
Minimizing Power Waste in Heterogenous Computing via
Adaptive Uncore Scaling

Zhong Zheng

University of Illinois Chicago

Chicago, USA

zzheng33@uic.edu

Seyfal Sultanov

University of Illinois Chicago

Chicago, USA

ssulta24@uic.edu

Michael Papka

Argonne National Laboratory (ANL)

Lemont, USA

University of Illinois Chicago

Lemont, USA

papka@anl.gov

Zhiling Lan

University of Illinois Chicago

Chicago, USA

Argonne National Laboratory (ANL)

Chicago, USA

zlan@uic.edu

Abstract

High-performance computing (HPC) systems are essential for scien-

tific discovery and engineering innovation. However, their growing

power demands pose significant challenges, particularly as systems

scale to the exascale level. Prior uncore frequency tuning studies

have primarily focused on conventional HPC workloads running

on CPU-only systems. As HPC advances toward heterogeneous

computing, integrating diverse GPU workloads on heterogeneous

CPU-GPU systems, it becomes imperative to revisit and enhance

uncore scaling. Our investigation reveals that uncore frequency

scales down only when CPU power approaches its thermal design

power (TDP), which is rare in GPU-dominant applications. As a

result, modern computing systems experience unnecessary power

waste. In this study, we present MAGUS, a user-transparent uncore

frequency scaling runtime for heterogeneous computing. MAGUS

dynamically adjusts uncore frequencies according to distinct appli-

cation execution phases, effectively minimizing power waste caused

by consistently using maximum uncore frequencies. Our design in-

corporates several key techniques, including real-time monitoring

and prediction of memory accesses, intelligent handling of frequent

phase transitions, and leveraging vendor-provided power manage-

ment features. We evaluate MAGUS with various GPU benchmarks

and applications on multiple heterogeneous systems with different

CPU and GPU architectures. Experimental results demonstrate that

MAGUS achieves up to 27% energy savings compared to the default

settings, while maintaining a performance loss of less than 5% and

an overhead of under 1%.
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1 Introduction
High-performance computing (HPC) plays a vital role in advancing

numerous research fields by utilizing extensive high-end computa-

tional, memory, storage, and network resources to solve complex

problems. However, these powerful capabilities often lead to signif-

icant energy consumption. As HPC systems have scaled toward the

exascale level in recent years, their energy consumption has become

a critical concern. For example, the recently deployed Aurora su-

percomputer at Argonne National Laboratory achieves a sustained

performance of 1.01 exaFLOPS while consuming approximately

38.7 MW of power [42]. The growing power demands highlight

the urgent need for energy-efficient computing to conserve en-

ergy while maintaining performance. Our work aims to address

this need. Here, energy efficiency is defined as minimizing the total

energy-to-solution, that is, the total energy required to complete

an application.

Various efforts have investigated energy efficiency using tech-

niques such as dynamic voltage and frequency scaling (DVFS),

frequency scaling, and power capping [10, 22, 23, 57, 62, 63]. A

typical CPU consists of core and uncore components. The core

encompasses the CPU cores, while the uncore includes the Last

Level Cache (LLC), Memory Controller (MC), and Quick Path In-

terconnect (QPI) [3, 7, 30]. Several studies show that the uncore

contributes significantly to overall power consumption, averaging

5-15% of total CPU power, depending on processor architecture

and workload characteristics [14, 29]. Recognizing the potential for
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energy savings through uncore frequency scaling (UFS), several

studies have explored various methods to achieve this goal. Broadly,

these methods can be classified into model-based and model-free

approaches. Model-based methods typically use multiple hardware

counters to construct analytical or machine-learning models that

guide uncore tuning decisions [60, 68]. In contrast, model-free meth-

ods rely on real-time feedback data for decision-making [5, 24, 26].

UPScavenger [24] is a pioneering model-free method that dynami-

cally adjusts uncore frequency by detecting phase transitions be-

tween compute-intensive and memory-intensive regions. It moni-

tors DRAM power and Instructions Per Cycle (IPC) without requir-

ing complex modeling.

We identify several limitations in existing studies. First, some

methods detect phase transitions between compute-intensive and

memory-intensive phases by tracking multiple hardware counters,

which can potentially introduce considerable overhead. Others

rely on extensive offline profiling, complex model construction, or

manual modifications to user code. Additionally, few studies have

investigated the impact of uncore frequency scaling specifically

on GPU workloads (e.g., emerging AI-enabled applications), as

prior efforts have focused mainly on traditional HPC workloads in

homogeneous CPU systems. As HPC environments increasingly

adopt heterogeneous CPU-GPU architectures and execute hybrid

workloads, particularly emerging applications that primarily rely

on GPUs, it becomes essential to address these gaps.

In this work, we investigate whether the uncore frequency is dy-

namically adjusted when executing GPU workloads or AI-enabled

scientific applications. While vendor-supplied dynamic uncore scal-

ing solutions may exist [6], our study reveals that uncore frequency

is only adjusted when CPU power usage approaches the thermal

design power (TDP). In GPU-dominant applications, applications
relying primarily on GPUs rather than CPU cores, CPU utilization

rarely reaches TDP. Consequently, the uncore frequency remains at

its maximum, leading to significant power waste. The primary rea-

son is that GPU workloads typically do not require extensive com-

putational tasks to be performed on the CPU. We further conduct a

case study to examine the impact of uncore scaling on application

performance and energy consumption. Our findings highlight the

need for uncore frequency scaling to reduce power waste, hence

optimizing energy efficiency in heterogeneous computing.

We presentMAGUS, a model-free, lightweight, and user-transparent

runtime for automated uncore frequency tuning in heterogeneous

CPU-GPU systems. Efficient uncore frequency tuning is inherently

challenging. It requires dynamic detection of application phases

and adaptability to diverse workload behaviors, all while ensuring

minimal runtime overhead. The design of MAGUS incorporates two

primary techniques. First, it provides a lightweight yet effective

method for quickly detecting execution phases that affect uncore

utilization. Instead of relying on multiple hardware counters, MA-

GUS uses a single metric, memory throughput, to minimize runtime

overhead. Second, inspired by the prior work [18], we introduce

the concept of memory dynamics, defined by (a) the first deriv-

ative of memory throughput and (b) the frequency of memory

throughput changes. These features enable MAGUS to predict near-

future memory throughput trends and identify frequency memory

throughput fluctuations, thereby more effectively guiding uncore

frequency scaling decisions. MAGUS is designed as a generic frame-

work, making it applicable to a wide range of GPU workloads and

architectures.

We evaluateMAGUS using a suite of representative GPU-dominant

benchmarks and applications, including thewidely usedGPU bench-

marks from Altis [32, 66], ECP proxy applications [1], two real-

world HPC applications (LAMMPS and GROMACS), and three ML

training workloads (UNet, ResNet50, and BERT) from the MLPerf

benchmark [21]. MAGUS is compared against two baselines: Intel’s

default uncore frequency setting and UPS [24], a state-of-the-art un-

core frequency scaling method. Our experiments examine applica-

tion performance, power and energy savings, and runtime overhead

in both single- and multi-GPU configurations. Results demonstrate

that MAGUS achieves up to 27% energy savings compared to the

baseline approaches, maintains performance degradation below 5%,

and introduces minimal overhead (less than 1%). Overall, our work

offers the following key contributions:

• We analyze the effects of uncore frequency scaling on GPU-

dominant workloads in heterogeneous systems, examining

power consumption and execution time to demonstrate the

necessity and energy-saving potential of our approach (§2).

• We develop a model-free, lightweight, user-transparent run-

time for uncore frequency scaling, leveraging memory dy-

namics to predict near-future memory throughput trends

and detect frequent fluctuations (§3).

• We extensively evaluate MAGUS on various heterogeneous

systems across various HPC benchmarks and applications.

Our results indicate that MAGUS outperforms existing meth-

ods by achieving substantial energy savings (e.g., up to 27%)

while maintaining minimal performance loss (§5-6).

2 Motivation and Challenges

In modern processors, the CPU core frequency and GPU streaming

multiprocessor (SM) clock speed are dynamically adjusted by the

hardware to adapt to workload intensity, thereby avoiding unnec-

essary power waste. However, uncore frequency is dynamically

tuned only when CPU power approaches the thermal design power
(TDP) limit [5].

To validate this behavior, we analyze several applications on a

Chameleon system equipped with an Intel Xeon Platinum 8380 CPU

(uncore ranges from 0.8 to 2.2 GHz) and an NVIDIA A100 40GB

GPU [37]. We focus on GPU-dominant workloads. Figure 1a-1c

presents a case study of UNet training, a convolutional neural net-

work for image segmentation [59]. As depicted, CPU core frequency

and GPU SM clock speed are tuned dynamically by default hard-

ware settings based on workload demands; however, the uncore

frequency consistently remains at its maximum.

We observe the same phenomenon on other Intel systems, includ-

ing Intel Xeon Platinum and Intel Xeon Max processors. According

to [5], the uncore frequency is reduced only when the CPU’s power

approaches its thermal design power (TDP). In practice, CPU pack-

age power rarely approaches TDP when running GPU-dominant

applications, as these workloads are typically not as CPU-intensive

as traditional CPU-only HPC applications.
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(a) CPU freq. (b) GPU clock speed (c) Uncore freq.

Figure 1: UNet profiling on a heterogeneous Intel Xeon
CPU–A100 GPU node. CPU core frequency and GPU clock
speed are dynamically adjusted by default; however, the un-
core frequency remains at its maximum. Each socket con-
tains 40 hardware cores; for readability, we plot the core
frequency of only four of these cores in (a). Sampling at (c)
occurs at 0.5-second intervals, with each sample index repre-
senting one monitoring event.

(a) Max Uncore Freq. (2.2 GHz) (b) Min Uncore Freq. (0.8 GHz)

Figure 2: Power profiles of UNet training under different un-
core frequencies: max (2.2 GHz) versus min (0.8 GHz). Reduc-
ing the uncore frequency results in (i) an 82-watt reduction
in CPU power, from 200 watts (blue curve on the left) to 120
watts (blue curve on the right), and (ii) an increase in runtime,
from 47 seconds (left) to 57 seconds (right).

Next, we investigate two important questions: (i) how significant

is uncore power consumption in contemporary processors, and (ii)

how does uncore frequency scaling affect application performance?

Figure 2 presents our experimental results, showing power profiles

during UNet training under different uncore frequency settings.

First, tuning the uncore frequency from its maximum (2.2 GHz)

to its minimum (0.8 GHz) resulted in a CPU power reduction of

up to 82 W, indicating that the uncore subsystem can account for

as much as 40% of total CPU power consumption during UNet

training. Similar behavior was consistently observed across other

GPU applications examined in this study. Second, this aggressive

uncore scaling increases application runtime by 21%, indicating

a key trade-off between power savings and performance. While

lowering the uncore frequency reduces power consumption, setting

it to the minimum without considering workload demands can

significantly impact performance, especially for memory-intensive

tasks. These observations suggest we need a dynamic approach to

scale the uncore frequency based on workload demands.

Previous work, such as the UPS method by Gholkar et al. [24], dy-

namically scales the uncore frequency based on changes in DRAM

power and IPC. However, it mainly targets traditional CPU-only

applications and systems. Additionally, UPS relies on active moni-

toring of IPC, which requires reading instructions retired and CPU

cycles through MSRs (Model-Specific Registers) for each core, in-

troducing considerable runtime overhead (details in §6.5).

These gaps motivate the design of MAGUS, a lightweight un-

core frequency scaling runtime specifically designed for emerging

heterogeneous computing environments. Uncore tuning is a com-

plex process that requires dynamic phase detection and careful

frequency adjustments to balance energy savings and performance.

Specifically, we identify the following key challenges:

(1) Heterogeneity in GPU workloads. GPU workloads frequently

alternate between memory accesses and GPU computations

at fine-grained intervals. They also differ significantly in

their memory access and computation patterns, especially

when comparing scientific simulations with machine learn-

ing models. Developing a uniform phase detection mech-

anism that effectively adapts to such diverse behaviors is

difficult, requiring tailored strategies to accommodate the

unique behaviors of each application.

(2) Selection of uncore metrics.Modern processors provide mul-

tiple uncore metrics, such as IPC, DRAM power, CPI, flops,

and LLC_misses, that can guide uncore frequency scaling.

However, monitoring numerous hardware counters can in-

troduce substantial runtime overhead, particularly in sys-

tems with large core counts, where accessing Model-Specific

Registers (MSRs) at scale becomes resource-intensive. For

instance, active IPC monitoring requires accessing Model-

Specific Registers (MSRs) to read instructions retired and

CPU cycles for each core. This process becomes increasingly

resource-intensive as the number of CPU cores increases.

Identifying a minimal yet sufficiently informative metric

is crucial for achieving low-overhead data collection and

making effective tuning decisions.

(3) Frequent phase changes. In GPU workloads, the transition

between compute- and memory-intensive phases can occur

at millisecond timescales [43]. Capturing these rapid tran-

sitions and responding to them without adding significant

overhead is challenging.

3 MAGUS Design
MAGUS leverages Intel’s Performance Counter Monitor (PCM) API

[34] for monitoring system metrics and Model-Specific Registers

(MSRs) for hardware control. While currently implemented using

these Intel-specific interfaces, MAGUS’s design principles can be

adapted to other processors, such as AMD and ARM, provided they

offer interfaces for reading memory throughput data and enabling

uncore frequency scaling.

To address the challenges listed in §2, we adoptmemory through-
put as our primary metric because it directly reflects the activity

intensity of uncore components, making it a reliable and effective
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Figure 3: MAGUS Overview. MAGUS comprises three main
components: (1) Memory Throughput Monitor, (2) Mem-
ory Throughput Predictor, and (3) High-Frequency Memory
Throughput Changing Detector, each being highlighted in a
different color.

indicator. Monitoring memory throughput over time provides criti-

cal insights for dynamically adjusting uncore frequency, thereby

improving energy efficiency. Furthermore, unlike reading IPC data

via MSRs from each CPU core, obtaining memory throughput data

through Intel’s PCM API introduces significantly lower runtime

overhead, thereby improving the overall efficiency of the process.

To overcome the significant hurdles identified earlier, MAGUS

operates through two key phases,memory throughput prediction and
frequent phase transition detection. First, MAGUS employs the con-

cept of memory dynamics rather than merely detecting phase tran-

sitions between memory-intensive and compute-intensive phases.

Specifically, MAGUS utilizes the first derivative of memory through-

put data to predict near-future trends, as illustrated in Algorithm

1. This simple yet effective approach allows the runtime to adapt

to a broad spectrum of workload behaviors without the overhead

of multiple hardware counters. Second, MAGUS incorporates a

lightweight algorithm, as listed in Algorithm 2, to automatically

detect high-frequency changes in memory throughput. This en-

sures timely adjustments to uncore frequency and addresses the

challenge of high-frequency phase changes. Figure 3 presents the

MAGUS flowchart, and the following subsections describe each

phase in detail.

3.1 Phase 1: Memory Throughput Prediction
Memory throughput can fluctuate dramatically, either increasing

or decreasing sharply. These fluctuations indicate that while ap-

plications periodically require maximum uncore frequency for op-

timal performance, maintaining such a high frequency is often

unnecessary during less intensive periods. Anticipating these shifts

enables adaptive adjustments to uncore frequency, allowing for a

match with upcoming memory throughput demands. Offline per-

formance profiling methods are impractical, as each application

exhibits unique memory access patterns, and previously unseen

applications introduce further variability. To address this, we in-

troduce the concept of memory dynamics, which includes both the

first derivative and the frequency of changes in memory throughput.

Specifically, we leverage the first derivative of memory throughput

over short intervals to anticipate near-future demands. This predic-

tive approach enables timely and efficient uncore frequency scaling,

ensuring responsiveness to workload variations while maintaining

energy efficiency. The frequency component will be discussed in

Phase 2.

The detailed procedure is outlined in Algorithm 1. We maintain

a fixed-size first-in, first-out queue to record memory throughput

history. The function MEM_THT_TREND_PREDICTION is invoked

periodically to compute the first derivative of memory through-

put over a specified interval. If the first derivative exceeds the

inc_threshold, it indicates that memory throughput is likely to

increase sharply in the near future. Conversely, if the derivative

falls below the dec_threshold, it suggests that memory throughput

demands are expected to decrease significantly. The function re-

turns 1 or -1 to signal the runtime to either increase or decrease

the uncore frequency accordingly. If the derivative falls between

these thresholds, the uncore frequency remains unchanged, ensur-

ing stability and avoiding unnecessary adjustments. This adaptive

mechanism enables timely and predictive adjustments to uncore

frequency, balancing power usage with application performance.

The uncore frequency scaling decision generated by the predic-

tion phase is initially recorded as a temporary decision and is not

executed immediately. Depending on the outcome of the frequent

phase change detection phase (Section 3.2), this decision may be

overwritten or left unchanged.

Algorithm 1:Memory Throughput Trend Prediction

1: Input: window length 𝐿, increase threshold 𝜏inc, decrease

threshold 𝜏
dec

, list mem_throughput_ls
2: Let 𝑛 ← |mem_throughput_ls| − 1
3: Let 𝑑 ← mem_throughput_ls[𝑛] −mem_throughput_ls[0]

𝐿
4: if 𝑑 > 𝜏inc then
5: return 1

6: else if 𝑑 < 𝜏
dec

then
7: return −1
8: else
9: return 0

10: end if

Algorithm 2: High Frequency Detection

1: Input: threshold 𝑡
hi
, binary list uncore_tune_ls

2: 𝑛 ← |uncore_tune_ls|
3: 𝑠 ← ∑𝑛

𝑖=1 uncore_tune_ls[𝑖]
4: 𝑓 ← 𝑠 /𝑛
5: if 𝑓 ≥ 𝑡

hi
then

6: return True

7: else
8: return False

9: end if
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3.2 Phase 2: Frequent Phase Change Detection
Workloads can experience fluctuating and dramatic changes in

memory throughput over short time intervals, leading to frequent

uncore scaling. Frequent uncore scaling in this scenario can degrade

application performance for two key reasons. First, frequent uncore

scaling incurs excessive MSR accesses, adding overhead. Second,

when memory throughput fluctuates rapidly and substantially, nei-

ther software nor hardware can fully adapt in real-time, limiting

the system’s ability to meet instantaneous throughput demands.

To address frequent changes in memory throughput, we devel-

oped a simple yet effective detection algorithm (Algorithm 2) that

identifies periods of high-frequency fluctuations. During these peri-

ods, MAGUS maintains the maximum uncore frequency to ensure

consistent access to maximum memory bandwidth, preventing per-

formance degradation from constant frequency adjustments. We

maintain a first-in-first-out queue called uncore_tune_ls, which uses

a binary flag (0 or 1) to record whether a potential uncore frequency

scaling event should occur based on the uncore frequency scaling

decision made by the prediction phase (see Algorithm 1). If the rate

of triggered UFS events (either an increase or decrease in uncore fre-

quency) exceeds a threshold, it indicates that memory throughput

is fluctuating frequently, which we classify as a high-frequency sta-

tus. When this status is detected, MAGUS overrides the temporary

decision from the prediction phase and sets the uncore frequency to

its maximum to stabilize performance. Otherwise, MAGUS retains

and executes the decision made in the prediction phase. Even if the

application remains in a high-frequency state, MAGUS continues

the prediction phase in each decision round to estimate memory

throughput and log potential uncore scaling events. While not

executed during high-frequency states, these logs inform future

high-frequency detection.

In short, this detection algorithm ensures that applications ex-

periencing frequent memory throughput fluctuations consistently

receive the maximum memory bandwidth, mitigating performance

degradation during periods of high variability.

3.3 Putting It All Together
Algorithm 3 outlines the core logic of MAGUS. MAGUS operates

transparently once the user application starts, with the runtime pe-

riodically reading memory throughput. Initially, uncore frequency

is set to the maximum supported by the CPU, ensuring peak uncore

performance during periods of rapidly increasing or frequently

changing memory throughput. The MDFS function is invoked after

2.0 seconds (i.e., 10 monitoring cycles) from the start of the appli-

cation. Memory throughput values are collected and appended to

the mem_throughput_ls list during this initialization period. Mean-

while, uncore_tune_ls is initialized as a list of 10 zeros, indicating

that no uncore tuning actions occur during this initial phase.

The high-frequency detector evaluates whether the application

experiences frequent uncore frequency changes by calculating the

rate of frequency scaling events. If frequent changes are detected,

MAGUSmaintains the uncore frequency at its maximum, overriding

any temporary decisions made during the prediction phase. Once

the application no longer exhibits frequent frequency changes,

the detection phase approves and executes the temporary decision

made in the prediction phase. This detectionmechanism ensures the

maximum memory bandwidth availability during high-frequency

phases, thus mitigating performance loss from frequent uncore

scaling.

MAGUS incorporates three thresholds for detecting and predict-

ing memory dynamics. Through extensive testing, these thresholds

consistently demonstrate effectiveness across various workloads

and hardware platforms. Consequently, we recommend default

threshold values: inc_threshold to 200, dec_threshold to 500, and

high_frequency_threshold to 0.4, with a monitoring frequency of

0.2 seconds. All tested systems use the same thresholds mentioned

above. A detailed sensitivity analysis of these thresholds is pre-

sented in §6.4.

Algorithm 3: Memory Throughput Based Dynamic Uncore Fre-

quency Scaling (MDFS)

1: global 𝑖𝑛𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑑𝑒𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑢𝑛𝑐𝑜𝑟𝑒_𝑡𝑢𝑛𝑒_𝑙𝑠,

ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑, 𝑑𝑖𝑟𝑒𝑣_𝑙𝑒𝑛𝑔𝑡ℎ, ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑠𝑡𝑎𝑡𝑢𝑠,

𝑚𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑙𝑠, 𝑡𝑢𝑛𝑒_𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞

2:

3: 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞_𝑢𝑝𝑝𝑒𝑟 ← max
4: 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞_𝑙𝑜𝑤𝑒𝑟 ← min
5:

6: mem_throughput_ls.push_back(𝑠𝑦𝑠𝑡𝑒𝑚_𝑚𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡 )

7: mem_throughput_ls.erase(mem_throughput_ls.begin())

8:

9: if high_freq_detection(ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑢𝑛𝑐𝑜𝑟𝑒_𝑡𝑢𝑛𝑒_𝑙𝑠)
then

10: ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑠𝑡𝑎𝑡𝑢𝑠 ← 1

11: 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞 ← 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞_𝑢𝑝𝑝𝑒𝑟

12: tune_uncore_freq(𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞)

13: else
14: ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑠𝑡𝑎𝑡𝑢𝑠 ← 0

15: end if
16: if mem_throughput_trend_prediction(𝑖𝑛𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,

𝑑𝑒𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑚𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑙𝑠 , 𝑑𝑖𝑟𝑒𝑣_𝑙𝑒𝑛𝑔𝑡ℎ) == 1

then
17: uncore_tune_ls.push_back(1)

18: if ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑠𝑡𝑎𝑡𝑢𝑠 = 0 then
19: 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞 ← 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞_𝑢𝑝𝑝𝑒𝑟

20: tune_uncore_freq(𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞)

21: end if
22: else if mem_throughput_trend_prediction(𝑖𝑛𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,

𝑑𝑒𝑐_𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 , 𝑚𝑒𝑚_𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡_𝑙𝑠 , 𝑑𝑖𝑟𝑒𝑣_𝑙𝑒𝑛𝑔𝑡ℎ) == -1

then
23: uncore_tune_ls.push_back(1)

24: if ℎ𝑖𝑔ℎ_𝑓 𝑟𝑒𝑞_𝑠𝑡𝑎𝑡𝑢𝑠 = 0 then
25: 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞 ← 𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞_𝑙𝑜𝑤𝑒𝑟

26: tune_uncore_freq(𝑢𝑛𝑐𝑜𝑟𝑒_𝑓 𝑟𝑒𝑞)

27: end if
28: else
29: uncore_tune_ls.push_back(0)

30: end if
31: uncore_tune_ls.erase(uncore_tune_ls.begin())



SC ’25, November 16–21, 2025, St Louis, MO, USA Zhong Zheng, Seyfal Sultanov, Michael Papka, and Zhiling Lan

4 MAGUS Implementation
We implement MAGUS in C++with approximately 400 lines of code.

MAGUS is a user-transparent runtime that requires elevated privi-

leges only once during installation and launch, which is handled

by the system administrator. Afterward, it runs as a background

process and operates transparently to users, requiring no user inter-

vention or elevated privileges. The code is available as open-source

on GitHub
1
.

The default uncore frequencies of compute nodes are set to their

minimum values to conserve power when the nodes are idle. Upon

the arrival of an application, MAGUS periodically monitors memory

throughput using Intel’s PCM API [34] and dynamically adjusts

uncore frequency based on real-time workload analysis.

To adjust the uncore frequency, MAGUS modifies the maximum

frequency bits of theModel-Specific Register (MSR) located at 0x620

for Intel processors, while leaving the minimum frequency bits

unchanged. For example, to set the maximum uncore frequency

to 1.5 GHz on socket 0, the following command can be executed:

sudo wrmsr -p 0 0x620 0x0F001200. Since MSR writes are direct

register modifications at the hardware level, they incur negligible

computational cost.

5 Experimental Configuration
We select a representative suite of GPU-dominant applications

for our evaluation. (1) GPU benchmark suite Altis: This suite
includes fundamental parallel algorithms widely used in parallel

computing and real-world applications [32]. Specifically, we uti-

lize 14 benchmarks from Level 1 and Level 2, excluding Level 0

benchmarks due to their short execution times. (2) ECP proxy
applications: The miniGAN is a GAN-based benchmark for deep

learning in HPC [1]. CRADL [47] integrates adaptive learning with

computational science for surrogate modeling. Laghos [48] is a

high-order Lagrangian hydrodynamics solver for gas dynamics.

SW4lite [49] is a lightweight seismic wave propagation solver for

earthquake simulations. (3) AI-enabled applications: We employ

two widely-used open-source molecular dynamics (MD) simulation

packages, GROMACS [61] and LAMMPS [9]. (4)MLPerf bench-
marks: Due to the growing adoption of deep neural network train-

ing in HPC, we also include ResNet50, UNet, and BERT from the

MLPerf benchmark suite [21] to represent deep learning training

workloads.

Three heterogeneous systems are used in our experiments:

• Intel+A100: A Chameleon Cloud [38] system featuring two

Intel(R) Xeon(R) Platinum 8380 processors paired with a

single NVIDIAA100-40GBGPU. The system supports uncore

frequencies from 0.8 GHz to 2.2 GHz and runs Ubuntu 22.04

with CUDA 12.6.

• Intel+4A100: It has the same architecture and software

environment as the first, except it is equipped with four

NVIDIA A100-80GB GPUs interconnected via PCIe.

• Intel+Max1550: It features the Intel(R) Xeon(R) CPU Max

9462, a Sapphire Rapids architecture processor comprising

eight compute tiles Intel(R) Data Center GPUMax 1550 based

1
https://github.com/SPEAR-UIC/MAGUS/tree/main

on the Ponte Vecchio architecture and featuring 128 GB of

HBM2e memory. The system supports an uncore frequency

range of 0.8 GHz to 2.5 GHz and operates on Ubuntu 24.04.1

LTS with oneAPI DPC++/C++ Compiler 2024.2.1. It is the

base unit deployed in the exascale system Aurora [42].

For Intel+A100 and Intel+4A100 systems, the applications utilize

CUDA for GPU computation. In contrast, for the Intel+Max1550

system, we utilize 11 applications from the Altis-SYCL benchmark

suite [66], excluding those that cannot be compiled. The other

applications mentioned above currently do not have SYCL versions

available.

We compare MAGUS against two existing methods: Default
uncore frequency scaling (baseline) and Uncore Power Scav-
enger (UPS). With the default settings of the Intel Xeon Platinum

8380 and Intel Xeon CPU Max 9462 processors, the uncore fre-

quency is reduced only when the CPU power (package and DRAM)

approaches the Thermal Design Power (TDP). UPS is a model-free

runtime method that dynamically adjusts the uncore frequency

based on changes in DRAM power and instructions per cycle (IPC)

for HPC applications[24]. Since an open-source UPS implementa-

tion was unavailable, we implemented UPS following the method-

ology described in the original paper. We evaluate each method

using three key metrics:

• Performance Loss. Defined as the percentage increase in

execution time compared to the baseline, capturing the per-

formance impact of uncore frequency scaling.

• Power Saving. Defined as the average reduction in CPU

package and DRAM power consumption relative to the base-

line. The CPU package encompasses the entire CPU socket,

including core and uncore components.

• Energy Saving: Defined as the reduction in energy con-

sumption, including CPU package, DRAM, and GPU board

energy, compared to the baseline. GPU board includes GPU

cores, GPU memory, and GPU onboard components (VRM,

fans, PCIe logic). The primary goal of MAGUS is to minimize

the total energy required to complete an application.

We employ Intel’s RAPL [17] to measure CPU package and

DRAM power consumption, and leverage NVIDIA’s NVML [53]

and Intel oneAPI [33] for monitoring power usage on NVIDIA and

Intel GPUs, respectively. Notably, our approach is not limited to

RAPL, NVML, or oneAPI and is compatible with any platform that

offers equivalent power monitoring capabilities.

6 Results

Our experiments evaluate uncore frequency scaling across single-

GPUworkloads on Intel+A100 and Intel+MAX1550, as well as multi-

GPU workloads on Intel+4A100 systems. Each experiment was

repeated at least five times to account for performance variance and

outliers when running applications on real systems. Outliers were

removed, and the average of the remaining results was calculated

to ensure reliability.

Our evaluation aims to answer the following key questions:

• Q1: what is the impact of uncore frequency scaling on appli-

cation performance and energy consumption (§6.1)?
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(a) Overall performance on Intel+A100.

(b) Overall performance on Intel+MAX1550. (c) Overall performance on Intel+4A100.

Figure 4: Application performance on Intel+A100, Intel+MAX1550, and Intel+4A100. The X-axis lists the benchmarks and
applications, while the Y-axis shows the corresponding metrics achieved by MAGUS and UPS compared to the baseline.

• Q2: how do different uncore frequency scaling methods per-

form under highly dynamic memory conditions (§6.2)?

• Q3: how accurately does MAGUS predict memory usage

trends (§6.3)?

• Q4: how sensitive is MAGUS to the threshold values used in

its uncore frequency scaling decisions (§6.4)?

• Q5: how much overhead introduced by MAGUS (§6.5)?

6.1 End-to-End Performance

Intel+A100. Figure 4a compares different uncore frequency scal-

ing methods against the baseline in terms of performance loss,

power savings, and energy savings on the Intel+A100 system. As

shown in the top plot of Figure 4a, MAGUS consistently limits per-

formance loss to below 5%. In the default uncore frequency scaling

setting, as described in the previous section, the uncore frequency
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is reduced only when the CPU package power approaches the ther-

mal design power (TDP). However, CPU package power rarely

reaches TDP during GPU-enabled applications, as these workloads

offload most of the computational tasks to the GPU, resulting in

low CPU utilization. Despite this, GPU-enabled workloads still re-

quire high uncore frequency during periods of data movement and

memory control operations. MAGUS continuously monitors mem-

ory throughput and dynamically adjusts the uncore frequency to

minimize uncore power consumption. We observe that specific ap-

plications (including but not limited to BFS, GEMM, and Pathfinder)

achieve higher CPU package power savings than others (i.e., parti-

clefilter_naive, srad). This is because less memory-intensive applica-

tions spend less time in high uncore frequency states, allowing for

more frequent uncore downscaling and greater energy efficiency.

Reducing instantaneous power consumption helps prevent the ag-

gregate power consumption of all applications from exceeding the

system’s total power budget if one is in place. The energy savings in

our experiments include both CPU energy consumption and GPU

power consumption. With MAGUS, all workloads achieve positive

energy savings compared to the baseline, with savings of up to 27%.

Intel+Max1550. In Figure 4b, we make several observations re-

garding the Intel+Max1550 system. First, MAGUS maintains a per-

formance loss of below 4%while achieving up to 10% energy savings,

outperforming both the baseline and UPS. Second, for applications

like fdtd2d, where MAGUS results in a higher performance loss

than UPS, it achieves significantly greater energy savings of up to

10%. This is because MAGUS applies a more aggressive uncore fre-

quency tuning, reducing the frequency directly to the lower bound

instead of gradually decreasing it. Third, UPS leads to negative

energy savings for some applications because it introduces a 7.9%

increase in power consumption. Thus, UPS’s power savings are

outweighed by the overhead it incurs.

We observe both similarities and differences between the results

on the two systems. MAGUS consistently achieves positive energy

savings across all applications on both systems. However, for some

applications on Intel+Max1550, UPS fails to achieve positive energy

savings, unlike on Intel+A100. This discrepancy arises because UPS

incurs a higher overhead in power consumption on Intel+Max1550

(7.9%) compared to Intel+A100 (4.9%) (Table 2).

Intel+4A100. We extend our evaluation to multi-GPU scenarios

using the Intel+4A100 system, focusing on AI-enabled applications

and MLPerf benchmarks that effectively utilize multiple GPUs. Fig-

ure 4c presents the performance and energy efficiency results for

these workloads. We highlight several key observations. First, al-

though MAGUS introduces a 7% and 5.2% performance loss for

GROMACS and LAMMPS, respectively, it achieves CPU power

savings of approximately 21% and 10%. Second, MAGUS provides

greater or comparable energy savings than UPS for workloads such

as ResNet50, BERT, and GROMACS. Third, unlike the single-GPU

experiments, we observe modest energy savings for MAGUS and

UPS. The decrease in energy savings as the number of GPUs in-

creases (with a fixed number of CPUs) is expected. This occurs

primarily because the idle power consumption of a multi-GPU

system significantly exceeds that of a single-GPU setup. Specifi-

cally, in the Intel+4A100 system, the idle power for four A100-80GB

(a)

(b)

Figure 5: Memory throughout of SRAD. The top plot com-
pares MAGUS with the minimum and maximum uncore fre-
quency settings, while the bottom plot highlights the dif-
ferences between MAGUS and UPS. The embedded circles
highlight these differences.

GPUs is approximately 200 W, considerably amplifying the energy

penalty associated with performance loss compared to the single-

GPU configuration, where a single A100-40GB GPU has an idle

power around 30 W. Since this idle power represents a fixed opera-

tional cost rather than a workload-specific consumption, including

it in the total energy calculation can obscure the actual energy

savings achieved by uncore frequency scaling.

6.2 A Case Study for Detailed Analysis
In this set of experiments, we conduct an analysis to examine how

different uncore frequency scaling methods behave using a case

study of the SRAD application on Intel+A100. This benchmark

experiences high-frequency fluctuations in memory throughput,

making it a particularly challenging case for uncore frequency tun-

ing. By analyzing SRAD, we gain deeper insights into how MAGUS

dynamically adjusts uncore frequency compared to other methods.

In Figure 5 (a), three memory throughput plots are presented

for the SRAD application under three scenarios: maximum uncore

frequency (2.2 GHz), minimum uncore frequency (0.8 GHz), and

MAGUS. Around the 5-second mark, the memory throughput under

the minimum uncore frequency fails to match the level achieved by

the maximum uncore frequency. In contrast, MAGUS successfully

predicts changes in memory throughput trends, allowing it to reach

comparable levels. Overall, MAGUS achieves memory throughput

similar to the maximum uncore frequency while delivering an 8.68%
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Figure 6: Uncore frequency of SRAD under the baseline, UPS,
and MAGUS. MAGUS effectively identifies rapid phase shifts
and adjusts uncore frequency accordingly.

energy savings compared to Intel’s default settings, with only a 3%

performance loss.

Next, we compare the memory throughput patterns of maximum

uncore frequency, UPS, and MAGUS as shown in Figure 5 (b). We

can observe that UPS fails to achieve the high memory throughput

levels sustained by MAGUS (as indicated by the read cycles). For

workloads with frequent changes in memory throughput demand,

response delays due to inherent hardware or software latencies

often result in unmet throughput demands. To address this, MA-

GUS automatically detects phases with high-frequency changes in

memory throughput and temporarily sets the uncore frequency to

its maximum level to prevent performance loss.

Figure 6 illustrates how MAGUS leverages a high-frequency

memory change detector to mitigate performance loss. MAGUS

identifies high-frequency phases, such as between seconds 10 to

12.5 and after second 15, and locks the uncore frequency at its max-

imum (2.2 GHz) during these intervals to maintain performance

stability. In contrast, UPS lacks this capability and continues to

lower the uncore frequency after second 15, resulting in perfor-

mance degradation. For the SRAD application, MAGUS achieves

a 14% reduction in CPU power consumption compared to UPS’s

20%. However, MAGUS incurs only a 3% slowdown, significantly

lower than the 7.9% slowdown observed with UPS. Consequently,

MAGUS achieves 8.68% energy savings, outperforming UPS, which

achieves only 3.5%. By integrating high-frequency memory detec-

tion, MAGUS minimizes performance loss when workloads exhibit

frequent changes in memory throughput.

6.3 Prediction Accuracy
We assess the accuracy of our algorithm in predicting memory

throughput trends by comparing burst patterns observed under

MAGUS with those from the baseline configuration, which utilizes

the maximum uncore frequency. Specifically, we employ the Jac-

card index [35] to quantify alignment between memory throughput

bursts from the two configurations. The Jaccard index is selected

because it directly quantifies the overlap between memory through-

put burst intervals under the maximum uncore frequency case and

MAGUS, which adaptively predicts memory throughput trends.

In our analysis, we identify burst intervals, defined as periods

when memory throughput exceeds a predefined threshold, and

convert them into binary sequences. The Jaccard score is then

calculated as the ratio of overlapping burst intervals to the total

number of unique burst intervals across MAGUS and baseline runs.

Figure 7: Pareto frontiers of energy consumption and run-
time under different threshold configurations. The red-
circled configuration represents the common threshold set
observed across all applications tested in our experiments,
on or close to the Pareto frontier.

Table 1 summarizes these results. The Jaccard score ranges from

0 to 1, with the value of 1 indicating a perfect prediction.We observe

scores as high as 0.99, indicating near-perfect burst prediction for

many cases. However, applications fdtd2d, cfd_double, gemm, and

particlefilter_float show lower scores, primarily due tomultiple brief

bursts during the initialization phase of MAGUS after application

launch, before MAGUS starts uncore scaling. Despite their short

duration (less than one second), these missed bursts result in only

modest performance losses, such as a 3% loss for fdtd2d, as shown
in Figure 6.1. Conversely, a high Jaccard score (e.g., 0.99) does not

always guarantee minimal performance loss. Missing even a single

burst with very high memory throughput can significantly impact

application performance despite overall accurate burst timing.

Table 1: Jaccard similarity for memory throughput trend

Application Jaccard Application Jaccard

bfs 0.99 gemm 0.71

pathfinder 0.98 sort 0.96

cfd 0.94 cfd_double 0.63

fdtd2d 0.40 kmeans 0.97

lavamd 0.92 nw 0.98

particlefilter_float 0.67 raytracing 0.87

where 0.94 Laghos 0.99

miniGAN 0.98 sw4lite 0.87

UNet 0.99 Resnet50 0.96

bert_large 0.84 lammps 0.99

gromacs 0.99

6.4 Sensitivity Analysis
SinceMAGUS relies on several thresholds tomake uncore frequency

scaling decisions, we perform a sensitivity analysis to demonstrate

that the selected thresholds are broadly effective across all represen-

tative workloads used in this work. Specifically, we examine three

thresholds: inc_threshold, dec_threshold, and high_freq_threshold.
In the analysis, we fix two thresholds and vary the third, resulting

in 40 combinations. Figure 7 illustrates the Pareto frontiers that
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capture the trade-off between energy consumption and runtime.We

observe that there are multiple sets of thresholds that appear on the

Pareto frontier. Notably, a specific set of thresholds (inc_threshold

= 300, dec_threshold = 500, and high_freq_threshold = 0.4, circled

in red ) consistently appears on or close to the Pareto frontier across

all representative applications. Due to space constraints, we only

present results for two applications in Figure 7, but similar results

are observed across the full set of workloads examined.

The Pareto frontier identifies threshold combinations where nei-

ther runtime nor energy savings can be improved without hurting

the other. Based on the above analysis, we select the common Pareto

frontier as the default thresholds. Additionally, MAGUS is invoked

every 0.2 seconds, an interval empirically chosen to strike a bal-

ance between overhead and responsiveness. Sampling intervals

shorter than 0.2 seconds introduce noticeable overhead, whereas

longer intervals compromise the timeliness of memory throughput

monitoring and uncore frequency adjustment. Hence, we adopt a

0.2-second sampling interval.

Table 2: Overheads by MAGUS and UPS on different systems.

System Power Overhead (%) Invocation Overhead (s)

MAGUS UPS MAGUS UPS

Intel + A100 1.1% 4.9% 0.1s 0.3s

Intel + Max1550 1.16% 7.9% 0.1s 0.31s

6.5 Runtime Overhead

A runtime inevitably introduces overheads. To quantify runtime

overheads, we run MAGUS and UPC individually for 10 minutes

without executing any applications, during which we measure the

power consumption and the time taken for each invocation (in-

cluding hardware counter monitoring and phase detection, while

excluding uncore scaling). Table 2 shows the results. Power over-
head is calculated as the relative increase in power consumption

introduced by each method. Invocation overhead refers to the time

taken to retrieve hardware counters and execute the algorithm. The

sampling frequency is 0.2 seconds.

MAGUS incurs only a 1% power overhead and requires just 0.1

seconds per invocation. In contrast, UPS introduces up to 7.9%

power overhead on Intel+Max1550 and takes approximately 0.3

seconds per invocation. The term “invocation” refers to themeasure-

ment and phase detection process performed during each monitor-

ing cycle, which takes approximately 0.1 seconds. MAGUS initiates

the next monitoring cycle 0.2 seconds after the previous scaling

decision, resulting in a 0.3-second interval between consecutive de-

cisions. This interval is shorter than UPScavenger’s 0.5-second (0.3

+ 0.2) interval. This efficiency is primarily due to MAGUS retrieving

only a single hardware counter (memory throughput). In contrast,

UPS accesses each CPU core’s model-specific registers (MSRs) to

read instructions retired, CPU cycles, and DRAM power data.

6.6 Discussion
Although this study primarily focuses on Intel-based CPUs, the core

logic of MAGUS is broadly applicable to various heterogeneous sys-

tems. For example, AMD processors (EPYC/Ryzen) include uncore-

like components such as the Infinity Fabric, memory controller,

and SoC domain. With tools like amd_hsmp [4], it can be used to

monitor and, in some cases, adjust SoC/fabric frequencies.

7 Related Work
As large-scale high performance computing (HPC) systems evolve,

energy efficiency has become a critical priority [51]. Previous re-

search has explored techniques such as CPU core DVFS, CPU power

capping, and memory DVFS to investigate the trade-offs between

application performance and energy conservation [10, 22, 23, 31, 44,

57, 62, 63]. For example, Bhalachandra et al. introduced an Adaptive

Core-Specific Runtime (ACR) technique that dynamically adjusts

CPU core frequencies based on workload characteristics to reduce

power consumption while maintaining application performance

[11]. Chen et al. showed that jointly applying CPU core DVFS and

memory DVFS can further improve energy efficiency [13]. In addi-

tion to the RAPL in Intel’s family, various other processors have

adopted power capping. For example, the IBM Power6 and Power7

architectures provide the power capping feature [12, 50]. The AMD

Bulldozer architecture enables users to set a thermal design power

(TDP) limit for the processor, allowing for power capping.

Since the Sandy Bridge generation, Intel processors have enabled

autonomous DVFS adjustments by modifying clock speeds and

voltage dynamically, independent of software-specified settings [16,

19, 55]. Intel’s RAPL interface provides mechanisms for monitoring

energy consumption and setting power limits in various CPU and

DRAM domains[17, 39]. Users can access RAPL data throughmodel-

specific registers (MSRs), sysfs interface [46], perf [45] events, or

the PAPI library [65].

Power management has become an active research area with

the increasing use of GPUs in HPC systems. NVIDIA provides the

NVIDIA Management Library (NVML), which enables users to con-

trol GPU power limits, core frequencies, and memory frequencies

via the nvidia-smi interface [52, 53]. Significant efforts have been

dedicated to modeling power and performance for GPU applica-

tions [8, 27, 28, 36, 41]. Research has also explored the impact of

GPU core DVFS [2, 20, 28, 40]. GPU memory DVFS [64] on energy

efficiency in GPU workloads. Additionally, extensive studies are

presented to optimize energy efficiency of deep learning training

and inferences [25, 54, 56, 58, 67]. For example, Choi et al. [15] intro-

duced ENVPIPE, which leverages slack time in pipeline parallelism

to reduce SM frequency, thereby reducing energy consumption in

multi-GPU DNN training without compromising accuracy.

Uncore frequency scaling has received relatively little attention.

Existing studies can be broadly classified into model-based and

model-free approaches. In model-based approaches, analytical or

machine learning models are constructed to predict optimal un-

core frequencies by monitoring multiple hardware counters in real

time [60, 68]. For instance, Sundriyal et al. develop power and

performance models to adjust the uncore frequency for optimal

energy efficiency during application execution [60]. Zhang et al.
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train a neural network to predict application performance and

power consumption, leveraging multi-objective optimization to

minimize power usage while limiting performance loss [68]. In

contrast, model-free approaches bypass the complex model con-

struction process by dynamically detecting phase transitions be-

tween compute-intensive and memory-intensive regions to guide

uncore frequency scaling [24, 26]. UPScavenger [24] is a pioneering

model-free solution that monitors multiple hardware counters to

adjust uncore frequency based on workload phases.

Unlike previous uncore frequency tuning studies focusing on

traditional HPC applications running on homogeneous CPU-only

systems, this work extends uncore frequency scaling techniques to

optimize energy efficiency in various GPU-accelerated HPC envi-

ronments. Similar to UPScavenger, MAGUS is a model-free runtime.

However, MAGUS relies solely on a single hardware counter (mem-

ory throughput), which significantly reduces both runtime and

power overhead. Additionally, MAGUS employs the concept of

memory dynamics, enabling an adaptive and efficient approach to

capturing uncore frequency trends based on a workload’s real-time

memory demands. We implement MAGUS as a user-transparent

runtime that requires no code changes, manual intervention, or

elevated privileges from users.

8 Conclusion
As HPC systems increasingly adopt heterogeneous architectures,

balancing power usage and performance is critical. Our work high-

lights uncore frequency scaling as a previously underexplored yet

impactful strategy for energy efficiency in GPU-accelerated environ-

ments. MAGUS addresses this by combining lightweight memory

throughput monitoring with dynamic phase detection, achieving

up to 27% energy savings while keeping performance loss under

5%. Moreover, MAGUS introduces only 1% overhead in power con-

sumption. Its success in both single- and multi-GPU environments

underscores the need for specialized power management strategies

that extend beyond traditional CPU-centric approaches. We aim

to drive further research and adoption in the HPC community by

open-sourcing MAGUS.
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