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VIGMA: An Open-Access Framework for
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Abstract—Gait disorders are commonly observed in older
adults, who frequently experience various issues related to
walking. Additionally, researchers and clinicians extensively in-
vestigate mobility related to gait in typically and atypically
developing children, athletes, and individuals with orthopedic
and neurological disorders. Effective gait analysis enables the
understanding of the causal mechanisms of mobility and balance
control of patients, the development of tailored treatment plans
to improve mobility, the reduction of fall risk, and the tracking of
rehabilitation progress. However, analyzing gait data is a complex
task due to the multivariate nature of the data, the large volume
of information to be interpreted, and the technical skills required.
Existing tools for gait analysis are often limited to specific patient
groups (e.g., cerebral palsy), only handle a specific subset of tasks
in the entire workflow, and are not openly accessible. To address
these shortcomings, we conducted a requirements assessment
with gait practitioners (e.g., researchers, clinicians) via surveys
and identified key components of the workflow, including (1)
data processing and (2) data analysis and visualization. Based
on the findings, we designed VIGMA, an open-access visual
analytics framework integrated with computational notebooks
and a Python library, to meet the identified requirements.
Notably, the framework supports analytical capabilities for as-
sessing disease progression and for comparing multiple patient
groups. We validated the framework through usage scenarios
with experts specializing in gait and mobility rehabilitation.
VIGMA is available at github.com/komar41/VIGMA.

Index Terms—Gait, stroke, rehabilitation, visual analytics, data
processing, multivariate data, ensemble, survey, computational
notebook.

I. INTRODUCTION

Gait disorders are prevalent in older adults, with studies
revealing that 82% of people aged 85 years or older suffer
from some sort of gait anomaly [1], [2]. Conditions such as
Parkinson’s [3] or stroke [4] significantly impact patients’ gait,
causing notable deviations from typical motor movements such
as shuffling or asymmetric gait. Additionally, gait impairments
are increasingly observed in children with cerebral palsy [5]
and spina bifida [6]. The analysis of gait presents a complex
challenge due to its variability within and across different
patient groups, coupled with the diverse types of data collected
for each individual. Consequently, tools that straddle the entire
gait data lifecycle (processing, analyzing, and visualizing)
can play a pivotal role in understanding the biomechanics of
a patient, monitoring disease progression, and implementing
appropriate rehabilitation strategies.
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Gait data is collected via a diverse combination of hardware
(e.g., infrared (IR) cameras, force plates) and software tools
(e.g., Visual3D [7], Vicon Nexus [8]) that generate a wide
variety of time-series data, including kinetics (ground reaction
forces, joint moment), kinematics (motion, joint angles), and
electromyography, as well as single-valued spatiotemporal
parameters (e.g., step length, swing time). Each of these data
types plays a crucial role in various tasks associated with the
analysis of patients’ gait. For instance, kinetic measures and
joint moments can provide insights into several musculoskele-
tal diseases [9], whereas kinematic measures are particularly
useful for assessing fall risk in elderly individuals [10]. Gait
data also includes raw trial videos, which, when analyzed
alongside other time-series data, provide additional context to
interpret anomalies or validate findings. This diversity of data
underscores the need for comprehensive tools that encompass
all of these data types to enable a more detailed analysis of
patients’ gait.

Therefore, analyzing gait data constitutes a multifaceted
challenge, as the workflow involves several data processing,
and data analysis and visualization tasks. Data processing
tasks involve format harmonization, imputing missing values,
filtering noise, whereas analysis and visualization tasks include
analyzing statistical measures, comparing patient groups, find-
ing anomalies, and analyzing disease progression. Both sets
of tasks are vital in the overall workflow of practitioners.
However, existing tools and techniques predominantly support
only a subset of tasks and lack important analysis and visu-
alization capabilities, such as comparing patient groups and
analyzing disease progression. Furthermore, the lack of open
access to tools utilized by practitioners in different labs hinders
collaborative efforts between groups.

To tackle these challenges, this paper presents the open-
access Visual Gait and Motion Analytics (VIGMA) frame-
work. VIGMA was designed in close collaboration with do-
main experts and is the result of a survey with over 20 gait
practitioners, including clinicians, researchers, administrators,
data analysts, faculty members, and students. The survey
allowed us to surface detailed workflows for analyzing gait
data that involved a wide variety of tasks, including data
processing, and data analysis and visualization. In response
to the wide needs of gait practitioners, VIGMA is designed
as both (a) a library for use in computational notebooks,
enabling data processing tasks, and (b) a visual analytics
system for data analysis and visualization. The visual analytics
system supports the visualization of multivariate time-series
ensemble gait data, along with the analysis of video data and
spatiotemporal parameters with tailored interaction techniques
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Fig. 1. VIGMA’s components. Using Jupyter Notebook and VIGMA’s library, users begin by harmonizing collected data to standard CSV format.
Afterwards, they perform essential feature extraction steps (e.g., extracting joint angles from motion data, extracting step times from ground reaction
forces). Next, they prepare the data by performing tasks like imputing missing values and filtering out noise. Finally, users save the processed data and
upload it to the visual analytics system, categorized by patient group. The visual analytics system consists of a control panel that lets users select ensemble
data files and select chart configurations. The system is composed of four time-series ensemble views - to support the analysis of time-series gait
data (e.g., joint angles). Additionally, it features a spatiotemporal summary view and a spatiotemporal distribution view to support single-valued gait
parameter analysis. Users can choose to alternate between the spatiotemporal views ( , ) and the video exploration view (Fig. 8) using the checkbox from
the control panel and get access to raw trial videos. to highlight interactive details-on-demand features of the system. Users can identify anomalies
(e.g., ), trace errors to patients’ trial videos, and return to the computational notebook to correct the data.

to support tasks such as group comparison and tracking disease
progression. Fig. 1 illustrates the VIGMA framework interface,
highlighting its individual components and their function-
alities. This paper also presents an evaluation of VIGMA
that includes three usage scenarios created in collaboration
with domain experts, as well as experts’ quantitative and
qualitative feedback on the framework. Our contributions can
be summarized as follows:

• We present a comprehensive survey yielding requirements
for gait data processing, analysis, and visualization.

• We contribute a Python library that provides functionali-
ties to satisfy gait data processing requirements.

• We contribute a novel visual analytics system that sup-
ports the data analysis and visualization requirements.

• We present three usage scenarios created in collaboration
with domain experts to evaluate the efficacy of the
system.

This paper is organized as follows: Section II presents
background on gait data and analysis; Section III reviews
related work; Section IV presents the result of our survey
and requirements; Section V details the VIGMA framework;
Section VI presents the evaluation; Section VII concludes the
paper.

II. BACKGROUND

Gait, or walking, is a vital social activity controlled by an
intricate combination of brain activities and limb movements.

It is commonly studied in the elderly, children, and athletes due
to the unique challenges and needs these groups present. Prac-
titioners collect gait data, categorized into videos, kinematics,
kinetics, electromyography, and spatiotemporal parameters.
Monthly intervals are typical for data collection, varying based
on disease and severity [11], [12].

Practitioners tailor their collection of data types to the
specific needs of different patient groups. For instance, post-
stroke patients exhibit a spectrum of characteristics, such as
decreased walking speed and shorter stride length [17]. They
also encounter heightened fall risks due to impaired balance
control and muscle weaknesses [18]. In the case of cerebral
palsy, patients showcase distinctive walking patterns (e.g.,
jump knee gait, equinus [19]), which can be identified by
analyzing kinematic gait data [20]. Parkinson’s patients, on
the other hand, face noticeable gait deterioration in kinematic
(e.g., ankle, knee angle) and spatiotemporal parameters (e.g.,
reduced step length and arm swing) [21].

Following such diversity of needs, data is collected in differ-
ent scenarios, including regular and perturbed (slip/trip) walk-
ing. Fig. 2 illustrates a typical data collection process [13]–
[16]. It involves a walkway with embedded movable platforms,
which rest on force plates to record kinetic data. These
platforms unlock once participants step on them during slip
trials, and participants are protected by a safety harness during
the trials. An infrared camera-based motion capture system
records video and kinematic data by tracking markers placed
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Fig. 2. Data collection process [13]–[16]. A 7-meter walkway with embedded
low-friction movable platforms is used to collect slip and walking data. The
platforms move along low-friction aluminum tracks beneath the surface and
rest on four force plates. The force plates record ground reaction forces,
which also trigger the platforms to create the slipping effect. The platforms
lock firmly during regular walking and unlock electromechanically without
the participants’ awareness in the slip trial. Participants are protected by a
safety harness connected to a low-friction trolley-and-beam system above the
walkway. Kinematic data from all trials is recorded by an eight-camera motion
capture system, synchronized with the force plates and load cell data.

on the body. Electromyography (EMG) data is collected using
electrodes placed on the skin over the muscles of interest,
which detect electrical activity during walking. Spatiotemporal
data, which includes spatial parameters (e.g., step length) and
temporal parameters (e.g., cadence), is often derived from
kinematic or kinetic data. All these different data types are
synchronized to provide a comprehensive analysis of gait.

The collected gait data types fall into the categories of time-
series or single-valued, with spatiotemporal parameters be-
longing to the latter. To process and analyze these two different
types of data, different software systems are used, facilitating
processing, analysis, and visualization of the collected data. In
terms of analysis, practitioners typically focus on tasks such
as: (1) comparing patients’ gait characteristics with those of
healthy control groups or similar patients to identify deviations
and abnormalities [22]–[24], (2) assessing gait changes over
time to monitor disease progression and evaluate the effec-
tiveness of rehabilitation strategies [25]–[27], (3) statistical
analysis [28], [29], and (4) finding anomalies [29], [30].

III. RELATED WORK

In this section, we review related work across four cate-
gories. First, we discuss the existing works on visualization
for gait; next, we explore literature for visualization for time-
series data; then, we investigate open-access and commercial
tools that support gait data processing, analysis, and visual-
ization workflows; and finally, we review existing research on
computational notebooks to support data processing tasks and
how they are combined with visualization interfaces.
Visualization for gait data. Gait data can be grouped into
(1) time-series [31] and (2) single-valued parameters [32].

Spatiotemporal data are considered single-valued parame-
ters, while kinetic, kinematic, and electromyography data
are classified as time-series. Existing approaches commonly
use line charts [31], [33]–[35] for time-series gait data,
radar charts [32], [36] for single-valued parameters, and box
plots [32], [33] or parallel coordinate plots [37] for the distri-
bution of single-valued parameters. However, these approaches
often lack the interactivity and human-in-the-loop capabilities
provided by traditional visual analytics tools. In contrast,
tools like MotionExplorer [38], MotionFlow [39], and Chen et
al. [40] support interactivity to provide insight into patient’s
gait and help researchers cluster similar human poses. How-
ever, these tools do not provide any insight into quantitative
gait measures (e.g., kinetic, kinematic, spatiotemporal) that
practitioners use for the analysis and treatment of patients.

Existing literature introduced several novel visual analytics
tools for quantitative gait analysis. The NE-Motion visual
analytics tool [41] is designed to compare the gait of healthy
individuals with that of stroke patients experiencing upper
limb impairments. KAVAGait [42] supports the analysis of
kinematic (e.g., ground reaction forces) and spatiotemporal
gait in various patient groups. GaitViewer [43] proposes a
structured approach to storing numerical gait data, facilitat-
ing collaboration between research labs, and providing an
interactive visual interface for spatiotemporal gait parame-
ters. gaitXplorer [44] is a visual analytics tool supporting
kinematic gait analysis of cerebral palsy patients. It supports
classifying patients into different groups (e.g., jump knee,
equinus) and provides insights into the specific data regions
that contributed to the classification. Although useful, these
tools offer very limited data processing capabilities. None
provides comprehensive multivariate feature support, and only
KAVAGait and gaitXplorer support hierarchical data manage-
ment. Also, only GaitViewer supports feature extraction, but
is limited to a few spatiotemporal parameters. Furthermore,
these tools lack important data analysis and visualization
capabilities. Specifically, KAVAGait and NE-Motion do not
support disease progression analysis; GaitViewer lacks patient
group comparison, while gaitXplorer lacks both. Lastly, none
of these tools are openly available.
Visualization for time-series data. Time-series gait is multi-
variate, including diverse attributes such as joint angles, forces,
and electromyography signals, analyzed across different limbs
and normalized over gait cycles. These attributes are often
grouped into ensembles for analyzing similar patient groups
(e.g., stroke/healthy) collectively or comparing between two
groups. Numerous studies have delved into the visual analysis
of multivariate time-series data [45]–[51], as well as time-
series ensemble data [52]–[54]. In gait studies, line charts
are the most widely used visualization technique for time-
series data [7], [42], [44], making them a familiar choice
for gait practitioners in research labs or clinical settings.
In this work, we explore design variations and interactions
with line charts to effectively represent multivariate and time-
series ensemble gait data, supporting the analysis of individual
patient’s gait as well as tasks such as disease progression and
group comparisons.

Time-series gait analysis also includes videos that offer raw
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TABLE I
OVERVIEW OF HOW OPEN-ACCESS AND COMMERCIAL TOOLS, ALONG WITH TOOLS FROM EXISTING LITERATURE, ADDRESS DIFFERENT DATA

PROCESSING, ANALYSIS, AND VISUALIZATION FEATURES. OPEN SOURCE REFERS TO SOFTWARE THAT IS FREELY ACCESSIBLE AND ALLOWS CODE
INSPECTION. THE NOTATIONS USED IN THE TABLE SIGNIFY THE FOLLOWING:

√
- FEATURE IS FULLY SUPPORTED, △ - FEATURE IS PARTIALLY

SUPPORTED, AND EMPTY CELLS INDICATE THAT THE RESPECTIVE TOOL DOES NOT SUPPORT THE FEATURE.

Features Kinovea
[62]

bioMechZoo
[61]

OpenCap
[63]

GaitLab
[64]

Vicon Nexus
[8]

TEMPLO
[65]

BioSensics
[66]

Format harmonization △
Feature extraction △

√ √
△

√
△ △

Missing value imputation
√ √

Noise filtering
√ √

Gait cycle normalization
√ √

Hierarchical data management
√

Multivariate feature support △
√ √

△
√ √

△
Group comparison △
Disease progression △
Statistical analysis △
Anomaly analysis △
Access to raw video data

√ √ √

Interactive analysis △ △ △
Open source

√ √ √

Features GAITRite
[67]

Visual3D
[7]

NE-Motion
[41]

KavaGait
[42]

GaitViewer
[44]

gaitXplorer
[43]

VIGMA
(This work)

Format harmonization △
√

Feature extraction △
√

△
√

Missing value imputation
√

Noise filtering
√ √

Gait cycle normalization △
√ √

Hierarchical data management
√ √ √ √

Multivariate feature support
√

△
√

Group comparison △ △
√ √

Disease progression △ △ △
√

Statistical analysis
√

△
√

△
√

Anomaly analysis
√

△
√

△
√ √

Access to raw video data
√ √

Interactive analysis △ △
√

△
√ √

Open source
√

trial information to better understand the data. For instance,
videos allow users to identify the reasons behind anomalies
or outliers, such as issues with sensors or a misstep on
the platform. Similarly, for disease progression analysis, raw
trial videos allow users to observe and validate changes in
joint angles or ground reaction forces. While many studies
have explored visual analytics approaches for analyzing video
data [55]–[60], existing literature and tools for gait [7], [42],
[44], [61] often overlook the integration of time-series video
information. To address this gap, we explore visual analysis
and interaction techniques that allow users to correlate raw
video data with multivariate and time-series ensemble infor-
mation.

Open-access and commercial tools. Kinovea [62], biomech-
Zoo [61], OpenCap [63], and GaitLab [64] are a few open-
access tools tailored for gait data. Kinovea supports sports
analysis by using videos to capture joint angles and extract a
few spatiotemporal parameters (gait speed and stride length),
but does not support other data processing tasks or the analysis
of more than one trial at a time. OpenCap and GaitLab are
tools primarily designed for markerless gait data collection us-
ing smartphone camera videos. GaitLab is limited to kinematic
gait, whereas OpenCap also estimates force data. However,
both tools lack capabilities for data processing tasks such as
structured access to patient and trial data, loading external

formats (e.g., C3D, TRC), or further processing (e.g., noise
filtering) of collected data. Furthermore, like Kinovea, they
also lack the support for analyzing more than one trial at a
time. Among these three tools, Kinovea and OpenCap provide
access to raw video data. biomechZoo [61], on the other hand,
is an open-access toolbox that supports processing, analyzing,
and visualizing different types of gait data, including kinetic,
kinematic, spatiotemporal, and electromyography. The soft-
ware consists of MATLAB scripts that perform data processing
and two graphical interfaces that support the analysis and
visualization of the data. However, MATLAB itself is not an
open-source or free-access software. Additionally, biomech-
Zoo has complex documentation with numerous functions
and generates non-interactive charts, which limits its ability
to support tasks related to disease progression and group
comparisons.

Commercial gait software [8], [65]–[67] are equipped with
proprietary hardware to collect data and are more focused on
accurate data collection than data processing, analysis, and
visualization tasks. For instance, BioSensics [66] offers real-
time gait data collection and monitoring tools like LEGSys and
BALANSys for assessing gait steadiness and balance, respec-
tively, but provides little to no data processing or data analysis
and visualization support. GAITRite [67], a data collection
tool for spatiotemporal parameters, similarly offers minimal
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support for data processing, analysis, and visualization. Vicon
Nexus [8] is another commercial data collection tool for time-
series gait data that supports data processing steps such as fea-
ture extraction (e.g., spatiotemporal parameters from ground
reaction forces), imputing missing values, and filtering noise,
but provides no analysis or visualization support. Templo [65]
is a commercial markerless data collection tool that offers
single-trial analysis support by visualizing kinematic, kinetic,
and electromyography data alongside the corresponding trial
video. While Templo supports certain tasks, such as feature
extraction and gait cycle normalization, and provides access
to raw video data, it is limited to analyzing only one trial at
a time.

Among commercial software, Visual3D [7] closely aligns
with the proposed framework, offering data processing, anal-
ysis, and visualization support for multivariate gait data.
However, it supports only a limited range of data formats
(C3D and ASCII formats) and does not accommodate TRC or
MAT formats. Additionally, it lacks missing value imputation
capabilities, provides limited analysis support for time-series
gait data with non-interactive charts, and does not support
analysis of single-valued gait parameters. The software has
lengthy documentation and complex code syntax for process-
ing and analyzing files, as well as a complicated user interface.
The proposed system, VIGMA, is an open-access tool that
addresses these gaps in existing solutions.

We summarize the commercial and open-access tools, in-
cluding tools from literature [41]–[44], in terms of data
processing, analysis, and visualization features in Table I.
In Section VI-C, we present a detailed comparison between
VIGMA and a selected subset of these tools that we consider
to be the state of the art.
Computational notebooks. Computational notebooks, such
as Jupyter, have gained widespread popularity for exploratory
data analysis and visualization, with users embracing this
approach across various levels of coding expertise. However,
static visualizations, dependency between cell execution order,
and scrolling through too many cells make analysis tedious
for practitioners. Recent works [68]–[72] have attempted to
address these issues by leveraging code in computational
notebooks while visualizing data separately in interactive dash-
boards, linking them together to combine the strengths of both.
Similarly, in the domain of machine learning interpretability,
many recent works [73]–[77] have integrated notebooks with
interactive visualization dashboards to enhance the interpreta-
tion, calibration, and validation of machine learning models.

Working closely with gait experts and surveying diverse gait
practitioners across research labs and clinics, we found that
they rely on computational notebooks, such as Live Scripts in
MATLAB or Jupyter in Python, for data processing tasks. To
that end, we adopt a similar approach to these existing studies,
handling data processing tasks in computational notebooks and
integrating them with the proposed visual analytics system
that supports analysis and visualization tasks. The distinction
between this work and these studies lies in the fundamental
consideration of the problem space. The proposed system is
specifically designed for the gait workflows, with unique data
processing, analysis, and visualization requirements.

IV. SURFACING WORKFLOWS AND REQUIREMENTS

Following design methodologies from prior works [78]–
[80], we designed a semi-structured survey in collaboration
with two researchers specializing in gait studies (co-authors of
this paper) to surface the overall workflow and requirements of
practitioners. The survey included a set of questions aimed at
collecting insights into how practitioners process gait data, as
well as their analysis and visualization needs. The survey was
conducted using an online form supplemented by follow-up
open-ended questions. Approval for the study was obtained
from UIC’s Institutional Review Board (#2016-0933). The
primary questions asked of participants were:

• What target population do you collect data from?
• What is the primary goal of your data collection?
• What type of gait data do you typically work with?
• What are the formats of data you collect?
• What data processing tasks do you perform?
• What data analysis tasks do you perform?
In addition, we also asked participants to evaluate current

visualization designs used for interpreting gait data. We had a
total of 23 participants for the survey, with diverse job titles
and from different research labs and clinics. The majority of
survey responses, comprising 15 out of 22 (65.2%), were from
researchers. Among these 15 respondents, six also identified
as clinicians and six as students. Completing the survey took
participants approximately 25 to 30 minutes. The survey
questionnaire, participant responses, and the corresponding
requirements extracted from these responses are summarized
in Table I of the appendix. The eleven visualizations presented
to the participants and the evaluations from the participants are
presented in Fig. 1 and Table II of the appendix, respectively.

After the survey was completed, we inspected the results to
surface a set of requirements for the framework. This process
was conducted through meetings between the authors of this
paper, which included both visualization researchers and do-
main experts. We derived three data processing requirements
(R1 - R3) and six data analysis & visualization requirements
(R4 - R9). To address the needs of a broad user group
comprising gait practitioners from different research labs and
clinics, we sought to identify their visual encoding preferences.
Building on existing studies [81]–[83] that emphasize compre-
hension, usability, and user preferences in visualization design,
we presented the participants with eleven visualizations (Fig.
1 in the appendix). These visualizations were selected after a
review of existing literature and gait analysis and visualization
tools [32], [42], [44], [84]–[87]. We asked participants to
evaluate them in terms of usability and understandability.
We believe such practices are valuable in design studies
of visualization, as supporting a diverse group of domain
experts with limited visualization experience requires using
visual designs that prioritize usability and comprehension.
Furthermore, existing works [88]–[90] highlight that relying
on familiar designs rather than novel glyphs is more successful
with wider audiences, especially with healthcare experts. Thus,
we selected familiar visual designs among experts through a
literature review and then refined the selection for the proposed
system based on the survey results.
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The findings on visual design preferences are outlined in
Section IV-A, followed by the data processing, and data
analysis and visualization requirements extracted from the
survey in Section IV-B.

A. Findings on Visual Design Preferences

The eleven visualizations presented to the survey partic-
ipants support displaying time-series gait data (e.g., joint
angles, ground reaction forces) as well as single-valued spa-
tiotemporal parameters (e.g., gait speed, swing time). We
asked the participants to evaluate these visualizations in terms
of usability and understandability. Based on the mean user
scores, along with the additional comments provided by the
participants, we derived the following findings:

• To analyze time-series gait data, existing literature and
tools almost solely rely on line plots (Fig. 1-A-F in the
appendix). The survey participants were also found to be
accustomed to using line plots, and, on average, scored
them comparably higher than other types of visualiza-
tions.

• To analyze the distribution of single-valued parameters
such as sociodemographic or spatiotemporal gait param-
eters, the participants expressed preference for box plots
(Fig. 1-I in the appendix) over strip plots (Fig. 1-G, H
in the appendix), finding strip plots to be more complex
and less intuitive.

• For displaying values and making comparisons involving
spatiotemporal parameters, participants found the radar
plot (Fig. 1-J in the appendix) to be highly useful.
This visualization method is particularly beneficial for
representing single-valued gait parameters relevant to
rehabilitation or disease progression across multiple trials
or when comparing different patient groups, such as
stroke patients and older adults.

We leveraged the visualization preferences of the survey
to tailor familiar solutions (i.e., line, box, and radar plots)
that satisfy the requirements of the framework. The design
of visual encodings and interactions is discussed in detail in
Section V-B.

B. Requirements

Here, we describe the extracted data processing require-
ments in R1 – R3, followed by the data visualization and
analysis requirements in R4 – R9.
R1. Data standardization. Gait data originates from different
hardware and software systems like Vicon Nexus [8] and
TEMPLO [65], generating diverse formats such as MAT,
C3D, TRC, TXT, and CSV, which introduces challenges for
collaboration and data sharing. To address these, the frame-
work should support different data formats and harmonization
features. Additionally, it should support feature extraction
tasks, such as deriving joint angles, step times, spatiotemporal
parameters, and fall risk predictions from combinations of
motion, ground reaction forces, and joint data. Lastly, the
framework should offer data preparation support for imputing
missing values, filtering noise, and normalizing data to align
gait cycles and ensure consistency across trials.

R2. Data management. Data is gathered from a diverse range
of patient groups, such as stroke patients, older adults, and
cerebral palsy patients, across various research labs and clinics.
To conduct efficient gait data analysis, practitioners need to
have access to two critical pieces of information: (1) patient
groups and (2) individual patient trials. This enables effective
comparisons between different patient groups or various trials
of the same patient. Consequently, the proposed framework
should support accessing patient data in this hierarchical
manner. Furthermore, for analysis tasks, users often need to
refer back to the raw trial videos. Therefore, the framework
should support multimodal data access, ensuring on-demand
availability of raw trial videos.
R3. Computational notebooks. Practitioners heavily rely on
computational notebooks, such as Live Scripts in MATLAB
or Jupyter in Python, for their data processing needs. Note-
books allow them to perform data processing tasks, revisit
previous steps, check processed data, identify errors, and re-
execute steps to ensure the correctness of the processed data.
Additionally, notebooks are easily shareable, fostering collabo-
ration. However, practitioners’ programming expertise is often
limited. Thus, the framework should support performing data
processing tasks (R1, R2) through short one-liner functions
within computational notebooks.
R4. Multivariate characteristics. Gait data is collected in di-
verse forms, including ground reaction forces, 2D/3D motion,
joint angles, electromyography, joint moment, spatiotemporal
parameters, and more. These data can be categorized into two
primary types: time-series and single-valued parameters. To
facilitate effective gait analysis, the framework should possess
the capability to analyze and visualize both types of gait
characteristics of patients.
R5. Group comparison. Facilitating the comparison of dif-
ferent groups of gait trials allows for a detailed analysis
of key characteristic differences between patient groups. For
instance, comparing gait data of stroke patients with that of
healthy older adults can reveal significant differences, allowing
practitioners to focus on improving specific gait attributes
in stroke patients. These types of analyses are crucial in
gait studies. Therefore, the framework should support the
aggregation of trials and the comparison between ensembles.
R6. Disease progression. Tracking rehabilitation or disease
progression of patients over time is a key aspect of gait
studies. For instance, practitioners often monitor key gait
characteristics of stroke patients over a period of 6-12 months,
adjusting rehabilitation strategies based on improvements or
deteriorations in the patient’s condition. This approach is sim-
ilarly applied to injured athletes, cerebral palsy patients, and
others. Consequently, the framework should enable seamless
analysis of rehabilitation and disease progression of patients.
R7. Statistical measures. The analysis of statistical measures
of gait data is important in acquiring insights into data distri-
bution and facilitating comparisons between different patient
groups. In addition, it enables the assessment of how a patient
trial deviates from the distribution of a different group or
within its respective group. To support these aspects, the
framework should enable the analysis of statistical measures,
including confidence interval for time-series gait data and
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Fig. 3. Overview of the workflow. The framework comprises two main
components: computational notebooks and visualization frontend. The
notebooks facilitate processing gait data (e.g., motion data) by performing
standardization steps (e.g., feature extraction, noise filtering) before sending
it to the visualization frontend. Users can interact with the frontend to select
ensembles of trials and generate charts for time-series and spatiotemporal
gait data using time-series ensemble view, spatiotemporal summary view, and
spatiotemporal distribution view and have access to raw video data through
video exploration view. If anomalies are identified in the data, users can return
to the notebooks to correct the data and then visualize the corrected data in
the frontend.

mean, median, percentiles, and standard deviation for single-
valued parameters.
R8. Anomaly analysis. Identifying anomalies in gait data
is crucial for understanding unusual patient behaviors and
ensuring data accuracy. For instance, detecting outliers in the
data can help tailor training or clinical interventions to address
specific patient needs. Additionally, identifying erroneous data
(e.g., missing data, noise) prompts necessary corrective actions
to maintain data integrity. The framework should support the
detection of outliers and erroneous data, as well as provide
corrective measures to fix the errors.
R9. Interactive analysis. The framework should support
selection, filtering, highlighting, overview-first and details-on-
demand, as well as cross-view interactions, to enable human-
in-the-loop workflows [91] for analysis and visualization tasks
(R4 – R8). For multivariate analysis (R4), users should be
able to select different gait variables and parameter config-
urations. For group comparisons (R5) or tracking disease
progression (R6), users should be able to filter from the entire
dataset, selecting ensembles of trials. To identify and analyze
anomalies (R8), users should have the ability to highlight
specific trials or single-valued parameters in the visualizations
and view details such as patient IDs and trial numbers on
demand. Additionally, the framework should provide access
to detailed numeric values, such as mean, median, and con-
fidence intervals, alongside the visualizations (R7). Lastly,
cross-view interactions between visualizations would enable
users to explore relationships among different gait variables,
facilitating more in-depth insights into tasks such as group
comparisons (R5), disease progression (R6), and anomaly
analysis (R8).

import vigma
# Format harmonization: MAT to CSV
df = vigma.matToCSV
# Feature extraction: motion to joint angle
df = vigma.motionToJointAngle
# Data preparation: missing value imputation
df = vigma.mice_impute
# Data preparation: filtering noise
df = vigma.filter_data
# Data management: save data
vigma.save

Listing 1. VIGMA Python API to perform data processing tasks.

V. THE VIGMA FRAMEWORK

VIGMA was designed based on the requirements collected
in Section IV. We followed a human-centered design approach,
iteratively prototyping and implementing the system while
gathering continuous feedback through bi-weekly one-hour
in-person meetings with two gait researchers (co-authors of
the paper). Their feedback primarily helped us make the
Python API less code-intensive and more comprehensible to
domain experts, improve the overall system’s layout, and
select encoding designs and user-friendly interactions for the
visualization frontend.

VIGMA has two main components: (1) A Python library
that can be accessed in computational notebooks (Fig. 3-A),
and (2) a visualization frontend (Fig. 3-B). Data processing
tasks are carried out using computational notebooks. The
processed data are then accessed and visualized using the
frontend. Fig. 3 details the interactions between the two
components. Sections V-A and V-B detail the data processing
and visual design of the framework, respectively, followed by
implementation details in Section V-C.

A. Data Processing

To streamline gait data processing, our framework contains
a Python library that simplifies data tasks into single-line
function calls that can be used in computational notebooks
(R3). Example of the VIGMA Python API is illustrated in
Listing 1.

The API facilitates data standardization (R1) by convert-
ing formats such as TRC, MAT, and C3D into structured
dataframes, which can then be saved as CSV files. It supports
feature extraction of joint angles, step times, spatiotemporal
parameters, joint moments, and fall risk predictions derived
from motion data, ground reaction forces, and center of mass.
Additionally, it offers support for missing value imputation,
noise filtering, and normalization of trials by gait cycles.
The API allows (1) saving trial data using a hierarchical file
structure that stores it by patient groups and individual patients
and (2) loading it into the visualization frontend (R2). Users
can access raw trial videos (R2) alongside the processed data
through the visualization frontend.

B. Visual Design

The frontend of VIGMA is composed of three differ-
ent views: (1) time-series ensemble view, (2) spatiotempo-
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ral summary view, and (3) spatiotemporal distribution view.
The spatiotemporal summary and distribution views can be
alternatively swapped altogether with the video exploration
view using a checkbox from the control panel (Fig. 1-E). The
video exploration view provides access to raw trial videos that
are linked to the trials from the time-series ensemble views
(R2). The frontend also includes a control panel that allows
seamless access and filtering of patients’ trial data through
the hierarchical structure, organized by patient and patient
group (Fig. 4) (R2, R9). In addition, the control panel lets
users visualize single or dual groups of selected ensembles
and choose chart configurations, including parameter(s) to
visualize, limb side, and gait cycle (R9) (Fig. 1-E). All
visualizations in the different views are linked via cross-view
interactions that allow highlighting of trials for different gait
variables for more in-depth analysis (R9). We provide design
justifications for the three views and cross-view interactions.
In addition, we report all the alternative design choices in Fig.
2 in the appendix section. The three views of the visualization
frontend enable users to compare between two groups of
ensembles (R5), analyze disease progression (R6), explore
statistical measures (R7), and find and highlight anomalies
(R8).

1) Time-series ensemble view: The frontend contains four
containers for time-series ensemble views (Fig. 1 F1-F4),
which display line charts for time-series ensemble data based
on different parameter configurations selected in the control
panel. Users can select any type of time-series data (e.g.,
motion data, joint angles, ground reaction forces) to display
in the time-series ensemble views (R4). The view allows the
creation of two different ensemble groups and a comparison
of their time-series characteristics (R5). Users can also select
trials of the same patient from two different time periods
to assess the progression of their time-series characteristics
(R6). The view displays the ensemble mean of selected trials
along with all individual trials (Fig. 5-A1) or the confidence
interval (Fig. 5-A2) of the ensemble (R7). Hovering over a
line highlights it and reveals the corresponding patient and
trial id (Fig. 1-I1) with a tooltip, facilitating the identification
of outliers and anomalies (R8, R9). In case of line with
confidence intervals, hovering displays a tooltip showing the
numeric values of the mean, lower bound, and upper bound at
a specific time point for the selected gait parameter (Fig. 1-I2)

Patient group

Individual patient

Trial no

Fig. 4. Accessing data through the control panel of the visualization frontend
with each trial hierarchically organized by patient ID and patient group.
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Fig. 5. Time-series ensemble view. Displays the ensemble mean (green and
orange solid lines) along with - individual trials’ data (faded dashed lines)
or the confidence interval - for two different groups (i.e., stroke patients and
healthy controls). Users can filter and highlight a trial in by clicking on a
faded dashed line, which will then appear as a bold dashed line within its view,
other time-series ensemble views (e.g., ), and the spatiotemporal summary
view (Fig. 6). The filtered trials are also highlighted in the spatiotemporal
distribution view (Fig. 7) with rectangular brushes, indicating their range of
values for each single-valued spatiotemporal parameter. Conversely, adjusting
the rectangular brushing on any box plot in the spatiotemporal distribution
view will highlight a different set of trials in the time series ensemble views
( , ) and spatiotemporal summary view (Fig. 6).

(R7, R9).
Justification. Initially, we considered displaying multiple

variables within a single chart (Fig. 2-A1 in the appendix)
and using side-by-side plots for group comparisons (Fig. 2-
A2 in the appendix). However, experts found it difficult to
distinguish multiple variables (e.g., vertical force, mediolateral
force) within one chart, and comparison using side-by-side
plots was challenging for them. As a result, we transitioned to
four separate time-series ensemble views (Fig. 1 F1–F4), each
dedicated to a single variable. Each view allows comparisons
between up to two groups of trials (e.g., stroke, healthy).
Additionally, our initial approach displayed only the ensemble
mean of a variable (Fig. 2-B1 in the appendix). However,
experts preferred to see all individual trials to better identify
anomalies, leading us to incorporate both individual trials and
the ensemble mean (Fig. 5-A1). To further facilitate finding
anomalies, we added a hover functionality that highlights a
trial and displays its corresponding patient and trial ID (Fig. 1-
I1). For tasks not focused on finding anomalies but rather on
understanding distribution patterns, experts requested a less
cluttered view. In response, we introduced a mode displaying
the mean with a confidence interval (Fig. 5-A2) and a tooltip
that provides numerical values for the mean and confidence
bounds (Fig. 1-I2).

2) Spatiotemporal summary view: The ensemble mean of
the spatiotemporal gait parameters is displayed using a radar
chart in this view (Fig. 6). This view allows users to effectively
analyze multivariate spatiotemporal gait parameters (R4) and
compare them between two groups (R5). Additionally, users
can select data from the same patient across two time periods
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Fig. 6. Spatiotemporal summary view. Displays the ensemble mean (opaque
green and orange areas) of spatiotemporal parameters for selected lists of trial
data for two different groups. When users filter trials by clicking on faded
dashed lines from the time series ensemble view (Fig. 5) or brushing the range
of a spatiotemporal parameter from one of the box plots in the spatiotemporal
distribution view (Fig. 7), the filtered trials get highlighted with bold dashed
lines in this view.

to examine the progression in spatiotemporal parameters over
time (R6). Hovering over a parameter in the radar chart
displays a tooltip with the numeric mean of the two ensembles
for that parameter (Fig. 1-I3) (R9).

Justification. The experts supported the survey results favor-
ing a radar chart, noting that it provides a quick overview of
how two ensembles differ across spatiotemporal parameters.
While box plots (Fig. 7) show distribution differences, the
radar chart (Fig. 6) enables easier comparison of multiple vari-
ables at one glance. Experts also found it more intuitive than
box plots for assessing disease progression for spatiotemporal
parameters. Initially, we considered displaying more than two
ensembles in the radar chart (Fig. 2-C1 in the appendix), but
the experts noted that too many colors made the chart difficult
to interpret and mentioned that comparing two ensembles
was sufficient for their purposes. We also added the hover
functionality (Fig. 1-I3), as the experts wanted to see exact
numeric values on demand.

3) Spatiotemporal distribution view: The distribution of
multivariate spatiotemporal parameters (R4), including min,
max, median, upper, and lower percentiles (R7), for the
selected ensembles of trials is displayed using dual box plots
in this view (Fig. 7). Users can also compare the distribution
of two patient groups using this view (R5). Hovering over
any box displays a tooltip with the statistical distribution of

Stroke patients Healthy controls
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Fig. 7. Spatiotemporal distribution view. This view features dual box plots
for each spatiotemporal parameter, displaying the distribution for an ensemble
of selected trials across two groups. Users can filter each plot for either group
using rectangular brushes. Filtering one box plot will subsequently update the
other box plots, as well as the time-series ensemble view (Fig. 5) and the
spatiotemporal summary view (Fig. 6).
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Fig. 8. Access to raw trial videos - is provided through a scrollable
video exploration view. Users can toggle between spatiotemporal views
(Fig. 6, Fig. 7) and the video exploration view using a checkbox . Videos
appear in the video exploration view when users click on and highlight trials
in the time-series ensemble views , . The video cards - are color-
coded by patient group and display patient and trial id, and patient group
information in the header. Videos are bi-directionally linked with the time-
series ensemble views, with a circular marker appearing in the time-series
ensemble views to indicate the corresponding time in the video.

the selected spatiotemporal parameter (Fig. 1-I4) (R7, R9).
Justification. The experts emphasized that box plots are

essential for detailed statistical analysis of spatiotemporal
parameters and are the most familiar visualization among
gait practitioners. Initially, we displayed a single box plot
per parameter (Fig. 2-E1 in the appendix), but the experts
requested the ability to compare distributions between two
groups, leading to the adoption of dual box plots (Fig. 7).
To meet their need for numeric values on demand, we also
added a tooltip (Fig. 1-I4) that appears on hover.

4) Cross-view interactions: The frontend of VIGMA fea-
tures several cross-view interactions, enabling interactive anal-
ysis between multiple coordinated views [92].

i) Clicking. Users can highlight one or more trials by click-
ing on them in the time-series ensemble view, which renders
them as bold dashed lines (Fig. 5-A1, A2). The highlighted
trials will also appear in bold dashed lines in all other time-
series ensemble views and the spatiotemporal summary view
(Fig. 6). Additionally, the spatiotemporal distribution view
will display a brush indicating the range of values for the
highlighted trials (Fig. 7). Clicking on a trial in the time-series
ensemble view also provides access to the raw video for that
trial within the selected gait cycle timeframe (Fig. 8) (R2).

ii) Brushing. The highlighting of trials across views works
bi-directionally. If users brush a range in any box plot within
the spatiotemporal distribution view (Fig. 7), the correspond-
ing trials within the brush range will be highlighted in all time-
series ensemble views (Fig. 5). Additionally, the highlighted
ensemble mean in the spatiotemporal summary view will
update accordingly, displayed as bold dashed lines (Fig. 6).

iii) Animated transition. Users can play or pause raw videos
from the video exploration view, which triggers a circular
marker to appear on the time-series ensemble views for the
corresponding trial (Fig. 8). As the video plays, a circular
marker dynamically moves across all time-series ensemble
views corresponding to that trial.
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Justification. The experts wanted to analyze correlations
between multivariate gait parameters across different views to
gain deeper insights into tasks such as disease progression,
outlier detection, and group comparisons. To support this,
we implemented a click interaction within the time-series en-
semble view. While hovering provided only temporary focus,
clicking allowed users to highlight selected trials persistently
across all views (Fig. 5-A1, A2). For analyzing the distribution
of spatiotemporal parameters and exploring their behavior
across other views, we incorporated a brushing interaction
in the dual box plots (Fig. 7). To provide access to raw
videos of trials, we initially considered using pop-ups (Fig.
2-F1 in the appendix) linked to clicked lines in the time-
series ensemble views. However, the experts found pop-ups
distracting because they required switching focus to a separate
window, breaking the connection between the video and the
corresponding visualizations. Since the videos are tied only to
the time-series parameters, instead of popups, we designed
a video exploration view (Fig. 8) that displays videos in
a scrollable format in lieu of the spatiotemporal summary
and distribution views. Lastly, the experts wanted to maintain
context between the video and the corresponding time-series
data. We introduced circular markers (Fig. 8-D) that move
along the time-series ensemble views, synchronized with the
playback of the trial video, allowing users to visualize dynamic
changes in time-series parameters as the video progresses.

C. Implementation

The system was implemented using Flask for the backend
and React with D3.js [93] for the frontend. The computational
notebooks employ a custom Python library we developed,
which utilizes numpy, Pandas, SciPy, C3D, Scikit-learn, and
plotly.

VI. EVALUATION

We evaluated the VIGMA framework through three usage
scenarios created in collaboration with domain experts and ex-
perts’ quantitative and qualitative feedback on the framework’s
understandability and usefulness.

A. Usage Scenarios

We designed the usage scenarios in collaboration with two
gait researchers (co-authors of the paper), using the neces-
sary data from their research lab. The lab focuses on fall
prevention, motor control, and stroke rehabilitation, collecting
multivariate gait data from a diverse range of patients, includ-
ing children, young adults, healthy older adults, and stroke
patients. Through in-person meetings with the researchers, we
identified common practices performed by gait practitioners
across various labs and clinics, including:

• Addressing data quality issues due to hardware limita-
tions, necessitating the identification and correction of
such errors.

• Analyzing data from patients with disorders (e.g., stroke,
parkinson) at intervals (e.g., 6 or 12 months) to identify
rehabilitation progress.
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Fig. 9. Usage scenario 1. User identifies an error of negative step length in
one of the stroke patient’s trials from the spatiotemporal distribution view.
By examining vertical force and step times (touchdowns and toe-offs), they
determine the cause of the error to be half landing on the platform and
validate it against the trial video using video exploration view. Afterwards,
user corrects the error by using the VIGMA library in a notebook, checks
if the half landing is properly discarded and returns to the visualization to
see the updated value.

• Comparing data from patients with disorders to data from
healthy subjects to identify deviations.

Considering these common practices, we collected data
from twenty subjects, among which ten were healthy subjects
(aged from 61 to 76 years, mean 65.50 ± 3.91; body mass
84.72± 14.49 kg; height 1.68± 0.08 m; 6 males; 4 females)
and the other ten were stroke patients (aged from 52 to 69
years, mean 61.20±4.73; body mass 85.24±18.40 kg; height
1.72±0.09 m; 7 males; 3 females). The data of stroke patients
was collected at the time of diagnosis and again after a 6-
month interval. For the scenarios, we considered the follow-
ing types of data: 3D motion, joint angles, ground reaction
forces, and spatiotemporal parameters. 3D motion data and
ground reaction forces were collected using motion capture
cameras and force plates during regular walking trials on a
7-meter walkway, as illustrated in Fig. 2. The collected data,
originally in TRC, MAT, and C3D formats, were standardized
and converted to CSV using our framework. In addition, we
utilized computational notebooks to extract joint angles from
motion data, step times from ground reaction forces, and
spatiotemporal parameters from joint angles and step times.

The collected data was then used in the following usage sce-
narios: (1) identifying and correcting erroneous data, (2) stroke
rehabilitation analysis, and (3) comparing healthy subjects and
stroke patients. Stroke patients and healthy subjects, whose
data were collected, were informed about the purposes of the
study and provided written informed consent. The study was
approved by UIC’s IRB. Data collected for healthy controls
and stroke patients fall under IRB protocol #2016-0887 and
#2016-0933, respectively.

1) Usage scenario 1: Identifying and correcting erroneous
data: Anomalies, such as outliers and errors, are common
occurrences in the process of collecting gait data. For the
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first usage scenario, we began by selecting ten stroke patients
and ten healthy patients as two separate groups using the
control panel and visualizing the spatiotemporal parameters
using the spatiotemporal distribution view. We observed an
instance of negative step length (left foot) for one of the
trials from the stroke patients and identified the erroneous
patient and trial id by brushing the box plot (Fig. 9-A) (R8).
Analyzing the vertical force for that trial, we identified a half
landing at the beginning of the trial (Fig. 9-B) and validated
our speculation by tracing it to the original trial video using
the video exploration view (Fig. 9-C). To correct the issue,
we used our Python API in a notebook to mark step times
by discarding the half landing and loaded the corrected data
to the visual analytics system (Fig. 9-D, E) (R1). Returning
to the spatiotemporal distribution view, we then identified the
correct step length for the left foot for that trial (R8).

This usage scenario demonstrates how users can leverage
notebooks and the visualization interface to seamlessly navi-
gate between data processing and visualization tasks.

2) Usage scenario 2: Stroke rehabilitation analysis: The
second usage scenario demonstrates the system’s capability to
analyze stroke rehabilitation progress over time, a key focus
in motion and gait studies (R6).

First, we selected the data using the control panel for one
stroke patient at two different time points: the first trial and
after six months. The patient was instructed to reduce braking
force and gait speed to minimize fall risk during walking.
We generated three time-series ensemble views for anterior-
posterior force (Fig. 10-A), shank angle (Fig. 10-C), and trunk
angle (Fig. 10-D), as well as a spatiotemporal-summary view
(Fig. 10-B) to compare the spatiotemporal parameters over
the six-month period. Analyzing the views, we observed a
reduction in the patient’s braking force, particularly during
the initial phase of the gait cycle (Fig. 10-A). Additionally, the
overall gait time and swing time for both feet increased after
six months, resulting in a reduced gait speed. This indicated
an overall improvement in the patient’s gait, reducing the risk
of falls. Furthermore, analyzing the shank and trunk angles,
we observed an increase in both knee flexion (Fig. 10-C) and
trunk flexion (Fig. 10-D), indicating improved flexibility and
stability in these limbs.

3) Usage scenario 3: Comparing healthy subjects and
stroke patients: Practitioners frequently compare gait char-
acteristics across different groups of patients to identify key
differences and to analyze how an individual patient’s data
aligns or differs with that of a specific patient group. Our
third usage scenario specifically examines this aspect in detail
(R5).

We began by comparing the left and right foot angles in
a right-sided paretic stroke patient (Fig. 11-B) to a healthy
control (Fig. 11-A). We observed that the healthy control
shows consistent patterns for both the left and right foot,
suggesting a balanced and symmetrical gait. However, the
stroke patient exhibited clear asymmetry between their paretic
and non-paretic sides, and we were able to analyze the degree
of asymmetry in the foot angles.

For the next part, we merged data from five right-sided
paretic stroke patients and compared their right anterior-
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Fig. 10. Usage scenario 2. Identifying the rehabilitation progress of a stroke
patient over time. Orange represents data at the time of the stroke, while
green represents the same patient’s data after 6 months. The patient received
instructions to increase gait time and reduce braking force to minimize fall
risk. Improvements in the post-6-month data show reduced braking force,

increased gait and swing time, and reduced gait speed. Additionally, the
patient exhibited more knee and trunk flexion, indicating improved
balance and stability in their gait.

posterior force (Fig. 11-C) and spatiotemporal parameter
distribution (Fig. 11-D) with those of five healthy controls.
We observed that stroke patients exhibited a flatter anterior-
posterior force curve with less pronounced peak (propul-
sive force) and trough (braking force) than healthy controls.
The lower propulsive force in stroke patients suggests that
they have difficulty in generating forward momentum during
walking, which impacts their gait speed. The spatiotemporal
distribution view supports this hypothesis, revealing that the
gait speed distribution for stroke patients is significantly lower
than that of healthy controls.

Lastly, we analyzed the outliers in stroke trials that exhibited
higher gait speeds by examining the box plot of gait speed in
Fig. 11-D (R8). We discovered that these trials had higher
step lengths compared to most stroke patients by visualizing
the distributions of left and right step lengths (Fig. 11-D).
Additionally, we observed that their right anterior-posterior
force (Fig. 11-E) and foot angles (Fig. 11-F) were more similar
to those of healthy controls than to other stroke patients. By
tracing these trials to their corresponding videos, we identified
that they all belonged to the same patient. Further analysis
of these trial videos revealed that this patient had already
improved their gait characteristics to a certain extent and
required less intensive rehabilitation strategies.

B. Experts’ Feedback

After creating the usage scenarios, we engaged with five
experts from different research labs and clinics to get their
feedback on VIGMA. The five experts are not co-authors of
the paper. Table II summarizes their background.

Each expert was exposed to all three usage scenarios, with
each session lasting approximately 1.5 hours to complete.
To save time, three separate instances of VIGMA, preloaded
with the required data for each usage scenario, were opened
before starting the session. The experts were asked to run the
usage scenarios themselves by executing the computational
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Fig. 11. Usage scenario 3. Comparing the foot angle of a healthy older
adult with a right-sided paretic stroke patient to identify the magnitude
of asymmetry in the stroke patient’s gait. The user then ensembles trials
from five right-sided paretic stroke patients and five healthy controls to
compare their right-sided anterior-posterior force and spatiotemporal
parameters. Additionally, the user brushes the box plot for stroke patients
with higher gait speeds and highlights the corresponding trials for right-
sided anterior-posterior force and right-sided foot angle. The user finds that
the highlighted trials belong to the same stroke patient whose gait is more
similar to those of healthy controls, suggesting they require a less intensive
rehabilitation strategy.

notebooks and interacting with the visualization frontend,
receiving assistance if they encountered any issues. Two of
them participated in the study in person, while the other three
joined via Zoom meetings with desktop sharing. It is important
to note that the experts who tested the usage scenarios and
provided feedback were different from the two researchers
who collaborated in the creation of the scenarios.

We gathered both qualitative and quantitative feedback from
each expert. The sessions for testing the usage scenarios
were open-ended, allowing the experts to provide qualitative
feedback both during and after the sessions. At the end of
the session, the experts were asked to complete an online
questionnaire to provide quantitative feedback.

1) Qualitative feedback: Overall, our framework received
positive qualitative feedback from the experts. One of the
senior clinicians and faculty members affirmed: “As a clinician
I feel the visualization tool is easy to understand and very
useful to plot and visualize data. I would definitely use this
to plot my information.” The clinician found the studies to be
enlightening, particularly in demonstrating how the different
views could help analyze the rehabilitation progress of stroke
patients and design more effective rehabilitation strategies.
Another senior clinician echoed this sentiment, stating, “the
tool comes with awesome flexibility. Very helpful in detailed
analysis.” This clinician was particularly impressed by the
flexibility of processing and analyzing various types of multi-
variate gait data using the system.

Ongoing PhD students and researchers found the tool to be
equally useful. One of them remarked “the tool can serve in
both clinical and research capacities.” Another student noted

TABLE II
PARTICIPANTS INVOLVED IN THE EVALUATION. EACH EXPERT TESTED
ALL THREE USAGE SCENARIOS AND LATER PROVIDED FEEDBACK. THE

EXPERTS ARE NOT CO-AUTHORS OF THE PAPER. BACKGROUND
ABBREVIATIONS: F - FACULTY, C - CLINICIAN, R - RESEARCHER, S -

STUDENT.

Background Years in
field

Knowledge in
gait (1-5) Education level

F, C, R 5 4 PhD
S 2 3 PhD (Pursuing)
F, C 10 4 PhD
C, R 1 2 Masters
C, S 6 4 PhD (Pursuing)

“a system like this will be extremely useful for both clinicians
and researchers. From a clinician perspective, it will expand
our ability to perform detailed gait analyses without requiring
an expert biomechanist or computer engineer - expanding
also the number of people who can be positively impacted
by this system. Additionally, as a PhD Candidate, I think
that it will help people like me work smarter and expand
our ability to analyze more data and obtain results which are
more impactful.” We received highly positive remarks for the
inclusion of videos in the system. One researcher commented
that “having access to videos in the system is very helpful in
detecting and validating gait abnormalities or deviations.”

We received mixed feedback regarding the computational
notebooks used for data processing tasks, with one of the
experts mentioning, “although I have very little experience
in coding, the notebook side of things seemed very straight-
forward and easy to me.” On the other hand, one of the
clinicians stated “down the road, I think it would be useful
to have buttons to represent the notebook functions for indi-
viduals with less computer science/engineering background.”
Another clinician emphasized the need for proper instructions
to effectively use the API, stating, “this would require training
or step-by-step instructions to ensure understanding.”

2) Quantitative feedback: In addition to qualitative feed-
back, we asked the experts to complete an online question-
naire rating the usefulness and understandability of the whole
framework and individual components on a Likert scale. The
results are shown in Fig. 12.

Feedback was positive, especially regarding usefulness, with
all ratings falling between 4 and 5. Understandability ratings
varied more, with computational notebooks receiving lower
scores compared to other components. This aligns with quali-
tative feedback from some experts, who noted a desire for the
computational notebooks to be more simplified or to include
proper documentation with examples for easier use of the
API. Based on feedback from the experts, we have made the
complete API documentation available on our GitHub page,
including examples of one-line function calls to facilitate easy
replication of data processing tasks.

C. Comparison With the State of the Art

We also compared VIGMA with existing tools across data
processing, analysis, and visualization features. (see Table I).
Here, we discuss tools selected from the table based on
whether they partially or fully support at least 35% of the
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Fig. 12. VIGMA’s usefulness and understandability scores from experts on
a Likert scale from 1 to 5.

features. The tools include: (1) bioMechZoo [61], a MATLAB
toolbox for processing, analyzing, and visualizing multivari-
ate gait data; (2) Vicon Nexus [8], a multivariate gait data
collection tool that utilizes markers, motion cameras, and
force plates, providing some data processing and analysis
capabilities; (3) TEMPLO [65], a markerless gait data col-
lection tool allowing for single-trial analysis of different gait
data types; (4) Visual3D [7], an all-in-one data analysis tool
for processing, analyzing, and visualizing various types of
multivariate gait data; (5) KAVAGait [42], a gait analysis
tool for storing and analyzing implicit knowledge of gait data
such as ground reaction forces and spatiotemporal parameters
through visualizations; and (6) Kinovea [62], a video analytics
tool for gait analysis, primarily designed for sports.

Regarding data processing requirements, only Visual3D par-
tially or fully meets most of the criteria. It offers limited format
harmonization (C3D, ASCII), and while it supports feature
extraction, noise filtering, and gait cycle normalization, it
does not support missing value imputation (R1). Additionally,
the data processing steps are performed through a complex
interface and do not support the integration of computational
notebooks based on Python or MATLAB (R3). Among the
other tools, only bioMechZoo offers comprehensive support
for feature extraction, missing value imputation, noise filtering,
and gait cycle normalization (R1), and its MATLAB-based
code can be integrated with notebooks (R3). However, it only
supports MAT files for data formats (R1) and lacks organized
access to patient data through a visual interface (R2). Addi-
tionally, both of these systems have lengthy documentation
and complex code syntax for processing data. Finally, among
the six selected tools, only TEMPLO and Kinovea provide
access to raw video data (R2).

Concerning data analysis and visualization requirements,
Visual3D supports statistical (R7) and anomaly analysis (R8)
through non-interactive charts. However, limited interactions

(R9) makes it inadequate for performing patient group com-
parisons (R5) or disease progression (R6). bioMechZoo faces
the same limitations. KAVAGait offers interactive analysis
(R9), but is limited to analyzing only a specific subset of
gait data types (R4). KAVAGait also supports patient group
comparisons (R5), but the analysis is limited to spatiotemporal
parameters (R4). Lastly, of the six tools considered, only
Kinovea is open source, underscoring a significant gap in the
availability of open-source tools to drive research and clinical
gait analysis.

VII. CONCLUSION

This paper introduces VIGMA, an open-access visual ana-
lytics framework designed for multivariate gait analysis that in-
tegrates computational notebooks to facilitate data processing
tasks and a frontend for visualization and data analysis tasks.
The Python API offers one-liner function calls to simplify
complex data processing tasks, and then seamlessly integrates
processed data into the visual frontend, enabling compre-
hensive analysis and visualization of multivariate gait data.
The usage scenarios demonstrate how the system achieves its
goal of streamlining the integration between data processing,
and data analysis and visualization, while efficiently handling
common gait analysis tasks such as tracking disease pro-
gression and performing group comparisons. VIGMA’s open-
access framework aims to foster greater collaboration between
research labs and clinics by offering a one-stop solution for
gait workflow.
Limitations. While promising, the current state of VIGMA
presents some limitations. Some clinicians who participated
in the usage scenarios highlighted that, although they found
the one-liner function calls useful for data processing tasks,
they would prefer something even simpler, and added the need
for detailed documentation. To address this, we have made
the documentation available on GitHub, including examples
for easy replication. Additionally, the current usage scenarios
are limited to data collected from one research lab and focus
exclusively on stroke patients.
Future work. To address the complexity in computational
notebooks highlighted in the experts’ feedback, in addition
to the documentation, following recent works [94], [95],
we plan to integrate widgets and buttons into the compu-
tational notebooks to further simplify data processing tasks.
Furthermore, we plan to create additional training materials,
such as video tutorials, to make the framework more easily
accessible to researchers and clinicians. We also plan to gather
data from various labs and clinics, involving a more diverse
group of patients (e.g., cerebral palsy patients, athletes), and
include new usage scenarios that demonstrate the framework’s
versatility and effectiveness. Also, as future work, we aim
to explore new methodologies for developing open-access
frameworks designed for widespread adoption, motivated by
our prior efforts (e.g., [96], [97]), moving beyond the closed-
source bespoke systems typically seen in design studies. While
our current work takes a step in this direction by incorporating
surveys and interviews with a broad range of experts, we aim
to formalize this approach as a distinct methodology in the
future.
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