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ABSTRACT
AllReduce is a critical collective in both HPC and large-scale AI workloads. However, scaling it to 
Exascale systems presents key challenges due to inter-node communication bottlenecks and 
underutilization of intra-node resources like shared memory and NVLink.

This work analyzes state-of-the-art AllReduce algorithms to identify inefficiencies and 
opportunities for hybrid strategies that explicitly separate intra- and inter-node communication. 
We introduce a preliminary algorithmic design that leverages tunable intra-node communication 
patterns and discuss key performance criteria, including message count and data volume.

Our early results provide insight into communication trade-offs and guide the development of 
adaptive AllReduce implementations optimized for Exascale systems.

AllReduce is a collective communication operation that combines data from all processes and 
distributes the result back to all. It’s widely used in:

• HPC workloads (e.g., distributed linear algebra, simulations)
• AI training (e.g., synchronizing gradients across GPUs)

Formally, each process 
contributes a buffer of values, 
and a reduction operator (e.g., 
sum, max) is applied element-
wise across all buffers. The 
result is then broadcast back to 
every process.

Fig. 1

Why it matters: AllReduce is latency-sensitive and bandwidth-bound, making it a major 
performance bottleneck in large-scale systems. As compute nodes become faster and more 
parallel, communication overhead — especially inter-node communication — increasingly 
dominates.

Challenge at Exascale:
Exascale systems feature:
• Tens of thousands of nodes
• Deep memory hierarchies
• Fast intra-node links (e.g., shared memory, NVLink)
• Slower inter-node links (e.g., Ethernet, InfiniBand)

However, most Current AllReduce algorithms treat all 
communication uniformly, often failing to take full 
advantage of high-bandwidth intra-node resources. 
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Node-aware Allreduce
Flat Allreduce

3 – TOPOLOGY AWARE STRATEGIES

4 – EARLY DESIGN AND RESULTS

While AllReduce is widely used, its performance depends heavily on message size, process 
count, and system topology. Most MPI libraries use a small set of algorithms selected through 
fixed, non-adaptive heuristics.

Common Algorithms:
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Recursive Doubling:
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Rabenseifner[1]:

(1) Reduce-Scatter (2) Allgather

Efficient for small messages. Scales as log(P), but doesn’t differentiate between intra- and inter-
node steps.

Good bandwidth usage but slow for small messages and high latency.

Combines Reduce-Scatter and Allgather phases. More efficient for medium-sized messages, but 
assumes homogeneous communication cost.

Limitations :

• Algorithms are often hard-coded with thresholds and non-adaptive.
• In practice, MPICH/OpenMPI switch between algorithms at fixed message sizes without 

considering node topology or memory hierarchy.
• Many do not exploit intra-node shared memory for local reduction or reuse.
• There’s a lack of parametrizable strategies that can adapt to system and workload 

characteristics.

While most default AllReduce implementations treat communication uniformly, several works 
have begun to explore topology-aware designs that explicitly separate intra- and inter-node 
phases.

SMP-Aware Collectives (e.g., MVAPICH, OpenMPI, MPICH with SHM)
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These implementations typically:
• Use shared memory for intra-node reductions
• Perform a leader-based inter-node exchange
• Then broadcast the result within each node

This node-aware reduction pipeline improves efficiency by leveraging faster local 
communication, but often remains tightly coupled to specific system architectures and is not 
tunable.

Amanda Bienz et al. [2]
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Improves intra-node utilization through a multi-leader strategy, where multiple ranks per 
node participate in the inter-node phase. However still lacks runtime tunability and assumes 
relatively uniform node configuration.

We introduce EMMA (Efficient Memory-aware Multi-level AllReduce), a hierarchical algorithm 
designed to optimize collective communication on modern multi-node systems. EMMA 
explicitly separates intra- and inter-node communication and is parametrized by:

• r: Radix, which defines the base of the communication tree (i.e., number of peers per round) 
in both Reduce-Scatter and Allgather phases

• b: Block count, which controls how many logical data blocks are processed per round — 
typically tuned to match the number of local processes or shared-memory characteristics

EMMA generalizes Rabenseifner’s two-phase structure by allowing full control over 
communication granularity and structure. This enables adaptation to system topology, 
message size, and bandwidth asymmetry.

Progress so far:

• Implemented Reduce-Scatter inspired by Tuna2[3] with tunable r and b
• Implemented Allgather using r-Bruck
• Verified correctness across test cases and process counts

We conducted our initial evaluation of EMMA on a single node of Polaris, a leadership-class 
supercomputer at Argonne National Laboratory

Peak Performance: 34 petaflops

Architecture: AMD EPYC "Milan" processor

Cores: 17,920

Network Switch: 200 Gbps

In this configuration, EMMA matches MPICH for small messages (≤ 512 doubles) and is 
consistently Faster than Amanda Bienz’s hierarchical algorithm in early multi-node experiments

Next Steps:

• Scale EMMA to 512 processes (8 nodes) and evaluate parameter effects
• Extend Allgather with batching support for 2-layer hierarchical r-Bruck
• Explore alternative designs for both algorithm phases

We presented EMMA, a tunable and topology-aware AllReduce algorithm that 
generalizes existing hierarchical approaches by introducing flexible parameters. Our 
initial single-node results demonstrate performance gains over both MPICH and 
Amanda Bienz’s strategy for small messages. Ongoing work focuses on scaling EMMA 
across nodes, refining its hierarchical structure, and enabling runtime adaptability.


