-dimensional computer-aided design. In
Proceedings of CSCW 92, 1992,

The internet2 website, http://www.internet2.edu.

The science, technology, and research transit access point, http://www.startap.net.

The doe science grid , http://www-itg.lbl.gov/grid/.

The access grid project homepage, http://www-fp.mcs.anl.gov/fl/accessgrid/default.htm.
The network time protocol distribution, http://www.eecis.udel.edu/ ntp/.

Engelschall, R. S.: Apache DSO Support, http://httpd.apache.org/docs/dso.html.

75

48. McCloghric, K. ct al.: Management Infomation Basc for Network Management of
TCP /IP-based internets, March 1991.

49. Stallings, W.: SNMP, SNMPv2, SNMPv3, and RMON 1 and 2. Addison Wesley Longman,
Inc., third edition edition, 1999.

50. Gamma, E. et al.: Design Patterns, chapter 5, pages 293 — 393. Addison-Wesley, 1995.

NAME:

EDUCATION:

EXPERIENCE:

PROJECTS:

REFERENCES:

VITA

Naveen Kumar Krishnaprasad

B.E., Instrumentation and Control, University of Madras, Madras, In-
dia, 1998

M.S, Computer Science, University of Illinois at Chicago, llinois, USA,
2001

Graduate Assistant, Clinical Resource Management, Fall 1998 - Fall
1999

Graduate Assistant, College of Business Administration, Fall 1999 -
Spring 2000

Research Assistant, Electronic Visualization Laboratory, University of
Illinois at Chicago, Spring 2000 - Fall 2001

Fault tolreant distributed system for ray casting
Visualization of nctwork performance in a virtual environment

Shared Distributed document editor

Statistical detection of network congestion using the Data Space Trans-
fer Protocol

Compression and Uncompression of files using the Huffman encoding
algorithm

PC based distributed control system, involving design of hardware in-
terface to the PC and simple visualization of the control of chemical

Processes

Available on request

76

