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Load building data from 
OpenStreetMap using specified 
geographic coordinates, then 
load surface data from 
OpenStreetMap using a different 
set of geographic coordinates. 
Create a grid of polygons based 
on the total bounds of the 
surface data to facilitate spatial 
analysis. Run a flood simulation 
based on a digital elevation 
model, rainfall data, and gauge 
readings, generating a 
GeoDataFrame that includes 
flood depths and corresponding 
geographic coordinates. 
Calculate average flood values 
for the grid geometries through a 
spatial join with the flood data, 
filtering out any grid cells without 
data. Transform and analyze the 
building data by spatially joining 
it with the grid to calculate the 
average thematic value. Finally, 
render Urban Toolkit 
visualizations for both ground 
and building thematic data 
representing the results of the 
analysis.

Fig. 1: Using Urbanite to analyze flood simulations. (a) The user loads a building layer and examines outputs through provenance and
data inspection. (b) They create flood simulation nodes for a Chicago-area town and document them using dataflow- and node-level
explanations. (c) Results and impacted buildings are visualized using UTK nodes. (d) The user modifies simulation parameters,
branching the dataflow with provenance and data inspection. (e) To enhance documentation, they describe the dataflow using
dataflow- and node-level explanations. (f) The final task is generated via task & subtask definition, summarizing the dataflow.

Abstract—With the growing availability of urban data and the increasing complexity of societal challenges, visual analytics has
become essential for deriving insights into pressing real-world problems. However, analyzing such data is inherently complex and
iterative, requiring expertise across multiple domains. The need to manage diverse datasets, distill intricate workflows, and integrate
various analytical methods presents a high barrier to entry, especially for researchers and urban experts who lack proficiency in data
management, machine learning, and visualization. Advancements in large language models offer a promising solution to lower the
barriers to the construction of analytics systems by enabling users to specify intent rather than define precise computational operations.
However, this shift from explicit operations to intent-based interaction introduces challenges in ensuring alignment throughout the
design and development process. Without proper mechanisms, gaps can emerge between user intent, system behavior, and analytical
outcomes. To address these challenges, we propose Urbanite, a framework for human-AI collaboration in urban visual analytics.
Urbanite leverages a dataflow-based model that allows users to specify intent at multiple scopes, enabling interactive alignment across
the specification, process, and evaluation stages of urban analytics. Based on findings from a survey to uncover challenges, Urbanite
incorporates features to facilitate explainability, multi-resolution definition of tasks across dataflows, nodes, and parameters, while
supporting the provenance of interactions. We demonstrate Urbanite’s effectiveness through usage scenarios created in collaboration
with urban experts. Urbanite is available at urbantk.org/urbanite.

Index Terms—Urban analytics, urban data, dataflow, large language models, visualization framework, visualization system.

1 INTRODUCTION

The growing availability of urban data, coupled with increasing soci-
etal challenges, has driven the need for systems to support data-driven
tasks across a range of domains, including urban planning, architecture,
environmental and climate sciences, and public health. Urban visual
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analytics (VA) systems have been repeatedly shown to be a key compo-
nent in supporting these tasks [12,15,16,34,68], distilling complex data
analytics workflows into accessible visual interfaces. These systems en-
able urban experts to gain insights [27], detect patterns [19], or evaluate
potential urban interventions [31]. Despite their growing importance,
urban VA systems are still complex and resource-intensive, requiring
expertise in urban science and multiple areas of computer science. Be-
yond technical challenges, their design is an iterative, collaborative
process that must align expectations across diverse stakeholders [1].

Recently, the visualization community has been highlighting ten-
sions and technical hurdles in the process of authoring these sys-
tems [1, 21, 58, 59]. These can be broadly categorized into three key
interconnected areas. First, urban data is inherently complex, encom-
passing heterogeneous, multi-scale, spatiotemporal datasets from di-
verse sources such as sensors, satellite and street-level imagery, and
authoritative records. The domain tasks are equally intricate, involving
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multiple coordinated steps [16, 34]. These complexities can stiffen
the iterative and ideation cycles essential to visualization design [37],
constraining flexibility and slowing down exploration of the visual
analytics design space. Second, developing VA systems demands di-
verse technical skills, often creating barriers for interdisciplinary teams.
Domain experts may lack visualization expertise, while visualization
experts may not fully understand domain-specific workflows, resulting
in misaligned expectations and slower iteration. These knowledge gaps
limit domain experts’ contributions, diminishing the richness of collab-
oration by overlooking the valuable insights they can offer during the
creative and conceptual phases of visualization design. Third, devel-
oping such systems poses a high barrier to entry, and although urban
experts are increasingly adopting data-driven approaches, they still face
challenges in contributing to their design [1, 58]. Consequently, they
are often treated as end-users rather than active participants in system
development. To address these challenges, many approaches now use
low- or no-code paradigms to support VA [25, 26, 29, 35, 44]. However,
these frameworks often lack the flexibility needed for complex urban
data analytics workflows and the usability required for meaningful
expert involvement.

Recent advancements in large language models (LLMs) provide
an opportunity to further tackle these challenges by allowing users to
focus on specifying intent instead of computational operations, helping
non-technical users articulate goals without programming expertise.
However, this shift from explicit operations to intent-based interaction
introduces challenges in ensuring alignment throughout the design and
development process. Without proper mechanisms, gaps can emerge
between user intent, system behavior, and analytical outcomes. For ex-
ample, LLMs can generate plausible but incorrect outputs [49], and they
lack transparency and structured mechanisms for iterative refinement of
results. Addressing these challenges requires new approaches that com-
bine the strengths of LLMs with more structured design mechanisms,
giving users the control to iteratively refine processes while benefiting
from AI-assisted intent specification. Additionally, the complex and
iterative nature of these processes calls for tracking mechanisms to
help users explore alternative design scenarios and recall their own
process. Previous frameworks leveraged provenance [36, 46, 48, 55] as
an alternative to provide a structured and easy-to-access approach to
explore user actions and, in this case, interactions with the LLM.

To address these challenges, we propose Urbanite, a framework for
human-AI collaboration in urban VA. Conceptually, we ground the
design of Urbanite in the need for user-centered human-AI alignment
across three objectives, as recently proposed by Terry et al. [52]: spec-
ification (what the AI should do), process (how the AI should do it),
and evaluation (verifying and understanding what was done). We also
incorporate insights from a survey of experienced system builders, iden-
tifying key pain points in designing and developing urban VA systems.
Building on the theoretical framework and empirical findings, Urbanite
integrates novel features designed to enhance human-AI collaboration
in urban VA. At its core, Urbanite follows a dataflow model, structuring
systems as a series of nodes and edges that represent modular and
interoperable VA components. In other words, rather than treating VA
systems as static software artifacts, we treat them as dataflows that
can be iteratively constructed, adapted, and refined. Such an approach
enables the creation of lightweight, task-specific “VA-lite” systems. Ur-
banite’s dataflows are organized around a specification language, which
ensures consistency in defining and refining analytical workflows. Ad-
ditionally, this language serves as a layer between the LLM and the user,
constraining the model’s output to ensure alignment with analytical
goals and system constraints. To support alignment between user intent
and system behavior, Urbanite introduces design features that opera-
tionalize the alignment principles. First, it enables users to specify their
analytical goal in natural language through a series of guided prompts
that result in a task, subtasks, and a dataflow sketch. Second, it gener-
ates contextualized code to fulfill the predefined task and implement the
sketch, as well as continuous node and edge suggestions to guide the
process. Third, explainability and provenance mechanisms support the
evaluation of the final result and the exploration of alternative scenar-
ios. Our contribution also lies in demonstrating how LLMs, embedded

within a dataflow system, can enhance urban VA by bridging the seman-
tic gap between the complex (and often ill-defined) intents of experts
and the formal, structured requirements of VA systems in this domain.
Specifically, we show how such integration lowers the barrier for do-
main experts to translate high-level goals into executable workflows,
facilitates iterative exploration while maintaining transparency, and
enables human-AI alignment through the dataflow acting as an inter-
pretable intermediary between LLM outputs and expert understanding.
We evaluate Urbanite through usage scenarios, experts’ feedback, and
a quantitative evaluation. Urbanite is available at urbantk.org/urbanite.

2 RELATED WORK

2.1 Urban visual analytics systems
Urban VA combines computational methods and interactive visualiza-
tion to help experts analyze complex urban data [67]. Recent surveys
highlight the field’s growth and complexity [3, 12, 15, 16, 34, 68]. Re-
cently, Deng et al. [12] surveyed over 200 visualization papers, focusing
on how different models and analysis approaches are integrated in the
visualization workflow, while our recent reviews surfaced over 450
papers on 3D urban data [34] and over 130 papers with requirements
for urban-specific frameworks [16]. These works have demonstrated
the importance of supporting diverse stakeholders, including urban
planners, architects, social scientists, climate researchers, public health
professionals, and community advocates, each with distinct analyti-
cal needs and priorities. Despite the proliferation of urban VA tools,
they still face fundamental challenges, particularly their difficulty in
construction and their siloed nature, as detailed in Section 3. As a
result, urban VA remains fragmented, with many systems operating in
isolation instead of being part of unified ecosystems.

Given these challenges, experts increasingly turn to computational
notebooks, which provide an accessible, flexible, and reproducible way
to analyze urban data without the burden of developing full-fledged
VA systems. However, while notebooks offer ease of construction
and experimentation [23], they lack the domain-specific capabilities,
scalability, and interactivity of bespoke systems. Addressing these chal-
lenges requires a shift towards more modular, extensible, and adaptable
frameworks that can bridge the gap between bespoke applications and
broadly applicable urban analytics solutions. In our previous work,
Curio [36], we focused on enabling human-human collaboration by
supporting teams of experts in jointly exploring and analyzing data.
With Urbanite, we extend this vision to human-AI collaboration, lever-
aging a natural language interface that allows users to engage with the
system more intuitively. Urbanite combines the flexibility of custom
VA systems with accessibility, modularity, and reproducibility, letting
experts build and share analyses without traditional development over-
head. By integrating an AI assistant through LLMs, Urbanite further
lowers barriers by assisting users in navigating complex workflows,
automating data steps, and generating visualizations.

2.2 LLM- and NLI-enhanced visual analytics
LLMs have recently proven effective for tasks like text summarization,
report generation [30], and programming support [9]. Their integra-
tion with natural language interfaces in VA is emerging as a way to
reduce barriers to complex data analysis. Shen et al. [43] provided
a comprehensive survey of NLI applications in visualization, outlin-
ing emerging trends and challenges, including provenance tracking of
prompts for interpretability. Basole and Major [4] further explored
the role of generative AI and natural language prompts across the vi-
sualization workflow, identifying key opportunities and obstacles in
integrating AI-driven assistance into analytical processes. While prior
studies highlight broad challenges in integrating NLIs and LLMs into
visualization workflows, Terry et al. [52] examine the alignment of
human and AI capabilities within interactive systems. Their work
proposes a conceptual framework for effective human–AI integration,
complementing more focused efforts that embed LLMs directly into the
visualization process. Zhao et al. [66] proposed using LLMs to support
VA across multiple stages of user workflows, including onboarding,
exploration, and summarization. They also introduced a specification
framework for VA systems that enables LLMs to interpret visual views
and their interrelationships. Tian et al. [53] explored the use of LLMs
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for generating charts, proposing a step-by-step reasoning pipeline that
decomposes visualization tasks into more manageable sub-tasks. Tang
et al. [51] investigated the use of LLMs for summarization using visual
workspaces as a steering mechanism. Sah et al. [40] used LLMs to
generate visualization specifications by detecting data attributes, infer-
ring tasks, and recommending visualizations. L’Yi et al. [25] built a
visualization system that combines multimodal interfaces, including
natural language, to improve usability.

We draw upon research on alignment in interactive systems [2, 52,
62], particularly the shift towards the specification of outcomes rather
than operations. Urbanite builds on these principles by introducing
new mechanisms for aligning AI assistance with user intent in urban
analytics. Influenced by Zhao et al. [66], we also introduce an urban
VA-specific specification for the creation of systems, which acts as a
mediator between the AI and the user prompt. Urbanite embeds LLM
guidance into structured dataflows, enabling transition between natural
language interaction and interactive visual exploration.

2.3 Dataflow-based approaches in visual analytics
The use of dataflows as a structured paradigm for data analysis has
long been explored across various topics, including database [47, 50],
information visualization [14, 20, 64], scientific visualization [7, 57],
and visualization education [45]. Systems employing this paradigm
use diagrams with nodes representing data transformations and visu-
alizations, and edges defining the dataflow. Users then interactively
compose data pipelines to specify their intent, often through drag-and-
drop interfaces that allow visual construction and modification without
requiring extensive programming expertise. Importantly, dataflow sys-
tems promote transparency, modularity, and reusability, allowing ana-
lytical components to be adapted across different usage scenarios [36].
Recent works have extended the applicability of dataflows within the
context of VA. Ulbrich et al. introduced sMolBoxes [54], a dataflow
model designed for molecular dynamics exploration, demonstrating
how structured dataflows can support specialized scientific tasks. Yu
and Silva presented VisFlow [64], a framework that supports the cre-
ation of interactive charts within a dataflow. The framework was later
extended into FlowSense [65] by incorporating a natural language in-
terface featuring a semantic parser that recognizes specific utterances
within the dataflow environment. Curio [36] builds upon these prin-
ciples by introducing a collaborative dataflow environment. Unlike
traditional dataflow systems that primarily focus on individual data
pipeline creation, Curio facilitates collaboration through discussion
spaces, annotation mechanisms, and provenance tracking.

Building on Curio, our system enhances dataflow-based VA by in-
tegrating AI-assisted guidance for urban analytics. While Curio fo-
cused on human-human collaboration, our system introduces human-AI
collaboration, allowing users to describe analytical intent in natural
language, which is then translated into structured dataflows.

3 BACKGROUND: CHALLENGES IN URBAN VISUAL ANALYTICS

Urban analytics has emerged as a valuable approach to support decision-
making in urban contexts, enabling domain experts to explore and
analyze diverse urban data sources [11, 13, 19, 24, 32, 33]. These ex-
perts, such as urban planners, engineers, climate scientists, and public
health professionals, primarily rely on three environments to support
these analyses: off-the-shelf tools, computational notebooks, and urban
VA systems. Off-the-shelf tools, such as ArcGIS, offer standardized
functionalities but often come with steep learning curves [69]. Com-
putational notebooks require programming skills [56, 63]. In contrast,
urban VA systems simplify workflows into interactive tools to analyze
data. However, development remains challenging due to the complexity
of heterogeneous, multimodal data, and the need to support collabora-
tion among stakeholders with diverse expertise and priorities.

These challenges complicate the creation of broadly applicable VA
systems suited for real-world urban settings. For example, large-scale
streaming and image data often require intensive wrangling or costly
feature extraction, slowing iteration and locking in early design choices.
Without standardized, reusable pipelines, efforts are often duplicated,
leaving most urban VA systems bespoke and narrowly tailored. The vi-
sualization community has recognized this foundational challenge [58],

but it is especially pronounced in urban VA due to unique contextual
constraints. Unlike other domains with standardized data formats, ur-
ban data varies by region due to local practices and policies. Combined
with the black-box nature of bespoke systems, this restricts their adapt-
ability and keeps the broader applicability of urban VA systems limited.
As a result, urban experts struggle to build on prior work, and insights
from one context rarely transfer, reinforcing fragmentation.

Recognizing these limitations, recent years have seen a push to-
wards more modular and adaptable urban VA frameworks [8,35,36,42].
Inspired by toolkits and frameworks in other domains [6, 39, 61], re-
searchers have begun decomposing complex systems into modular
building blocks, offering greater reusability and extensibility. This
modular decomposition works well because VA systems can be mod-
eled and interpreted, fundamentally, as complex dataflows. With Cu-
rio [36], we took a first step towards this vision with a dataflow-based
framework grounded in a knowledge base of reusable VA components,
primarily supporting human-human collaboration between visualization
researchers and urban experts. Curio bridges monolithic VA systems
and computational notebooks by making operations transparent to both
urban experts and visualization researchers. However, its dataflow and
drag-and-drop interface still demand that users understand data opera-
tions and manually build workflows. LLMs present a promising avenue
to overcome these barriers. By enabling natural language interactions
for the authoring of VA components, LLMs provide domain experts
with a more intuitive way to specify their intent, facilitating expert-
AI collaboration. Unlike traditional interfaces that bridge the gaps
of execution and evaluation, however, LLM-based systems introduce
a qualitatively different interaction paradigm: intent-based outcome
specification [38]. Instead of specifying operations, users describe de-
sired outcomes, requiring well-designed human-AI interfaces to bridge
additional alignment gaps in specification, process, and evaluation [52].
Our work designs mechanisms to bridge human-AI collaboration gaps,
leveraging LLMs for multi-level intent specification. This enables ur-
ban experts to define goals, implement dataflows to fulfill them, and
understand the process via automated documentation and provenance.

4 UNDERSTANDING URBAN VISUAL ANALYTICS CHALLENGES

With Urbanite, we aim to simplify dataflow creation for urban VA
by bridging technical complexity and domain expertise. As a step
towards this vision, we were particularly interested in exploring what it
would mean to have an AI-enhanced system that assists urban experts
in authoring their own VA interfaces. While our objective centers
on supporting urban experts directly, our goal with this survey was
to understand, from the perspective of visualization experts, the key
gaps and collaborative dynamics that shape the development of urban
VA systems. We explored how teams bridge expertise, define goals,
document work, and coordinate across design phases. By gathering
insights from recent projects, we aimed to surface challenges, best
practices, and opportunities to guide Urbanite’s design.
Survey design and participants. The survey had two parts. First,
participants reflected on working with urban experts, covering project
duration, code availability, collaboration barriers, iteration frequency,
expectations, and documentation practices. Then, participants esti-
mated time spent across four design stages (Understand, Ideate, Make,
Deploy), following McKenna et al. [28], describing key activities, tools,
and decisions. We recruited 10 participants, targeting first or second
authors of urban VA system papers, based on our prior surveys [16, 34].
The group included 2 faculty members, 4 PhD students, 3 research staff,
and 1 postdoc. We focused on visualization experts, as they are part of
the VA system-building processes we want to support.

Next, we synthesize the key themes identified through our survey.
Time spent in each design stage. On average, participants spent 24%
on Understand, 23% on Ideate, 33% on Make, and 20% on Deploy.
Notably, two spent 40% on Understand (deep exploration), while two
others spent 40% on Deploy (system refinement).
Bridging the expertise gap between domains. Five participants re-
ported misunderstandings or communication breakdowns between ur-
ban experts (e.g., architects, urban planners) and visualization experts.
The most cited barrier (40%) was unclear or incompatible terminology



between visualization and domain experts. Another 30% reported mul-
tiple barriers, including technical limitations, expertise gaps, differing
methods, and communication issues.
Narrowing down analytical goals. Some participants (40%) expe-
rienced evolving or confusing goals, highlighting variability in how
analytical objectives were established. Reflecting on their iterative
approach, one participant noted: “I began by implementing simple,
easy-to-understand visualizations based on my understanding of the
data. I then consulted domain experts to gather insights and feedback.
Using their feedback, I experimented with combining multiple visual-
izations into single views.” While most participants felt the iterative
process of refining their systems was as expected (60%), 40% expe-
rienced either more or fewer iterations than anticipated, pointing to
inconsistent expectations about the collaborative design process.
Tool availability and dissemination. Survey responses revealed that
open-source dissemination of urban VA systems remains limited. Only
one participant explicitly indicated that both the system and its code
were made publicly available in a way that qualifies as open source.
Two others shared only the system interface. Four participants reported
that neither the system nor the code was made publicly accessible,
typically due to institutional, privacy, or operational constraints. Fully
open dissemination of tools is still relatively uncommon, limiting op-
portunities for reuse, validation, and community uptake.
Provenance of analyses & artifacts. Most participants (60%) had
clearly defined project goals, while 40% faced evolving or unclear ones,
highlighting the difficulty of setting consistent objectives in interdis-
ciplinary work. Documentation practices varied considerably, with
manual documentation most commonly used. One respondent noted
that much of the work involved “unglamorous software engineering.”
Dedicated provenance tools, such as version control or specialized
tracking systems, were utilized infrequently. One participant described
a more structured approach that “at various stages (...) stakeholders
were shown the current version of the system.”
Key takeaways. The survey highlights that the most significant chal-
lenge across projects was bridging domain expertise, primarily due to
persistent communication and terminology issues between urban and
visualization experts. Participants mentioned the key role of defining
analytical goals, noting that projects with ambiguous or evolving ob-
jectives often resulted in inefficiencies and misaligned expectations.
Furthermore, the results indicate gaps in documentation practices, with
many teams relying on informal or manual methods rather than struc-
tured provenance tracking. Overall, addressing communication barriers,
refining goal-setting practices, and improving documentation emerged
as central themes for enhancing outcomes in urban VA.

5 THE URBANITE FRAMEWORK

Building on the challenges and design opportunities identified in previ-
ous work and our survey, we present Urbanite, a framework designed
to support the authoring of modular, transparent, and adaptable VA
workflows for urban data. Urbanite addresses the limitations of cur-
rent approaches, including the opacity of monolithic systems and the
technical barriers of computational notebooks, by enabling users to co-
construct dataflows using reusable components and intuitive interfaces.
A central aim of Urbanite is to lower the barriers that often prevent
urban experts from directly engaging in the creation and adaptation
of VA systems. To this end, Urbanite integrates an LLM to enable
intent-based interactions throughout the authoring process, which is
modeled as a dataflow. This dataflow serves as a transparent intermedi-
ary, allowing users to understand and validate the LLM’s interpretation.
It explicitly supports a human-in-the-loop paradigm, supporting users
to iteratively refine LLM suggestions and data transformations. Fur-
thermore, dataflow components are inherently modular and reusable,
enhancing efficiency and consistency across projects. To facilitate
meaningful human-AI alignment, we introduce a framework for multi-
level intent specification, operationalizing this alignment across scopes
and modes of expression. By allowing users to specify intent and
interpret system responses at varying levels of specificity, Urbanite
supports AI-driven assistance that is both traceable and adaptable to the
user’s analytical context. Urbanite leverages conceptual and technical

foundations laid by UTK [35] and Curio [36] while incorporating an
LLM-based intent translation pipeline. See supplementary material for
key differences between Urbanite and these frameworks. We first intro-
duce the framework’s theoretical foundations (Section 5.1) and design
goals (Section 5.2). We then present the interaction space for building
dataflows (Section 5.3), detail the multi-level authoring mechanisms
(Section 5.4), followed by an overview of the system (Section 5.5).

5.1 Conceptual foundations
Urbanite is built on the premise that human-AI alignment can be
achieved through thoughtful interaction design. Specifically, it draws
from the conceptual framework of interactive alignment recently intro-
duced by Terry et al. [52], which reconceptualizes the classic human-
computer interaction cycle in light of modern, intent-based AI systems.
Traditional interfaces rely on direct manipulation, requiring users to
choose and sequence actions to reach their goals. In contrast, human-AI
interaction uses a declarative approach: users state desired outcomes,
and the system interprets and executes them. This lowers entry barriers
but introduces ambiguity around system capabilities, behavior, and in-
tent alignment. Terry et al. [52] propose three distinct stages to support
more transparent and effective interaction in a declarative paradigm.
We adopt their conceptual framework to operationalize the human-AI
interaction cycle in the context of dataflow authoring through three key
alignment objectives:
(1) Specification alignment. What the dataflow should accomplish,
that is, users’ analytical intent and goals (e.g., “identify areas with high
heat vulnerability”), and how these translate into system behavior;
(2) Process alignment. How the dataflow should be constructed or
operations performed, the data transformations, analytical operations,
and visualizations that the AI proposes to fulfill users’ intent;
(3) Evaluation alignment. Verifying & refining the dataflow and
outputs, ensuring that the responses are correct and meet users’ needs.

In Urbanite, this alignment framework directly informs our system
architecture and design. A user’s analytical goals are translated into data
pipelines composed of data transformations, analytical operations, and
visualizations. Interaction mechanisms at multiple levels of granularity
and abstraction then guide users through the authoring, refining, and
evaluation of dataflows, ensuring that alignment is always met.

5.2 Design goals
Building on the previously identified challenges in urban VA and the
conceptual foundations of human-AI alignment, we articulate a set
of design goals that guide the development of Urbanite. These de-
sign goals (DGs) are directly informed by the real-world challenges
described in Section 3 and the empirical findings from our survey in
Section 4. In particular, the high technical barriers to authoring systems
(DG1, DG2, DG6), the need for transparency (DG3, DG4), and the
evolving nature of urban VA workflows (DG5, DG6). Each design goal
reflects a specific response to misalignment risks in specification (S),
process (P), evaluation (E), or all of them (cross cuts, CC).
DG1-S Enable natural language specifications of modular
dataflows. Dataflows are inherently modular, composed of discrete
components for data processing, analytical operations, and visualiza-
tion. However, translating analytical goals into these components is a
key barrier for domain experts. Urbanite must allow users to specify
intent in natural language. Through LLM integration, Urbanite must
interpret these goals and map them to partial or complete dataflows,
reducing reliance on technical expertise.
DG2-P Support user control during dataflow authoring. Users must
be able to control how the framework translates goals into operations.
Rather than treating the dataflow generation as a black box, Urbanite
must provide access to intermediate decisions made by the LLM, and
users should accept, reject, or revise these decisions. Control must be
supported through natural language (e.g., “filter the data and perform a
spatial join”) and manipulation (e.g., dragging a module into place).
DG3-E Enable inspection of AI-generated outputs. Outputs gener-
ated by LLMs and other AI components must be made transparent and
inspectable to support evaluation alignment. Urbanite must allow users
to verify whether the system’s responses align with their original intent,
not only in terms of final results but also in how those results were



derived. For example, if a user asks “visualize the most heat-vulnerable
neighborhoods using census and weather data”, Urbanite must be able
to not only inspect a heatmap, but also which datasets were used and
how the vulnerability index was computed.
DG4-E Trace and visualize the provenance of data transformations
and human-AI interactions. Urbanite must expose the provenance
of data transformations and LLM outputs throughout the lifecycle of
the dataflow. This must support the evaluation and comparison of
different states of the dataflow, as well as the user prompts used to
generate them. For example, if an expert is exploring accessibility
datasets, they may ask the system “highlight neighborhoods that are
outliers in terms of accessibility problems.” Over time, the expert
might modify the definition of outlier or adjust the spatial resolution
of the analysis. Provenance tracking must allow the expert to see
which revision introduced changes, reuse, or revert earlier steps without
reconstructing the dataflow from scratch.
DG5-CC Support iterative refinement across alignment stages. Au-
thoring is inherently iterative: goals evolve, understanding deepens,
and constraints shift over time. To maintain alignment between user
intent and AI behavior, Urbanite must support refinement across all
stages: specification, process, and evaluation. This includes the ability
to revisit and revise prior steps: rephrasing analytical goals, modifying
AI-generated dataflow components, or adjusting outputs based on ob-
served results. These iterations should be fluid, allowing users to go
back and forth between stages as needed. Urbanite must support these
refinements through both natural language and direct manipulation.
DG6-CC Support multi-level interaction within alignment stages.
While DG5 focuses on iteration across stages, DG6 focuses on depth
within each stage. Given the range of user expertise and task complexity,
Urbanite must support interaction at multiple levels of abstraction
within specification, process, and evaluation. For example, during
specification, users may articulate a high-level objective (“analyze heat
vulnerability”) or fine-tune specific prompts; during process, they might
inspect the dataflow or dive into the inner logic of individual modules;
during evaluation, they may explore summaries or individual outputs.

5.3 A flexible interaction space for building dataflows
In Urbanite, the user’s primary goal is to construct a dataflow: a data
pipeline of analytical operations that serves as a model of an urban VA
system. The authoring revolves around two core responsibilities: (1)
defining the structure of the dataflow (i.e., breadth), and (2) specifying
or modifying the inner workings of each module within the structure
(i.e., depth). Users may begin by sketching out a pipeline, either
through natural language or by manually composing dataflow nodes.
This defines the high-level flow of data and operations.

However, authoring is rarely linear. As users dive into the details
of a specific module, they may realize that the structure itself needs to
change. Likewise, while building out the structure, users may iteratively
define or revise the behavior of individual nodes to test their ideas or
explore alternative paths. To support this interaction space in Urbanite,
we define a two-dimensional conceptual framework with the scopes
of specification and modes of expression. The scopes of specification
refer to the granularity of what is being authored, ranging from the
entire dataflow to individual parameters within a module. The modes
of expression capture how that specification is articulated, whether
through natural language, visual manipulation, declarative grammar,
or executable code. Changes made at one scope with one mode are
reflected across others. For instance, updating a parameter in a node’s
code will be reflected in the natural language explanation. Urbanite con-
tinuously synchronizes these representations, giving users the flexibility
to shift between modes and scopes while preserving consistency and
intent. Table 1 and Figure 2 summarize the supported interactions and
how they contribute to Urbanite’s integrated, multi-modal authoring
experience. The specific design features that support these dimensions
in practice are presented in Section 5.4.

5.3.1 Dataflow preliminaries
Urbanite’s dataflow model follows from the one first introduced in
our Curio framework [36]. A dataflow is defined as a composition
of modular computing nodes, connected through data and interaction

Table 1: Combinations of specification scopes and expression modes.

Modes of expression (how)

Scopes of specification (what) NL UI Grammar Code

Dataflow
Module
Parameter

dependencies, and designed to express VA workflows. Each data node
takes as input and produces zero or more data layers. Although the
formalism treats all nodes uniformly, each node can semantically repre-
sent a distinct operation type within the workflow. Urbanite adopts the
types defined in Curio, including data wrangling and transformation,
analysis and modeling, and visualization nodes. To reduce ambiguity
in how goals are interpreted and operationalized, Urbanite introduces a
structured specification layer that builds directly on this formal model.
This specification serves as a machine-readable representation of the
current dataflow and provides a bridge between high-level user intent
and low-level implementation. It enables the system to capture both the
evolving scope of specification, from entire workflows to individual pa-
rameters, and the mode of expression, whether defined through natural
language, UI, declarative grammar, or executable code.

While Curio used this dataflow model for collaborative execution,
Urbanite repurposes it as the backbone for LLM-assisted, multimodal
authoring. It serves both as an execution plan and as the foundation for
prompt-based refinement, traceable suggestions, and semantic align-
ment. The dataflow also acts as a transparent intermediary between user
intent and LLM output, supporting in-the-loop refinement and reusable
components. See supplementary material for full specification details.

5.3.2 Scopes of specification

We define the scopes of specification as the granularity in which the user
interacts with Urbanite to create a dataflow. This ranges from dataflow
definitions that capture the overall structure of the data pipeline, to
mid-level specifications of individual modules, down to fine-grained
parameter settings within those modules.

Dataflow-level specification . At the dataflow level, users specify
the overall structure of the workflow. This includes defining the key
nodes that will be part of the dataflow, the data inputs and outputs,
and how these nodes are connected through data and interaction de-
pendencies. The result is a blueprint that outlines the logical flow of
data and operations. Operations at this level restrict interactions to
coarse-grained structural elements: users can create, modify, or remove
nodes and edges, as well as define or update the task that describes
the dataflow’s high-level task. At this level, the dataflow structure
provides context for downstream refinement and serves as a scaffold
for LLM-driven suggestions and user guidance.

Module-level specification . At the module level, users focus on
specifying the behavior and configuration of a single node within the
dataflow. Each node is a discrete data, analytical, or visual operation.
At this level, users are restricted to modifying the internal contents of a
node. This includes the subtask that describes the node’s purpose, the
content field that encodes the operation logic (e.g., grammar or code).
The structure of the dataflow remains unchanged at this level: users are
not adding new modules or rerouting connections, but refining how a
specific module contributes to the overall dataflow.

Parameter-level specification . At the parameter level, users en-
gage with fine-grained aspects of the dataflow behavior: individual
settings and thresholds that define how components operate. The pa-
rameters are made available to the user through UI elements using code
annotations [36]. When operating at this level, user modifications are
restricted to the code annotations within a single node. The structure of
the dataflow and the purpose of the node remain fixed.
Provenance and interoperability across scopes. All interactions,
regardless of the scope, are captured and stored in a hierarchical data
structure. This interoperability is made possible by considering the
dataflow specification as a central artifact.
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Fig. 2: Urbanite’s interface, with design features for human-AI alignment.

5.3.3 Modes of expression
Scopes define what part of the dataflow the user edits; modes of ex-
pression define how they convey intent. In Urbanite, users can use
natural language, UI, code, or grammar, with changes reflected across
all modes through the shared specification.
Natural language. This is the most accessible entry point for authoring
in Urbanite. Users can describe high-level tasks (e.g., “map accessibil-
ity gaps across neighborhoods”) or specific prompts (e.g., “map median
income to color”). These are interpreted by the LLM and translated
into modifications to the dataflow specification. Natural language can
be used across scopes, from defining dataflows to adjusting parameters.
User interface. The interface lets users build and edit dataflows by
directly dragging nodes and adjusting parameters. Based on Curio’s
components, it supports extensibility: users can add elements via code
annotations as reusable widgets. The UI and diagram remain the speci-
fication’s anchor, whether authored visually or in code.
Code & grammar. Urbanite supports authoring via Python and declar-
ative grammars (Vega-Lite, UTK [35]) to define node logic. Each node
executes its logic using imported libraries, meaning Urbanite’s perfor-
mance is tied to the efficiency of the specific libraries. This enables
flexible and transparent node authoring, but can constrain performance
for large datasets or complex visual encodings.

5.4 Design features for human-AI alignment
Building on the earlier foundation, Urbanite implements features that
align user intent with AI behavior during dataflow authoring. These
features support alignment across specification, process, and evaluation,
contributing to key design goals and tied to the scopes of specification.

5.4.1 Specification features

Dataflow generation and scaffolding. The process of dataflow
creation in Urbanite begins with a conversational interaction between
the user and the LLM. Through this dialogue, the user articulates their
analytical goals in natural language, DG1-S . The system incremen-
tally builds a structured task description from this input. This occurs
through guided prompts, with the LLM reformulating user input into a
machine-readable schema and requesting clarification as needed. This
exchange supports DG5-CC . To ensure the task is well-defined, Urban-
ite performs schema checks that verify key elements (e.g., presence of
a dataset, whether the task can be mapped to one or more supported
nodes). Once requirements are met, the system transitions from intent
capture to dataflow construction. At this point, Urbanite uses the final-
ized specification to scaffold an initial dataflow. This involves creating
nodes for key analytical operations and edges for data or interaction
flow. Each node is assigned a subtask (based on the main task) describ-
ing its role in natural language. Stored in metadata, it guides LLM
assistance for code, grammar, and UI generation.

Task & subtask definition. After the initial dataflow is scaffolded
through the conversational interaction with the LLM, Urbanite assigns
a natural language task description to the entire dataflow (supporting
DG1-S ), along with subtask descriptions to each node. The task cap-
tures the user’s overarching analytical goal (e.g., “analyze accessibility
issues across neighborhoods”), while each subtask expresses the local

intent of a node within that broader workflow (e.g., “join accessibility
data with demographic layers”). Such a multi-level interaction within
specification supports DG6-CC . These descriptions are editable: users
can revise the task to reflect updated goals or change the subtask to
clarify, refine its behavior. To ensure coherence across the dataflow,
Urbanite uses a two-way synchronization mechanism between task and
subtasks. When a user edits the task, Urbanite triggers a decomposition
routine that prompts the LLM to suggest revised subtasks for each node
in the dataflow, further supporting DG6-CC . Conversely, when a user
modifies a subtask, Urbanite re-evaluates the full set of subtasks to
determine whether the overall task description is still aligned. This uses
an LLM summarization pass to generate a natural language summary
of current subtasks and check for coherence, implementation issues, or
opportunities to refine or split subtasks. If found, a warning is added.
All synchronization steps are tracked via the provenance model.

5.4.2 Process features

Code generation. For each node, Urbanite uses the natural language
subtask as the primary prompt for generating the node’s logic. Depend-
ing on the node type, this logic may be rendered as Python code or
declarative grammar (Vega-Lite or UTK). The prompt is specified with
both subtask text and contextual metadata (expected inputs and outputs,
node type) to generate a candidate implementation. Users remain in
control throughout the process DG2-P . They may inspect, modify, or
fully rewrite the generated logic. Alternatively, the user can request
Urbanite to revise the implementation by updating the subtask. To main-
tain consistency across abstraction levels, Urbanite synchronizes edits
made with different modes of expression, supporting DG5-CC . When
a user makes changes to the code or grammar, Urbanite prompts the
LLM to infer and update the corresponding subtask, avoiding drifting
between the descriptive and functional representations of each node.

Connection suggestions. As the user iteratively builds out their
dataflows, they may reach decision points where the next analytical
step is unclear or open-ended. To support exploration in these moments,
Urbanite allows users to request connection suggestions from the LLM.
Urbanite generates these suggestions by prompting the LLM with the
current state of the dataflow specification, including existing nodes,
their subtasks, and their interconnections. Urbanite then returns candi-
date nodes (e.g., new analysis, transformation, or visualization steps),
each annotated with a subtask that explains its intended logic. These
proposals are presented as options rather than decisions, supporting
DG2-P . Users maintain full control over which nodes to integrate.

5.4.3 Evaluation features

Dataflow- or node-level explanations. To support transparency,
Urbanite enables users to request natural language explanations for
individual nodes or entire sections of the dataflow. These are generated
by prompting the LLM with the relevant parts of the specification
and asking it to summarize the logic, purpose, and expected behavior
of that component. Users can also prompt for debugging ideas when
facing actual or potential errors. These requests trigger focused prompts
to the LLM, which in turn generates context-aware responses. This
aligns with DG3-E , ensuring that users can inspect and verify the AI-
generated behavior of the system. This is particularly useful when users
are unfamiliar with certain operations or wish to validate nodes before
proceeding, supporting DG5-CC .

Provenance and data inspection. Urbanite extends Curio’s
provenance model to capture versioned snapshots of the dataflow spec-
ification during key interactions. Every time a user accepts an LLM
suggestion, modifies a task or subtask, or changes a node’s content,
Urbanite automatically creates a snapshot of the full specification, in-
cluding nodes, edges, subtasks, and metadata. These snapshots are
then organized into a history tree that allows users to trace how their
dataflow has evolved over time, supporting DG4-E . Users can browse
earlier versions, inspect changes, and revert to previous versions if
needed. Each snapshot is timestamped and labeled with the triggering
event or user prompt that led to the change. Urbanite also supports
data-level inspection for each node. Based on the specification schema,
it offers standard visualizations for possible outputs. Users can click a
magnifying glass icon on a node to view its data, supporting DG3-E .
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Fig. 3: Using Urbanite to analyze Project Sidewalk accessibility data. (a) The user starts with dataflow generation to define a task. (b) Based on the
task, the LLM proposes a first sketch. (c) The user accepts nodes for geometry and score calculation, using code generation to fill them in. (d) The
same is done for a neighborhood-level bar chart. (e) In a parallel flow, uncertainty is then calculated, and (f) the user edits the subtask to aggregate
by neighborhood using task & subtask definition. (g) UTK suggestions are accepted to visualize accessibility (top) and uncertainty (bottom). (h) As
nodes and subtasks were edited, the task was automatically refined. Hovering task keywords highlights related dataflow parts.

5.5 The Urbanite system
Urbanite builds on Curio’s dataflow framework [36], adding alignment-
driven features and a language-based interaction model.

5.5.1 System architecture
Urbanite comprises a Python-based backend server and sandboxed
execution server, with a React frontend. Most nodes use Python, while
visualization nodes rely on Vega-Lite or UTK. The backend manages
dataflow logic, LLM interactions, data, provenance, and specification.
Data remains in the backend in binary format, transferred internally
between nodes, and moves to the frontend when a visualization node
requests it. The sandbox server executes user or LLM-generated Python
code in isolation. The frontend provides an interactive interface for
dataflow authoring, inspection, and LLM communication.

5.5.2 LLM integration and prompting strategies
Urbanite relies on the LLM as a semantic engine for generating, modi-
fying, and explaining parts of the dataflow. It supports multiple actions:
task definition, subtask refinement, dataflow generation, debugging,
and suggestions. To make these actions reliable, the backend con-
structs each LLM request from three components: (1) A preamble,
describing Urbanite’s internal logic, specification schema, UTK and
Vega-Lite grammar structure, and system constraints; (2) A feature-
specific prompt, tailored to the user’s current action; (3) The input
context, including the current dataflow specification, task and subtasks,
expected input / output types, and node content. The dataflow specifica-
tion will be used to constrain the LLM responses. To improve response
quality, we use: (1) few-shot prompting with examples, (2) contextual
priming with specs and metadata, (3) subprompt decomposition for
multi-turn tasks, (4) role prompting to guide the LLM as an assistant,
and (5) negative prompting to discourage vague or irrelevant outputs.
The LLM can access dataset names and metadata, while persistent inter-
action is limited to referencing previous messages within the assistant
chat. Currently, Urbanite uses OpenAI’s gpt-4o-mini.

5.5.3 Frontend and interaction features
The frontend interface presents a canvas-based authoring environment,
integrated with LLM-powered and manual editing controls (Figure 2).
Canvas area. The canvas lets users build dataflows by dragging and
connecting nodes. LLM-suggested nodes appear semi-transparent with
an “Accept Suggestion” button. The node area provides node types
and file controls for creating, uploading, and exporting dataflows. A
“Dashboard Mode” hides edges for presentation. Users define or edit
tasks in natural language in the task editor, which highlights key terms
and can be hovered to reveal their inferred connections. A “Generate
Suggestions” prompts the LLM to scaffold the dataflow.
Node area. A node exposes interaction panels for specifying its pur-
pose, input, and output types. Users can describe a subtask in natural
language and prompt the LLM to generate node logic. A “Suggest Con-

nection” button allows the LLM to propose next steps. An “Explanation
Tab” provides an LLM-based summarization of the node. A magnifying
glass lets users preview the output with a standard visualization.
LLM assistant chat. The right side of the interface hosts the LLM as-
sistant chat, where the user can interact with the framework by revising
tasks, clarifying suggestions, or exploring alternatives. This is the only
LLM interaction that preserves chat history across turns.
Provenance controls. A version viewer lets users track dataflow prove-
nance. LLM-triggered edits create snapshots of the specification, al-
lowing users to inspect, compare, or revert changes (Figure 1(d)).

6 EVALUATION

6.1 Usage scenarios
We present three real-world scenarios co-developed with urban experts
who co-authored this paper. We use inline indicators for interactions at
different scopes: dataflow, node, and parameter. Each scenario
uses a different entry point with LLM augmentation: Scenario 1 starts
with a chat task and dataflow request; Scenario 2 with sketching a
dataflow from a paper diagram; and Scenario 3 with creating nodes to
load data.

6.1.1 Scenario 1: Analyzing access with Project Sidewalk
Crowdsourced platforms like Project Sidewalk [41] help fill data gaps
by having volunteers annotate sidewalk features. However, such data
introduces uncertainty, especially from contributor disagreements. Us-
ing Urbanite, we build a dataflow that combines multiple analytical and
visualization layers, such as comparing scores across neighborhoods
and inspecting confidence levels. In this scenario, the user begins by
engaging with the LLM assistant in the chat-based interaction (Fig-
ure 3(a)). The user starts with a vague task: “I want to load and visualize
three datasets from Project Sidewalk with data observations as CSV,
neighborhoods as GeoJSON, and streets as GeoJSON.” The LLM uses
metadata from uploaded files to ground the conversation and follows
up with clarification questions to help the user structure a task . Once
satisfied (Figure 3(b)), the user applies it to the dataflow . The system
proposes nodes for data loading, spatial joins, filtering, aggregation,
and multi-view visualization (Figure 3(c,d,e)). The user reviews and
accepts most suggestions, editing subtasks to better reflect evolving
goals (Figure 3(f), ). These edits automatically update the high-level
task (Figure 3(h), ), keeping the specification aligned. For each node,
the user prompts the LLM to generate code , specifies expected in-
put/output types , and refines as needed. During this process, the user
writes a custom subtask for a new module and receives a warning
indicating that the logic could be modularized into separate opera-
tions, splitting a transformation that filters and normalizes data into two
nodes (Figure 3(e), ). By the end, the dataflow supports dynamic com-
parison of accessibility and uncertainty. Tight task-subtask-dataflow
alignment led to a clearer final task description, showing how iterative
refinement improved human-AI alignment (Figure 3(b,e)).
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Fig. 4: Using Urbanite to reproduce Urban Pulse. (a) The user writes code to load and parse pulse data. (b) Background layers are added, and
subtasks are generated using task & subtask definition. (c) A UTK node is added to visualize the data. (d) The user requests connection
suggestions from the node and accepts a Vega-Lite recommendation. (e) The Vega-Lite subtask is refined to include interactive selection, and the
user uses code generation to implement it. (f) The task is continuously updated via task & subtask definition, resulting in a final task.

6.1.2 Scenario 2: Topology exploration of social media data
Urban Pulse [32] is a VA framework using topological techniques to
identify and compare urban activity “pulses.” It models activity as a
spatiotemporal scalar field, extracting peaks across time scales. The
system includes coordinated views: a map of pulses, a scatter plot
for comparison, and a line plot for trends. Urbanite enables users to
recreate and extend such workflows by combining visual scaffolding,
AI-assisted code generation, and synchronization between process-level
actions and high-level task definitions. In this scenario, we illustrate
how a user reproduces key elements of Urban Pulse’s workflow while
leveraging Urbanite’s process alignment features to ensure that the
resulting system remains coherent, modular, and explainable (Figure
4). The user begins by uploading the Flickr dataset used in the original
study. Unlike the previous scenario, they choose not to define a task up
front via the LLM assistant. Instead, they take a bottom-up approach,
sketching the initial dataflow structure (Figure 4(a,b), ) based on the
original paper’s diagrams. For simple preprocessing steps, such as
loading and formatting the data, the user writes Python code into node
editors and executes them (Figure 4(a,b), ). As each node is run, the
LLM analyzes the node content and automatically generates a subtask
(Figure 4(a,b), ), incrementally constructing a task description in the
background (Figure 4(f), ). Throughout, the user frequently uses the
connection suggestion to explore next steps (Figure 4(e), ). These
LLM-generated prompts help expand the dataflow based on the task
and dataflow (Figure 4(d), ). The user accepts or edits suggestions
and updates subtasks as needed, resulting in three dataflow branches
for Urban Pulse’s time resolutions: hour, day, and month (Figure 4(d),

). The LLM recommends visualizing each branch with a scatter plot
(Figure 4(d), ). After accepting this suggestion, the user modifies the
subtask to include interactive selections. The final output mirrors the
Urban Pulse system, supporting multi-scale activity exploration.

To build the map-based view, the user adds nodes for loading back-
ground layers (Figure 4(b), ), merges them with pulse point data

, and visualizes the result using a UTK node (Figure 4(c), ), with
parameters exposed to the user . They complete the workflow by
creating interaction edges between the scatter plots and the map view

, allowing selections in one view to update the others, turning what
would normally be a technically demanding coordination task into a
visual connection. Even though the user never explicitly defined a task
in advance, the task and subtasks are continually synchronized (Figure
4(f), ), preserving intent and clarity across modules. This scenario
demonstrates Urbanite’s support for process-first workflows, where a
user incrementally constructs a system and achieves strong alignment
through bottom-up iteration and AI collaboration (Figure 4).
6.1.3 Scenario 3: Impacted houses in flooding simulation
Urban VA is crucial for environmental risk assessment [5, 10]. Climate
experts use models to simulate real-world phenomena, and libraries like
SynxFlow [60] simplify flooding simulations. However, non-experts
still struggle with terminology and data, while domain experts need

better ways to explore and visualize results. We show how a user
can use Urbanite’s dataflows, UTK visualizations, and LLM-powered
features to interpret simulations and build complex visualizations.

The user starts by creating nodes to load data for a small village in
the Chicago area . The data is used in a computation node (Figure
1(b), ) to run a SynxFlow flooding simulation for an extreme storm
event. As nodes execute, the LLM generates subtask descriptions
which are automatically incorporated into the task, maintaining the
broader context (Figure 1(f), ). An additional node (Figure 1(a), )
fetches 3D building data from OpenStreetMap using the UTK API. To
check the result, the user uses the data inspection tool (Figure 1(a), ).
Finally, two UTK visualizations (Figure 1(c), ) are created: one pro-
viding an overview of the simulation and another highlighting flood risk
for individual houses. Wanting to change key simulation parameters,
the user goes back to a previous dataflow version using provenance
(Figure 1(d), ), updating the task description (Figure 1(f), ) and
consequently the subtasks of respective nodes . Based on the new sub-
tasks, the user requests updated code for the simulation nodes from
the LLM. The provenance tree now has two branches (Figure 1(d), ),
allowing easy comparison of simulation configurations. To share this
workflow with collaborators, the user generates node-level explanations
(Figure 1(b), ) for simulation nodes and a dataflow-level explanation
(Figure 1(e), ). Finally, the dataflow is exported, and markdown files
with explanations are generated. In the end, the user creates a dataflow
to simulate floods in the Chicago area, with an overview visualization
and a 3D view of affected buildings. This scenario demonstrates Urban-
ite’s ability to enhance evaluation alignment and collaboration through
provenance tracking and automatic documentation (Figure 1).

6.2 Experts’ feedback
To evaluate Urbanite, we conducted semi-structured interviews with
six urban experts using one usage scenario, gathering feedback on each
feature. None were paper authors; all had programming experience
and had used LLMs. Participants included three civil engineering PhD
students E1-3 , an urban planning faculty member E4 , a water resource
engineering researcher E5 , and a computer scientist specializing in
urban accessibility E6 . Overall, they expressed positive impressions
towards Urbanite, appreciating its ease of use and accessibility. Re-
garding the dataflow generation, E1 positively remarked, “It’s really
amazing because usually we have to spend a long time defining these
things by ourselves,” highlighting that the framework “gives us an ini-
tial version we can work around.” Similarly, E2 noted the novelty of the
dataflow generation feature, emphasizing, “this doesn’t exist in tools
that we have.” E4 appreciated the conversational nature of the dataflow
generation, mentioning that “being prompted on figuring out more
detailed tasks is helpful,” since in her experience, “LLMs sometimes
do something that has nothing to do with what you’re asking.”

Concerning the task and subtask definition, E6 found the sugges-
tion of subtasks useful, observing, “The idea of suggesting subtasks is
interesting, and the user will even learn through them by visualizing



the isolated subtasks.” E4 also praised the concept, emphasizing the
benefit of syncing code and task, “that’s where information gets lost in
a lot of projects (...) you update the code but you don’t update the notes,
so keeping them synced is very helpful.” E2 aligned positively with
the subtasks feature, as it closely matches his workflow of “breaking
down a problem into distinct parts, visually plotting it, seeing what
needs to be done next.” E5 mentioned that this feature “simplifies the
task” of creating dataflows, stressing that “from a project perspective,
this immediately cleans up how we understand our dataflow.”

On code generation, E4 underscored its practical value, appreciat-
ing “the simplicity of having LLM helping me with the task.” Similarly,
E3 found significant value in context integration, stating, “Usually you
have your VS Code, and then you go to ChatGPT, but I appreciate
that the code generation happens inside the tool and in the context of a
node.” E4 particularly appreciated the structured coding environment
provided by the tool: “Usually I use individual scripts for coding, Ur-
banite structures them clearly within the same canvas.” With respect
to the connection suggestions, E1 acknowledged how this feature
enables incremental refinement of workflows. E3 further highlighted
the creative potential of this capability, calling it “a very interesting
feature for brainstorming and exploring analytical possibilities.” E4
especially valued the explanation and provenance features for support-
ing reproducibility and transparency: “My mind is going to things like
reproducibility and open science, linking code with clear descriptions
of what it does.” She also highlighted the clarity: “It contextualizes the
subtasks within the big dataflow,” the ease of sharing: “You can easily
share with others,” and support for iteration: “I can go back and iterate
on specific aspects easily.” The urban experts also expressed certain
reservations. For example, E5 mentioned that technical terms differ
across countries, so that terminology might not be factored in by LLMs.
Both E3 and E5 mentioned concerns regarding the short-term caching
of LLM context, with E5 mentioning that “when the short-term cache
ends, if the user returns later, the context might already be lost.”

6.3 Quantitative evaluation

To assess Urbanite’s effectiveness in translating high-level user intent
into executable visual analytics workflows, we conducted an evaluation
focusing on the core stages of LLM-powered generation: task semantic
alignment, subtask coverage, and dataflow quality. In order to achieve
this, we first selected ten representative urban VA papers. From each of
these papers, we manually extracted the core user intent that the corre-
sponding VA system aimed to support. Using Urbanite, we then: (1)
generated a task description based on this user intent, (2) decomposed
it into subtasks, and (3) matched these subtasks to a dataflow graph.
Methodology. We recruited five experienced Computer Science re-
searchers as evaluators; none are authors of this paper: 3 faculty mem-
bers and 2 PhD students. They were instructed to assess the generated
outputs and how they translated intent into a dataflow. Each paper
was assigned to two evaluators, who scored three aspects on a 3-point
ordinal scale, where higher scores indicate better quality: Semantic
alignment measured how well the generated task description reflected
the original user intent, ranging from “Misaligned” (0) to “Fully aligned”
(2). Coverage of subtasks assessed whether the subtask decomposition
included all essential steps for task completion, from “Incomplete” (0)
to “Complete” (2). Flow quality evaluated whether the dataflow’s
structure supported task execution, ranging from “Invalid flow” (0)
to “Functional and coherent” (2). Additionally, evaluators could flag
outputs for hallucination if fabricated elements were present.
Results & takeaways. Urbanite achieved strong alignment with user
intent across the evaluated cases, with an average semantic alignment
score of 1.65 (SD=0.32) on the 0–2 scale. In most cases, the generated
task descriptions captured the essence of the original intent effectively.
For subtask coverage, Urbanite achieved an average score of 1.6
(SD=0.37), suggesting that the system was generally able to decompose
user intent into comprehensive subtasks, although a few cases exhibited
partial coverage where additional subtasks would enhance complete-
ness. The flow quality evaluation had an average of 1.5 (SD=0.45),
indicating that the generated dataflows were typically functional and
coherent, but with some instances requiring refinement. Across all

evaluations, we identified three noteworthy mismatches between the
extracted tasks and the original user intent: For Ferreira et al. [18], the
extracted task incorrectly inferred that the analysis was conducted using
hourly or daily patterns, which was not specified in the original intent.
For Ferreira et al. [17], the extracted task incorrectly assumed that sky
exposure data was available through an open data portal and omitted a
necessary computation step. Finally, for Konev et al. [22], the extracted
task failed to capture a critical aspect of the user intent: the need to
run and control simulations. Additionally, the generated dataflow was
overly vague and lacked sufficient detail to support execution. Full
results are in the supplementary material.

7 CONCLUSIONS

Reflection on design goals. The design goals of Urbanite were defined
to bridge the gap between human intent and AI behavior across all
stages of an urban VA dataflow. Regarding DG1-S , by allowing users
to articulate analytical intent in natural language, Urbanite lowers the
entry barrier to the creation of these dataflows. Urbanite does not re-
quire users to translate ideas into technical components from the outset.
Instead, the framework shifts the burden of interpretation to the AI.
Despite this automation, the framework still gives users control over the
authoring process, as highlighted by DG2-P ; Urbanite offers sugges-
tions rather than decisions, so all AI-generated content is inspectable
and editable. As highlighted in our experts’ feedback, transparency is
key in fostering trust in AI-assisted workflows. Urbanite directly ad-
dresses DG3-E ; whether through explanations or data inspections, users
are given visibility into what the dataflow is doing. To support trust,
transparency, and reproducibility, Urbanite incorporates provenance of
dataflow specifications, which aligns with DG4-E . By tracing both data
transformations and human-AI interactions over time, the framework
allows users to compare past states, revert changes, and understand
the evolution of their dataflows. As noted in DG5-CC , Urbanite sup-
ports rephrasing tasks and revising AI-generated dataflows, enabling
alignment as an iterative dialogue where human and AI gradually con-
verge. For alignment stages in DG6-CC , Urbanite supports multi-level
interaction by keeping scopes consistent. Users can start with a broad
task, refine subtasks, switch between dataflow and node logic, and
explore results at different levels. Changes in one scope automatically
update others to ensure consistency. While our evaluation revealed
that Urbanite occasionally made mistakes (e.g., inferring unavailable
datasets, omitting specific steps, overly broad flows), these instances
were limited. These results suggest that Urbanite can effectively trans-
late high-level user intent into executable workflows, providing a strong
starting point for urban VA. Importantly, such imperfections highlight
the value of Urbanite’s in-the-loop, iterative refinement process, where
users can easily identify and adjust AI-generated outputs. Rather than
seeking a perfect one-shot generation, Urbanite is designed to facilitate
progressive alignment between human intent and system behavior.
Limitations. While Urbanite presents a novel approach to urban VA,
we acknowledge a few limitations. The visualizations generated are
primarily constrained by the capabilities of Vega-Lite and UTK. This
can make it challenging to create more complex, custom-layered vi-
sualizations that require very specific visual encodings. Additionally,
Urbanite’s performance is primarily constrained by the underlying
libraries utilized within each dataflow node. We also note that the
framework does not yet support the automatic positioning or reorgani-
zation of dataflow nodes through LLM interaction, which could pose a
visual burden for very comprehensive dataflows.
Future work. Building upon Urbanite’s foundational capabilities, we
envision several avenues for future work. We are particularly interested
in exploring intelligent dataflow layout, alongside a detailed investi-
gation into the cognitive burden of dataflow interaction, especially for
complex analytical workflows. Another compelling research avenue
lies in a comparative study of different interaction modalities, including
dataflow-centric approaches, notebook-based systems, grammar-based
interfaces, and our LLM-driven natural language interaction. In addi-
tion, investigating these avenues with a larger cohort of users would
be valuable for expanding upon our findings and ensuring broader
applicability across different expertise levels.
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