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Fig. 1: Building, managing, and analyzing a Weather Research and Forecasting (WRF) model ensemble using PROWIS to study an
extreme rainfall event in Maricá (RJ, Brazil) in April 2022. Before running the first simulation, weather experts defined the simulation
domain, a 72-hour time horizon, the initial and boundary conditions data, and a set of physical parameterizations (a). After running the
first simulation, using the line charts panel, they identified relevant predictions of divergence at 300 hPa, convergence at 850 hPa, and
vertical upwind at 500 hPa between 18h and 36h (b). By selecting this time interval in the sunburst chart (c), they saw that the model
predicted heavy rain for several locations but underestimated the volume in the city (white marker in (d)). Using the runs overview
graph (e), the experts generated a simulation ensemble for a broader study. No pattern among the members was observed in the rain
volume results (f). The experts then inspected the heat matrices to verify the chances of having a minimum rainfall of 40 mm/h between
18h and 36h (g). However, in this period, the probability of this scenario was small in Maricá (j). Similarly, a minimum K-index of 27°C
until 27h (h) and relative humidity of 100% (i), two conditions related to extreme rainfall, could be observed only outside the city (k, l).
The results show that the model underestimated the event’s disaster potential in Maricá.

Abstract— Weather forecasting is essential for decision-making and is usually performed using numerical modeling. Numerical
weather models, in turn, are complex tools that require specialized training and laborious setup and are challenging even for weather
experts. Moreover, weather simulations are data-intensive computations and may take hours to days to complete. When the simulation
is finished, the experts face challenges analyzing its outputs, a large mass of spatiotemporal and multivariate data. From the simulation
setup to the analysis of results, working with weather simulations involves several manual and error-prone steps. The complexity of the
problem increases exponentially when the experts must deal with ensembles of simulations, a frequent task in their daily duties. To
tackle these challenges, we propose ProWis: an interactive and provenance-oriented system to help weather experts build, manage,
and analyze simulation ensembles at runtime. Our system follows a human-in-the-loop approach to enable the exploration of multiple
atmospheric variables and weather scenarios. ProWis was built in close collaboration with weather experts, and we demonstrate its
effectiveness by presenting two case studies of rainfall events in Brazil.

Index Terms—Weather visualization, Ensemble visualization, Provenance management, WRF visual setup

1 INTRODUCTION

Weather conditions significantly impact agriculture, transportation, pub-
lic safety (e.g., during extreme climate events), and many other critical
areas, making forecasting indispensable to designing operational strate-
gies, enabling weather-resilient services, helping decision-making, and
defining public policies [16, 34]. Although accurate weather forecast-
ing is crucial, it is still a challenging and active research topic. To

• de Souza is with the Universidade Federal Fluminense and the University of
Illinois. E-mails: carolinavfs@id.uff.br, carolvfs@illinois.edu.

• Bonnet is with the Universidade Federal do Rio de Janeiro.
• de Oliveira, Cataldi, and Lage are with the Universidade Federal

Fluminense. E-mail: mlage@ic.uff.br.
• Fabio Miranda is with the University of Illinois Chicago.

Manuscript received xx xxx. 201x; accepted xx xxx. 201x. Date of Publication
xx xxx. 201x; date of current version xx xxx. 201x. For information on
obtaining reprints of this article, please send e-mail to: reprints@ieee.org.
Digital Object Identifier: xx.xxxx/TVCG.201x.xxxxxxx

perform weather predictions, climate specialists must consider an enor-
mous amount of data (e.g., from satellites, weather stations), construct
ensembles of numerical simulations, and rely on past experience.

Ensembles of numerical weather simulations are computed using
mathematical models that describe atmospheric behavior through equa-
tions based on physical laws [31]. These models depend on initial
conditions, terrain characterization, parameterization of physical pro-
cesses, and discretization strategies. Weather experts must go through
dependent and complex steps to run a simulation. These steps and their
data dependencies resemble large-scale scientific workflows [8]. First,
meteorologists must define the simulation domain considering terrain
characteristics, land-use information, and spatial discretization aspects.
Then, they configure the time horizon and discretization to be used
during the simulation. Based on the spatiotemporal setup, the user must
set the initial and boundary atmospheric conditions. Finally, previous
steps are considered to specify the dynamic/thermodynamic behaviors
and the micro-scale processes.

Usually, setting up these steps requires editing large text files to de-
fine several parameters. Also, to run each step, the weather expert must
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execute various commands in a terminal environment. Orchestrating
the setup and running of these steps can become laborious and error-
prone if manually performed. For example, the weather forecasting
community has widely adopted an important class of models, known as
limited-area models, since it allows running simulations at higher reso-
lutions than global models [7]. However, configuring the simulation
domain demands the conciliation of technical nuances like the selection
of projection methods, the verification of nested grid coherence, etc.

Even though some open and commercial software provide tools [17]
to facilitate the configuration and execution of a simulation, they are
still complex to use, especially when the researcher’s goal is to build
an ensemble of simulations considering multiple configurations. In
this scenario, members of an ensemble may use shared configurations
and steps, which opens opportunities for developing solutions that take
better advantage of the available computational resources. However,
running a single weather forecast is already time-consuming, let alone
building and managing simulation ensembles. The ability to orchestrate
multiple runs simultaneously, easily start new simulations, inspect par-
tial forecast results at runtime, and cancel unpromising runs may enable
faster and more precise analyses. Moreover, analyzing the output of
weather simulations requires the inspection of multiple variables (rain
volume, temperature, etc.) over space and time. This task becomes
more arduous when a simulation ensemble is considered since they al-
low the study of uncertainties in the outputs. To do so, it is necessary to
compute statistics and probabilistic information of groups of ensemble
members on demand, which is also challenging to do manually.

Given the aforementioned challenges involved in building, managing,
and analyzing ensembles of weather simulations, new approaches to
make the work of weather forecasters less manual, time-consuming,
and error-prone may significantly impact their workflow. Also, new
approaches can potentially increase meteorologists’ ability to interpret
models, calculate risks, and identify relevant weather scenarios.

In this work, we studied the analysis processes of weather experts
and how to combine knowledge from meteorology, atmospheric mod-
eling, visualization, and provenance to help make weather predictions
more efficient and reliable. From that, we built the Provenance-enabled
Weather Visualization (PROWIS) system, a visual analytics system to
assist weather professionals to work with the Weather Research and
Forecasting model (WRF) [13]. Our contributions are:
• A collection of visual elements that allow specialists to easily con-

figure and run WRF simulations by setting parameters such as time
horizon, simulation domain, initial/boundary conditions, and micro-
scale physical phenomena representation approaches.

• The use of workflows to facilitate the construction of simulation en-
sembles. Such workflows are managed by a Workflow Management
System (WfMS), which captures and stores provenance data (i.e.,
the data derivation process [14]) to allow for integrated analysis and
reproducibility of simulation results.

• Interactive visualizations that enable the exploration of atmospheric
variables and the investigation of weather scenarios at runtime. The
visualizations can adapt to represent multiple ensemble members.

• Two case studies performed in collaboration with weather experts
demonstrating the effectiveness of PROWIS.

In summary, this paper presents PROWIS, a web-based system that
allows the setup, execution, management, tracking, and exploration
of simulation ensembles through a visual, interactive, and integrated
evaluation of the multivariate and spatiotemporal output data at runtime.

2 RELATED WORK

This work contributes to several aspects of the weather forecasting
process: setup of WRF simulations, orchestration of runs, monitoring
of simulations at runtime, and visualization of simulation ensembles.

To the best of our knowledge, the primary tool to aid WRF simula-
tions is the so-called WRF Domain Wizard [17], a graphical interface
that assists in the definition of any WRF parameter and can run individ-
ual WRF simulations. However, since it is a general-purpose tool, it is
still a laborious and complex task to build and run multiple simulations
(a common scenario in the daily duties of weather professionals) using
the tool. For example, researchers working in specific regions, e.g.,

Brazil, rarely need to change the geographic projection method used
by the model. More generally, it is reasonable to expect some model
settings to be preserved throughout several runs, assuming default
values. These usage features are not present in the WRF Domain Wiz-
ard, which requires the definition of all simulation parameters at every
new simulation setup. In this sense, user-friendly WRF configuration
tools that facilitate the study of scenarios and enable the management,
monitoring, and analysis of multiple simulations at runtime can help
experts save time and not expose the simulations to human-made errors.
Previous commercial or academic tools do not support these features.

Atmospheric sciences are closely related to visualization since the
latter effectively bridges the gap between simulation data and knowl-
edge about climate conditions. Rautenhaus et al. [21] reported the need
to bring together specific concepts of meteorology and state-of-the-art
visualizations to enhance the analytical skills of weather profession-
als. However, one of the challenges visualization researchers face is
that experts in this domain resist adopting new interactive visualiza-
tions. Visualization researchers must be aware of the demands and
fears of domain experts so they can focus their efforts on increasing the
acceptance of visualization tools that enable superior analysis capabili-
ties. Most tools commonly used in meteorological data exploration are
command-line-based pieces of software that implement functions for
data import, statistical analysis, and image generation (e.g., Ferret [19],
GrADS [4], GMT [25]). Recently, Nikfal [18] proposed a tool called
PostWRF aimed at helping WRF users visually handle and explore
outputs. Even though PostWRF facilitates the work of some experts, it
can be considered a technical tool since it requires programming skills.
Ensemble visualization. Several works contributed to the visualiza-
tion of weather simulation ensembles. Potter et al. [20] developed
Ensemble-Vis, a visualization system for analyzing climate ensembles
considering different initial conditions. It was one of the pioneers in
showing the utility of interactive and linked structures for exploring
the average behavior of multiple atmospheric fields in space and time.
Sanyal et al. [24] proposed a tool that exploits the advantages of visual
structures such as glyphs and ribbons for uncertainty studies of ensem-
bles. Cox et al. [6] presented an alternative visualization technique to
support the forecast of hurricanes. They primarily used isocontours,
which appear and disappear dynamically as the risk varies. Waser et
al. [32] presented a data-flow-based approach for studying uncertainty
and constructing simulation ensembles. Diehl et al. [10] created an
interactive visual dashboard to help experts that use WRF to study its
outputs. It uses small maps strategically placed on timelines to provide
an overview of model outputs and enable the identification of visual
patterns. Rautenhaus et al. [22] proposed an open-source application
that provides statistical and probabilistic ensemble analysis based on
2D and 3D visualizations. Biswas et al. [2] proposed an interactive
visual system that allows the analysis of multiple ensembles. Wang
et al. [30] developed a visual strategy to explore correlations among
simulation parameters. Watanabe et al. [33] proposed an angle-based
parallel coordinate graph for exploring large sets of simulations. de
Souza et al. [9] developed a visual system that enables the analysis of
large ensembles of extreme event simulations.
Provenance-aided visualization. Previous research achieved positive
results by combining data visualization and provenance capabilities, in-
cluding the visualization of weather and climate data [1, 23, 35]). Calla-
han et al. [3] proposed VisTrails, a workflow management system that
orchestrates the execution of multiple tasks and captures provenance
data to support the exploration and comparison of data, simulations,
visualizations, etc. Santos et al. [23] used provenance features from Vis-
Trails to support the visual exploration of climate data. Stitz et al. [27]
combined data visualization and provenance control to record inter-
actions, restore previously accessed views, and find similar analyses.
Gratzl et al. [12] introduced a model that combines data exploration
and presentation through visual stories generated by the user’s analysis
history and interactivity. Xu et al. [36] created a system to assist team
analysis of complex data exploration. Behrens et al. [1] presented a sys-
tem aimed at managing, creating, and maintaining sets of simulations
of coupled models. Their work used provenance control to prevent
repetitive steps throughout the analyses.
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Although some previous research related to our work exists, none
addresses our main contribution: the proposal of a visualization and
user-friendly system designed to help weather experts set up, execute,
manage, track, and visually explore the simulation ensembles at runtime.
As shown in the case studies (Section 7), PROWIS allows professionals
to perform detailed analyses that would be difficult to achieve without
the tool.

3 BACKGROUND

Numerical models. A Numerical Weather Model (NWM) can approx-
imate the solution of complex mathematical equations that describe
physical behaviors such as thermodynamic laws, Newton’s second law,
and the continuity equation, which can depict the atmosphere’s state
at a particular time given the initial and boundary conditions. To do
so, the area of interest must be represented as a three-dimensional grid
used to discretize the equations. The grid’s resolution influences the
quality of the solution, but using high resolutions may be computation-
ally unfeasible if considering large areas. Limited-area NWMs (NWMs
considering restricted geographic areas, small-scale phenomena, and
short periods, such as days or hours) are widely adopted to overcome
this limitation. The initial conditions needed to solve limited-area
NWMs comprise samples of the atmospheric state, measured in-situ by
meteorological instruments and data extracted from satellite data. Also,
boundary conditions are obtained from global NWMs, i.e., NWMs that
consider the entire globe as the simulation domain but computed using
coarser grids. They are constantly updated by global organizations
such as the National Centers for Environmental Prediction 1 and the
European Centre for Medium-Range Weather Forecasts 2. When the
spatial resolution used to generate the initial and boundary conditions is
much coarser than the resolution of interest in the limited-area NWM,
using nested domains to smooth the data is common. Suppose the
global NWM utilizes a resolution of 25 km, and the expert wants to
build a grid of 2 km in the limited-area NWM. In that case, it is possible
to set up nested grids of 18 km, 6 km, and 2 km and solve the model at
multiple resolutions, using the solution of the coarser resolutions as the
initial/boundary condition of the finer ones.
Weather Research and Forecasting workflow. The WRF model [26]
is a numerical weather model widely adopted for research and opera-
tional purposes by several areas that depend on the weather, such as for
atmospheric chemistry [13], hydrological modeling [11], and wildland
fires [5]. WRF supports limited-area NWM simulations and provides a
free and open-source implementation that can be integrated into other
platforms. To run a WRF simulation, a well-defined workflow must
be executed. This workflow, depicted in Figure 2, can be decomposed
into two connected sub-workflows named WRF Preprocessing System
(WPS) and Processing (PRC). Each sub-workflow is, in turn, composed
of multiple steps and their data dependencies. Running the complete
workflow requires editing several configuration files, downloading ini-
tial and boundary conditions (ICBC) data, and executing multiple WPS
and PRC programs using the command line. Most of the WPS and PRC
configuration files’ content is organized by columns, each representing
one nested domain. Using these files, users can configure different sim-
ulations on each nested domain. WPS sub-workflow consists of three
steps, each one associated with the execution of a program: (a) Geogrid
defines the domain(s) discretization and interpolates static data, such
as topography and land use categories, over the domain; (b) Ungrib
processes the ICBC data; (c) Metgrid receives the Geogrid/Ungrib out-
puts, and horizontally interpolates the meteorological information over
the domain(s). The PRC sub-workflow is composed of two steps: (a)
Real program receives the Metgrid’s outputs and vertically interpolates
meteorological fields, and (b) the WRF implementation uses the output
of the Real program to start a simulation. The simulation execution
time depends on the number of domains, the spatiotemporal discretiza-
tion, and the computational environment, among other variables. The
final simulation output is a collection of files in the NetCDF [29] for-
mat. Each file corresponds to the simulation output obtained using one

1https://www.ncdc.noaa.gov/
2https://www.ecmwf.int/

domain. Three NetCDF output files will be produced if three nested
domains are defined. Each file stores a nx × ny × nt tensor for each
atmospheric field (such as temperature and precipitation) and vertical
level if applicable, where nx × ny is the grid and nt the temporal dis-
cretization. The entries of the matrix are the simulated values in each
grid cell.

GEOGRID

UNGRIB

METGRID REAL WRF

WRF Preprocessing System (WPS)

Processing (PRC)

Fig. 2: WPS and PRC sub-workflows. Geogrid, Ungrib, and Metgrid
process terrain, ICBC, and meteorological data. Real and WRF consume
the WPS output and perform the simulation.

Parameterizations and ensembles. Grid resolutions typically used
in NWMs cannot capture micro-scale physical processes essential to
increase weather simulation quality. For this reason, scientists have cre-
ated physical parameterizations, i.e., statistical methods, and algorithms
aimed at mimicking these effects in NWMs. Since the parameteriza-
tions are approximations of real physical processes, several approaches
are proposed in the literature to represent each physical process. The
choice of parameterizations can drastically affect its result. Usually, the
choice of parameterizations relies on the expert’s experience. In fact,
the selection of parameterizations, together with the spatiotemporal
discretization and ICBC data generation methodology, are examples
of sources of uncertainty in an NWM. A common approach adopted
by experts to reduce their impact is constructing simulation ensembles
by fixing the geographical region and the temporal horizon but varying
other configuration parameters, such as the spatiotemporal discretiza-
tion, the ICBC data, and the physical parameterizations [21]. Although
the outputs of a single simulation are deterministic, building an ensem-
ble of simulations enables probabilistic analytical approaches. Also,
building simulation ensembles enables the comparison of different
results, which is essential in operational weather forecasting [9].

4 CHALLENGES

Working with numerical weather ensembles, from setting up a single
run to analyzing multiple simulations in an integrated way, is chal-
lenging. With WRF, starting a run is accomplished by directly editing
various text files that store several parameters, opening up many setup
possibilities. Configuring a simulation run may become problematic
even when most parameters are set to default values.

First, to delimit nested simulation domains, the user must set non-
trivial parameters such as the size, position, and number of cells in
each grid used by the model. WRF may fail to find a valid atmospheric
state solution if the parameters are not precisely defined. Usually,
weather professionals set these parameters through a trial-and-error
approach or using tools such as the WRF Domain Wizard. Although
helpful, the WRF Domain Wizard can be difficult to use since it is
designed to be a general-purpose WRF grid configuration tool. Second,
several parameters must be defined multiple times (in different text
files), which is exhaustive and error prone. Although it is important to
make WRF a general model, in most real-world scenarios the excess
of degrees of freedom is under-utilized. A viable workaround to these
difficulties is using scripts to automatize the WRF setup phases: edit
the configuration files, download ICBC data, and execute the WPS and
PRC modules. Systematizing these processes also avoids manually
running command line tools, which may be challenging for weather
experts.

After starting a simulation run, experts must wait until its execution
is complete to analyze the produced results. However, a single run can
take hours or days to complete, depending on the simulation parameters
and the available computational environment. Analyzing results in-
situ could save time, especially for computing-intensive simulations.
Nevertheless, it is not recommended to manually access intermediate
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simulation files during a run since it can interrupt the model and force it
to start over. Also, a single run generates a large amount of multivariate
spatiotemporal data outputs that experts usually analyze using standard
tools such as GrADS [4], NCL [28], or Vapor [15]. These tools allow
the visualization of atmospheric variables in two-dimensional maps
saved as static images.

It is essential to notice that the workflow associated with a simula-
tion is both computing- and data-intensive. Although some popular
WRF analysis tools offer dynamic aggregation and interactive data
exploration, they are limited to small-scale analyses. In this way, the
user may still need to perform laborious tasks to identify patterns and
extract information from simulation outputs, made worse when analyz-
ing ensembles. It is common for users to run a series of simulations,
build ensembles, and evaluate them. However, their construction must
be careful since not all simulations have promising results, and bad
runs may camouflage valuable information. To get around this issue,
the user must run and evaluate one simulation at a time before adding
them to an ensemble. This task becomes more arduous as the number
of simulations increases. However, simulations commonly share param-
eters, and previous configurations may be used as a base for new ones.
Also, waiting for multiple runs to finish and then analyzing the results
may take a long time. During the analyses of the results, it is hard
to identify patterns while being aware of parameter choices and the
uncertainties they impose. In summary, creating and investigating sim-
ulation ensembles pose several challenges. Therefore, research aimed
at facilitating these processes is relevant. We intend to simplify and
optimize simulation ensembles’ building, management, and analysis in
runtime, employing provenance and visualization techniques.

5 REQUIREMENTS

In this work, we have engaged two weather experts with extensive
forecasting experience. Through a series of meetings, we discussed
with them the requirements a system should meet to make the use of
the WRF models simpler and faster. Our main goal was to simplify
their workflow, from building a single run to analyzing the results of
simulation ensembles, without restricting their analysis capabilities. In
this sense, we adopted some scope boundaries, which may be expanded
in future work to adapt PROWIS to other uses. We decided to consider
limited-area simulation ensembles where members may differ by the
chosen physical parameterizations (what is called physical ensembles)
and/or by the source of ICBC data. These two setup possibilities are
highly relevant since: (1) different parameterizations could lead to
highly distinct predictions; (2) studying parameterizations is essential
for operational weather forecasting since it requires a deep understand-
ing of their impacts, especially in dealing with extreme weather events;
(3) initial and boundary conditions that faithfully represent the atmo-
sphere state are crucial. Different ICBC data are rarely identical, and
small perturbations may drastically impact predictions. More precisely,
PROWIS must satisfy the requirements:
[R1] Support simulation setup. Enable easy definition of nested do-
mains, start/end dates, ICBC, and parameterization schemes. Since
many physical processes exist, our collaborator experts selected the
most important for their work: cloud microphysics, cumulus, land
surface, surface layer, and planetary boundary layer (PBL).
[R2] Automate simulation runs. Manage inputs and outputs of the
WRF workflow. The system should automatically start a simulation
and allow users to stop or restart runs easily. In addition, if a distributed
environment is available (e.g., a small cluster or a computing cloud),
the workflow runs can be scheduled to different machines.
[R3] Manage provenance data. Capture and store the data derivation
path of each piece of data, as well as any other metadata associated
with each workflow run (the user who started the run, the analysis
project it belongs to, the execution time of each step of the workflow,
the directory paths used to store the input and output files, etc.) Such
metadata allows users to track the history of each run.
[R4] Optimize preprocessing. Automatically decide when there is no
need to execute a WRF step and use the output of previous runs (i.e.,
caching). We assume that the result of an activity of the workflow is

stored correctly to be reused if and only if the activity consumes the
same parameter values as the previously executed one. For example,
suppose an expert wants to perform a new simulation using the same
domain configuration as a previous run but considering a different
period. In that case, they should not need to rerun the Geogrid step.
[R5] Automate the extraction and storage of atmospheric fields. Fil-
ter, organize and store relevant atmospheric field data from the output
files of an in-progress simulation without interrupting the run or damag-
ing the files. The extracted values should be stored in the same database
as provenance data, allowing for an integrated analysis. WRF provides
hundreds of output variables. The important ones depend on each ap-
plication. Our collaborators selected 7 atmospheric fields related to the
forecast of extreme rainfall events: precipitation, temperature 2 meters
above the surface, divergence at the vertical level of 300 hPa (∼ 10 km
above sea level), upward vertical wind at 500 hPa (∼ 5.5 km above sea
level), convergence at 850 hPa (∼ 1.5 km above sea level), k-index (an
indicator of atmospheric instability), and relative humidity at 850 hPa.
[R6] Support the visual analysis of ongoing simulations. Allow the
interactive visual investigation of the results of in-progress simulations.
This requirement would allow the expert to detect patterns early and
decide whether it is worth keeping or stopping a run.
[R7] Support the creation of ensembles. Allow users to seamlessly
create as many simulations as necessary and organize them into ensem-
bles according to their technical necessities. For example, if several
simulations use the same domain configuration but different ICBC
sources, the user should be able to choose to create one ensemble with
all runs or multiple ensembles, one for each ICBC source.
[R8] Support the visual analysis of simulation ensembles. Visually
examine several atmospheric fields in space and time to identify regions
and periods associated with relevant patterns and/or target weather
scenarios.

6 PROWIS SYSTEM

PROWIS is a web-based visualization system designed to meet the
requirements defined by our collaborators. Using a visual and user-
friendly approach, the system enables the creation and exploration of
weather simulation ensembles based on the WRF model. The visual
interface includes a set of interactive visual structures to configure (R1),
run (R2, R3), and analyze (R5) individual simulations. Also, it provides
visual elements to facilitate the construction (R6) and analysis of en-
sembles (R7). The system also has a backend containing a provenance
and metadata database and a workflow management system. The Server
Core automatically extracts and stores atmospheric field data (R4) and
manages metadata, input/output workflow files, and WRF runs (R8).
Using PROWIS, the user can configure and investigate weather simula-
tions by simply using a web browser, without complex command line
applications. Figure 3 shows the system’s components.

Simulation ViewSetup View

Server Core

Run Management
Loading &

Dynamic Aggregation

MonetDBWRF

Automatic Storage

Airflow

Ensemble View

Backend

Interface

Fig. 3: Overview of the PROWIS components.
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6.1 Backend
The backend dynamically manages the WPS and PRC sub-workflows.
It records, stores, and loads relevant atmospheric field results, and
computes statistical and probabilistic aggregations. It contains the
provenance and metadata database deployed on the column-oriented
MonetDB database system. MonetDB was chosen because it performs
well with the query types required by PROWIS (i.e. it took on average
less than 1s to handle queries from the interface in our case studies). It
also offers advanced features such as clustering, data partitioning, and
distributed query processing that can be explored. The backend also
has an embedded workflow system (Apache Airflow) to manage the
execution of the WRF workflow. The Server Core directly connects to
the interface using WebSockets, i.e., it can notify the interface when
new data is processed, updating the visualizations. The Server Core was
built using Python, primarily relying on the libraries Flask-SocketIO,
Pymonetdb, NetCDF4, and WRF-Python.
Provenance and metadata database. The provenance and metadata
database organizes data in a structured and queryable way. It allows
storing information regarding several projects, which can be associated
with multiple simulations (R3). The parameters and input/output data
are registered in each simulation. Similarly, the metadata associated
with the execution of each workflow program (start/end time, errors,
etc.) is stored. This database is a rich source of information that can
be used to optimize the setup of simulations or to provide analytical
capabilities to the experts. Using a database also has made data loading
faster since it can handle aggregation or filter queries directly. This
strategy is more efficient than loading the entire simulation output to
memory and extracting the relevant information afterwards.
Automatic storage. The Sever Core module checks for new files pro-
duced by the WRF simulations every minute. When new output files
are detected, it stores aggregated information, together with the files’
content on MonetDB (R5), enabling the analysis of simulation results
at runtime (R6). The Server Core computes aggregations, i.e., spa-
tiotemporal statistics (minimum, maximum, and average), considering
the entire domain and predefined intervals (1 hour, 3 hours, 24 hours,
and the complete simulation period). Data are stored (and can be re-
trieved) with information regarding the nested grid, atmospheric field,
grid point, and time.
Dynamic data aggregation. PROWIS handles dynamic aggregation
queries. For example, assume that a user has created an ensemble with
five runs and selected three atmospheric fields to analyze in the spatial
dimension in a custom period. In this case, given an aggregation func-
tion (minimum, maximum, average, and probability), the Server Core
computes, at each grid point, the aggregation of each field considering
the five runs. If the user modifies the ensemble (e.g. adding a member),
the backend dynamically updates the aggregations.
Run management. We adopted the Apache Airflow workflow man-
agement system to orchestrate the multiple WRF runs. It allows users
to model their workflows as directed acyclic graphs (DAGs), each
gathering and organizing tasks to be executed sequentially and/or in
parallel (R2, R4). Our collaborators’ daily tasks involve the following:
providing the WPS setup file, running Geogrid, downloading ICBC
data, running Ungrib, running Metgrid, providing the PRC setup file,
and running the Real and WRF programs. Considering all possible
workflows that can be modeled based on the combinations of programs,
we identified and modeled six DAGs, illustrated in Figure 4, that are
available for execution within PROWIS. The first five tasks in the figure

Task name
DAG tasks

Task type
DAG1 DAG2 DAG3

1   Setup
2   Program
3   Getting external files
4   Program
5   Program
6   Setup
7   Program
8   Program

Provide the WPS setup file
Run the Geogrid
Download ICBC
Run the Ungrib
Run the Metgrid
Provide the PRC setup file
Run the Real
Run the WRF

DAG5 DAG6

W
PS

PR
C

DAG4

Fig. 4: PROWIS’ DAGs and tasks.

are related to the WPS sub-workflow, while the last three are associated
with PRC. PROWIS automatically defines what DAG must be used
based on the configurations of the current and previous runs: DAG1 is
triggered to generate a new simulation from scratch. DAG2 is triggered
when ICBC is available, but the other tasks must be performed. DAG3
is executed when domain settings and intermediate files can be reused
from a previous run. DAG4 works under the same assumptions as
DAG3, but the ICBC must be available. DAG5 can only be executed
when Ungrib outputs can be reused from a previous run. Finally, DAG6
is used when no WPS program needs to be run, e.g. the user has only
changed the physical parameterizations of a previous run.

6.2 Visual exploration interface
PROWIS’ interface design and functionalities aim to meet weather
experts’ technical demands while adopting a user-friendly and visual
approach. Most of its visual components rely on two-dimensional de-
signs that professionals are familiar with, such as scatter plots, line
graphs, and heatmaps. Nevertheless, we also incorporated visual rep-
resentations that are not so usual to them, such as heat matrices and
sunburst charts, since they provide expressive and concise visualiza-
tions of simulation outputs. As shown in Figure 3, the system interface
comprises three interactive views: the Setup, the Simulation, and the
Ensemble views. When a new analysis project is started, the user is
directed to the Setup view to configure and run their first simulation.
If a previously created project is loaded, the user can explore previous
runs individually or as ensembles of simulations using the Simulation
and Ensemble views.

6.2.1 Setup view
The Setup view, illustrated in Figure 5 (a), was designed to facilitate the
setup of a new WRF simulation from scratch (R1). It comprises a top
menu, a domain map, a domain summary table, and a parameterization
menu. Users can set the simulation domains’ grid resolutions and cen-
tral points using the top menu, define the start/end simulation time, and
select the ICBC data source. The domain map and summary table allow
the visual definition and verification of the domains’ configuration.
Finally, the parameterization menu allows the selection of the physical
parameterizations considered in the simulation.

The user must follow a simple and visual process to configure the
simulation. Once the coarse grid resolution is set in the top menu
(Figure 5 (b)), the user interactively defines a new domain by brushing
on the map (Figure 5 (c)). The latitude and longitude of the grid’s
central point are linked to the top menu, allowing the user to fine-
tune the domain location. We notice that, by using the interface, the
users don’t need to manually make the parameters of all nested grids
compatible since the system automates these tasks. When a new domain
is defined, an overview of its settings (the parent domain’s identifier,
resolution, latitude and longitude of the central point, and the number
of points) is shown in the domain summary table (Figure 5 (d)). The
user can delete a previously created domain through the summary table
by clicking the trash icon. After completing the setup, the user can run
the simulation through the top menu. As described in Section 6.1, the
execution and management of the running simulation are automated by
the backend (R2). After the run starts, the Simulation view is loaded.

6.2.2 Simulation view
The Simulation view, shown in Figure 6 (a), provides individual sim-
ulation visual analysis capabilities. Its design went through several
refinements based on our interactions with weather experts. Its final
composition contains a top menu and three panels: the runs overview,
the temporal, and the spatial analysis panels. The top menu allows the
user to configure the currently selected run, the grid considered by the
visualizations, the function (average, maximum value) used to compute
atmospheric field aggregations over time, and up to three atmospheric
variables of interest to be jointly analyzed in the spatial dimension.

The runs overview panel was designed to enable the monitoring
of active simulations and the creation of new simulations that share
configuration parameters with previous runs. It is composed of a graph
and a scatter plot. The graph represents the parent-children relationship
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Fig. 5: (a) The Setup view lets users configure WRF simulations interactively. (b–d) Interactions used to set up domains.

among runs. Each node of the graph represents a different simulation
run. The graph’s root is constructed using the Setup view. The setup
data of any node can be reused to create a child node representing
a simulation that shares setup parameters with its parent (R4). For
example, in Figure 6 (b), runs 2 and 3 were based on run 1. Similarly,
run 3’s parameters were the basis for the construction of run 5; run 2
was used as the starting point of the setup of run 4, etc. The idea is
that the structure of the provenance database mirrors the structure of
this graph. Each node of the graph has mouse click and mouse over
implementations. As shown in Figure 6 (b), when the mouse is over a
node, its primary information (name, status, simulation start/end date,
ICBC metadata, physical parameterizations, etc.) is displayed. If a
node is clicked, the user can choose to Analyze the simulation in the
Simulation view, even when it is incomplete (R6); create a New child
reusing its setup parameters (R1, R4); Restart or Abort a simulation
that presented failures or has unpromising results (R4); and Delete a
simulation and its graph node (R7). It is also possible to Add or Remove
the simulation from an ensemble of simulations (R7).

The scatter plot, illustrated in Figure 6 (c) and (d), shows how similar
the performed simulations are considering the predicted precipitation
volume. Each circle in the chart represents a simulation; the closer the
dots, the more similar precipitation volumes they have. To construct the
scatter plot, we computed feature vectors representing each simulation.
The vectors contain the statistics of the predicted rainfall volumes
(maximum, average, and standard deviation) considering time intervals
of 3h, 24h, and the entire simulation period. So, each simulation is
represented by a 9-dimensional feature vector. Then, we applied the
principal component analysis (PCA) method to project the feature
vectors. We decided to use PCA since the experts were already familiar
with the method, but any other projection technique could be used. This
visualization helps the user relate the precipitation simulation output to
its setup parameters. This relation is important since the user can make
sense of the parameters’ sensitivity and use this knowledge as a guide
to create simulation ensembles (R7). The user can color the graph
nodes and scatter plot dots by the run’s status (i.e. success, running, or
failed – Figure 6 (b)), the parameterizations (Figure 6 (c)), the ICBC
data source (Figure 6 (d)), and the containing ensemble’s id.

The Simulation view implements the temporal analysis panel to
enable the time-based analysis of simulations. The panel is composed
of a collection of line charts (middle column in Figure 6 (a)) and a
sunburst chart (bottom left chart in Figure 6 (a)). The line charts show
the simulated value of different atmospheric fields at each time step.
Weather experts widely use this type of visual representation, especially
to study accumulated rainfall, because it allows them to quickly identify
when rainfall events may happen and their magnitude. The sunburst
chart is a collection of concentric circles representing different time
aggregations and is colored based on the accumulated precipitation in
each period. The outer cells represent one-hour intervals. The second
group of cells represents three-hour intervals. Following this, the third
layer represents 24-hour intervals, and the central cell represents the
entire time horizon. Although weather experts are not familiar with
this visualization, the extra information about accumulated values is
fundamental to interpreting and identifying high-volume precipitation
events. In Figure 7 (a), the cell identified as 72h (24h) represents the

rainfall accumulated between the 48h and the 72h simulation steps, i.e.
the rainfall accumulated in the 24 hours immediately before the 72h
time step. In the example, the time horizon has 72 hours. Because
of that, the sunburst has 72 one-hour cells in the first layer, eight 3-
hour cells in the second layer, three 24-hour cells in the third layer,
and one 72-hour cell in the center. The user can interact with the
chart by clicking and brushing the cells. Doing so, the spatial rainfall
distribution shown in the spatial analysis panel is updated to reflect the
selected period (see Figure 7 (b)).

Finally, the spatial analysis panel allows the analysis of the distribu-
tion of atmospheric fields. It contains three maps for the visualization
of the distributions of different fields at a given instant (or the accumu-
lated field distribution over a time interval, in the case of precipitation
volumes). We use the marching squares algorithm to generate the con-
tours, primarily because of its efficiency. The user can control the time
reference used to build the maps using the top menu and, in the case
of the rainfall field, using the sunburst. The active period is indicated
in the line charts by a vertical line. In the case of accumulated rain
volumes over a time range, a rectangle is used to indicate the selected
time interval. If the user wants to investigate a specific domain point,
they can click on a map to select it. In doing so, the temporal analysis
panel is updated only to show data associated with the selection.

6.2.3 Ensemble view

Ensemble view, illustrated in Figure 8 (a), was designed to enable
the temporal and spatial visual analysis of dynamically constructed
ensembles, regardless of the number of members (R7, R8). Similar to
the Simulation view, its final design was defined in conjunction with
experts. It contains a top menu, a temporal, and a spatial analysis panel.
The Ensemble view uses the same spatial visualizations provided in the
Simulation view. The only difference to the maps in the Simulation
view is that it aggregates values of multiple ensemble members. Experts
can explore worst and average scenarios by changing the aggregation
function. Using similar metaphors facilitates the experts’ interpretation
of results and increases their engagement with the system.

The temporal analysis panel comprises a collection of heat matrices,
one for each atmospheric field. Each row (y-axis) of a matrix represents
an ensemble member, while each column (x-axis) is associated with
a time step. The color of each cell is mapped to the aggregated value
of the simulated atmospheric field over the domain (or a grid point
selected using the map). Using these matrices was important to enable
the visualization of multiple ensemble members simultaneously while
still encoding the global ensemble patterns.

The time information used to build the maps is represented in the heat
matrices, as illustrated in Figure 8 (b, c). In the example, the time step
24h (highlighted in the last two matrices) is used to construct the maps
associated with the temperature at 2 meters and divergence at 300 hPa
variables. Using the precipitation volume matrix, the user can brush
an interval to study accumulated rainfall values (top of Figure 8 (b)).
The precipitation map shows the maximum volumes observed between
24h and 36h. We observe that different time references can be used to
analyze rain volumes and other variables. This feature is vital since
atmospheric fields are interpreted to investigate future precipitation.
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Fig. 6: (a) Simulation view. (b) Example of the runs overview graph (middle) from the São Paulo case study (Section 7.2). It shows six runs, 5
completed and 1 in progress. By hovering node 2, the run’s information is shown. The user can interact with a run by clicking on its node. (c) Scatter
plot from the same case study colored according to the ICBC source. Runs with the same ICBC generated similar precipitation results; (d) Scatter
plot of the Maricá case study (Section 7.1) colored by the cumulus physical process and showing no precipitation pattern.

In addition to using the statistical aggregation functions, the Ensem-
ble view also allows the computation and visualization of the probability
of observing scenarios of interest. For example, the user can use the
matrices to visualize the likelihood of observing temperatures higher
than a certain threshold. To do so, the expert must define the target
values for each variable that characterizes the scenario of interest. Each
matrix cell displays whether such a scenario occurred at least in one
domain point. When computing rainfall probabilities, the user must
define a value threshold and a period over which the precipitation accu-
mulation should be considered (for example, investigate the likelihood
of 100 mm occurring in one hour). This information is essential since
100 mm of rain in one hour is considered extreme, while 100 mm of
rain spread over 7 days is not important. The user can also define
the period when the event may happen. For example, the expert may
be interested in verifying the probability of a condition (e.g., rainfall
volume of 100 mm/h) in a specific time window (e.g., the first 24 hours)
to check the probability of observing 100 mm/h rainfall in the first 24h
of simulation. This analysis may be used to trigger weather alerts.

7 CASE STUDIES

Two weather experts conducted two case studies to validate the sys-
tem. They used a desktop with a Ryzen 7 3700X 3.6GHZ, 16GB, and
GeForce GT 210 1GB. The first study refers to an extreme rainfall
event in Maricá, a city in the state of Rio de Janeiro, Brazil. The second
analyzes a rainfall event in São Paulo, Brazil.

7.1 Extreme rainfall event in Maricá (2022)
PROWIS was initially used to evaluate WRF forecasts of an extreme
rainfall event that happened on April 1, 2022, in Maricá (white pin
in Figure 1 (d)). This event was associated with a cold front that
moved through the southeastern region of Brazil between March 31

72h
(72h)

45h(1h)

54h(1h)

48h(24h)

24h(24h)72h(24h) 

Start time
1h(1h)

a b0 80604020 100
(mm)

0 80604020 100
(mm)

Fig. 7: The map updates if a time interval is set in the sunburst chart.
Conversely, the sunburst chart is recomputed if a grid point is clicked.

and April 2, 2022. The greatest rain volumes were observed in the
western area of Maricá from 10PM on March 31 to 3AM on April 1
and in the city’s central region between 12AM on April 1 and 3AM
on April 2 (GMT). The weather stations recorded accumulated rainfall
volumes between 88mm and 260mm at these moments, accounting for
the previous 24 hours. These volumes characterize an extreme storm
and several people lost their homes.

The weather experts started the investigation by creating a new
project on PROWIS. Then, using the Setup view, they built their first
simulation, in which the main configuration parameters are illustrated
in Figure 1 (a). Using the top menu, they entered the start (03/31/2022
00:00 GMT) and end dates (04/03/2022 00:00 GMT), the coarser do-
main’s spatial resolution (18,000 meters) and selected GFS as the source
of the ICBC data. Afterwards, they defined three nested domains using
the domain map. The experts checked the domain summary table for
each demarcated domain to ensure that the grid’s resolution and the
position of their central points were adequately defined. Eventually,
they preferred to type the latitude and longitude of the central point
using the top menu to adjust its location precisely. Then, they selected
one parameterization for each physical process they wanted to consider
in the simulation and clicked the Run WRF button to start it. They were
automatically directed to the Simulation view and observed that the
runs overview graph was updated with a new root node.

As the simulation evolved, the experts evaluated the results and de-
cided to keep the simulation running. If the simulation results were not
promising, PROWIS could be used to stop the simulation to save com-
putational resources. After analyzing the outputs using the temporal
analysis panel (configured to use the maximum aggregation function),
the experts identified that some atmospheric variables indicated an
extreme event between time steps 18h and 36h. As red boxes highlight
in Figure 1 (b), the divergence at 300 hPa, vertical upward wind at
500 hPa, convergence at 850 hPa, and the precipitation itself were very
high, especially in the finer grid resolution.

To deepen the analysis, the weather experts selected several different
time intervals using the sunburst chart (see Figure 1 (c)) to inspect
the accumulated rain spatial distribution in the spatial analysis panel.
During this process, they observed that although the model predicted
high rainfall volumes, they were concentrated in other Rio de Janeiro
areas. In fact, they noticed that the amount of rain predicted for Maricá
was not compatible with the rain volumes observed in the city during
the event (see Figure 1 (d)). By selecting points in Maricá on the
map, the line charts/sunburst were automatically updated to show the
associated data. The experts confirmed that the model could not predict
the event’s magnitude in the most affected areas throughout the time
horizon.

7



Ensemble View
b

Heat Matrices and Heat Maps Interactions

Precipitation

Temp. 2m

Div.300hPa
Div.300hPa

Temp. 2m

Precipitation

6

410 5

389 2

1

Color by: All_G1 (C3)

3

1

2

4

5
6

7

8

Collection: C1 (Grid 3)

Meas. Hmaps: Max.Meas. Hmats: Max. Map 1: Precip.-1 24h +1Screen: Ens. All_G1 Map 2: Temp.2m Map 3: Div.300hPaProjectsa
Precipitation - t30h (acc. 18h)

Temperature at 2m - t24h

Divergence at 300hPa - t24h 

Fig. 8: (a) Ensemble view. (b) Examples of precipitation, temperature at 2m, and divergence at 300 hPa heat matrices (from top to bottom). The
interval of 25h-30h (precipitation matrix) and step 24h (other matrices) are selected. (c) Accumulated rainfall, temperature at 2 m, and divergence at
300 hPa spatial distributions.

Despite that, the interpretation of other variables still suggested the
possibility of heavy rainfall in the city. Aiming at better reproducing the
event, the weather experts derived child runs from the root node using
the runs overview graph. The new runs reused the base configuration
of the first simulation but considered different physical parameteriza-
tions. A total of eight runs were created. Figure 1 (e) shows the final
graph colored by the cloud micro-physics parameterization choice. By
inspecting the overview scatter plot, no particular pattern was identified
on the runs precipitation prediction considering their parameterizations
(see Figure 1 (f)). Furthermore, very few differences between the runs
were identified by individually exploring each run using the Simulation
view. As the next step, the experts decided to compose an ensemble.
Using the Ensemble view to evaluate the probability of observing an
extreme event in Maricá, the following threshold values were defined:
K index of 27°C, precipitation of 40mm accumulated in 1h, divergence
at 300 hPa of 30×10−5/s, upward vertical wind of 5.0 m/s, convergence
at 850 hPa of 30×10−5/s, relative humidity of 100%, temperature at
2 m from the surface of 30°C. Observing the heat matrices, the ex-
perts identified a possibility of rainfall volume of 40mm/h between
18h and 36h (see Figure 1 (g)). Observing the spatial analysis panel,
they verified that although the possibility was relevant in some areas
of the domain, it was very subtle in Maricá (see Figure 1 (j)). Simi-
larly, the simulated K index values were greater than 27°C from 0h to
27h (see Figure 1 (h)), but these values were mainly observed outside
Maricá (see Figure 1 (k)). Finally, relative humidity achieved 100% in
some regions at time step 13h (see Figure 1 (i)). However, although
the experts observed high probabilities of reaching the target value
in most areas of the domain, in Maricá, these values could only be
observed at time step 30h (see Figure 1 (h)). Although the simulation
results could not indicate the possibility of an extreme event in Maricá,
the experts could easily run and analyze several simulation scenarios
without worrying about setup, data management, and visualization
technical details that would be required if the same experiment were
performed without PROWIS. False-negative weather predictions are
why atmospheric modeling remains an active research field.

7.2 Rainfall event in São Paulo (2018)

In 2018, a frontal system moved across São Paulo, causing rain. In this
case study, the weather experts used PROWIS to test the WRF model’s
sensitivity to different ICBC, grid resolutions, and physical parame-
terizations. The meteorologists performed six runs from 06/01/2018
00:00 GMT to 06/05/2018 00:00 GMT, a 96-hour interval (see Fig-
ure 6 (a)). They set up two domains, the first with a grid of 18 km and
a nested one of 6 km (the same procedure described in Section 7.1).
The six runs used three different parameterization combinations for
the cloud microphysics, cumulus, and PBL physical processes (i.e. the
first/second, third/fourth, and fifth/sixth runs shared the same parame-
terizations). Also, the odd-numbered runs used ECMWF as the ICBC
data source, while the even-numbered ones used GFS.

By coloring the points of the runs overview scatter plot according
to the ICBC source, the experts identified that considering the coarser
grid, simulations that generated similar results used the same ICBC
data (Figure 6 (c)). In other words, it was possible to observe two
clusters, one for each ICBC data source. Similar patterns were observed
in the finer grid (Figure 6 (d)), but interestingly, runs 2 and 4 were
closer than in the coarser grid, which shows that the grid resolution
significantly affects rainfall predictions. Moreover, after a closer look
at the clusters, the experts noticed that runs 1 and 5 were the closest
ones in both cases (Figure 6 (c) and (d)), indicating that they have
similar precipitation outputs. This finding was surprising since these
runs use different parameterizations for all physical processes. In
contrast, runs 3 and 5 used the same parameterizations for PBL and
cloud microphysics, and runs 1 and 3 used the same for cumulus. The
experts considered this finding interesting because it shows that the
results are sensitive not necessarily to the parameterizations individually
but to their combination.

Overall, the analyses of each run in the Simulation view showed that
the model predicted an underwhelming event regarding rainfall volume
and storm cloud formation. The experts created three ensembles to
strengthen the investigation of the ICBC data influence on the results.
Each ensemble was composed of exactly two members configured
using the same parameterizations and different ICBC (i.e. ensemble 1
contained runs 1 and 2; ensemble 2, runs 2 and 4; and ensemble 3, runs
5 and 6). The three ensembles showed similar behaviors. In general,
ensembles using GFS ICBC data had rainfall forecasts between 41h and
54h on the coast and in the southern part (Figure 9 (a)). In comparison,
the ones using ECMWF data produced rainfall forecasts between 48h
and 60h, mainly on the coast of São Paulo (Figure 9 (b)).

Next, the meteorologists created an ensemble containing all runs.
By analyzing the maximum precipitation values, it was possible to
visualize (in the spatial analysis panel) a worst-case scenario of heavy
rain between 41h to 60h. However, the experts did not consider it
an extreme event since the maximum values were up to 70 mm in 20
hours. These predictions would not generate a severe event alert in
an operational forecast scenario. Regarding the other variables, the
simulations using the GFS data produced higher values for divergence
at 300 hPa, vertical upward wind at 500 hPa, and relative humidity at
850 hPa than the ones using ECMWF data. The results were similar for
the other atmospheric fields. Following the analysis of rainfall volumes,
the predicted values would not justify the declaration of attention stage
by the city authorities. In fact, high values of relative humidity (e.g.,
100%) until time 39h and a temperature at 2 m of 40◦C at some points
of the region indicated the possibility of rain, but not a storm. Even
considering all variables and the ensemble with all runs, there was no
relevant probability of extreme event occurrence. Overall, the experts
found the strategies for building and analyzing ensembles provided
by PROWIS very helpful since they could easily compare multiple
scenarios and avoid misinterpretations of the simulation results.
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Fig. 9: São Paulo case study: The maximum accumulated rainfall was
between 41h and 54h, according to the ensemble members constructed
with the GFS data (a), and between 48h and 60h, according to the
ensemble members who used the ECMWF data (b).

8 EXPERTS’ FEEDBACK

According to the experts, PROWIS combines attributes that support
their work in many ways. First, they said that it provides excellent
assistance in setting up a simulation, especially regarding domain de-
limitation and grid construction, which are complex tasks even for
experienced users. They also agreed that the approach used for defining
physical parameterizations, setting the simulation time horizon, and
downloading the ICBC data is more straightforward than editing the
WPS and PRC configuration files. Although manually editing files
is not intellectually complicated (except for the construction of the
grids), it can become a tricky and error-prone task. Moreover, they
reinforced that by automating the step-by-step execution of a run, the
system saves experts’ time. This is especially true when an error occurs
during WPS or PRC execution since the system interface facilitates the
identification of configuration errors. They said these capabilities alone
make PROWIS a huge improvement for their daily workflow.

Another good experience reported was the possibility of visualizing
the outputs of an ongoing simulation since it allows the evaluation
of the results without waiting for hours (or even days) to complete a
simulation. Usually, the experts avoid touching incomplete output files
to prevent file corruption. When the inspection is required, experts must
be extremely careful during the inspection of partial results; otherwise,
they can invalidate runs that have already consumed computational re-
sources for an extended period. In this sense, this capability of PROWIS
represents a substantial contribution in their opinion. They looked fa-
vorably at reusing files and data from previous runs in a controlled,
safe, and interactive way. They considered that advantageous due to
the time it potentially saves when managing related runs, e.g., those
using the same domains, parameterizations, or ICBC data. They have
approved the automatic organization of input/output files and data by
users and projects so several experts can use the system simultaneously.
In addition, since PROWIS keeps the original WRF files, they pointed
out that it is possible to use them for other purposes besides the system,
not restricting the experts’ work.

Regarding the analyses, the experts agreed that the available visual-
izations and interactions greatly favor the rapid exploration of a sim-
ulation in space and time. PROWIS’ organization and quick response
to user requests facilitate the cognitive processing of the simulation
results. In their opinion, the interface groups familiar visual structures,
such as line graphs and heat maps, making the system user friendly.
They considered the sunburst chart a novelty and took some time to
understand its usefulness. After they became familiar with the visu-
alization, they said it helped to visualize the accumulated rainfall at
different intervals. Another positive feedback was related to the dy-
namic creation of ensembles. They said it enriched their ability to
explore ensembles with members selected based on different criteria.
They also said that the heat matrices were unfamiliar. However, they
enjoyed the experience of visualizing ensembles as a whole. The heat
matrices coupled with the maps helped evaluate and compare different
runs. The experts also appreciated the identification of custom-defined
scenarios provided by visualizations. Finally, the experts questioned
the system overhead, since WRF simulations are already costly. In

fact, computing the simulations dominates the execution time (207
minutes for the first use case and 27 minutes for the second one). The
computation by the Server Core is 3 to 5 times faster (72 minutes for
the first use case and 6 minutes for the second one). Since both tasks
run in parallel, PROWIS adds no overhead regarding running time.

The experts contributed with suggestions for the improvement of
PROWIS. Currently, the system allows users to select a grid point on the
map, and experts consider the feature essential. However, they would
like to be able to brush custom areas of the map. Another suggestion
is to allow the user to freely define the atmospheric fields of interest.
They commented that some professionals are used to inspecting specific
variables, and their unavailability may limit the use of the system. We
report that this functionality is straightforward to implement. The
selection of particular fields was based on our collaborators’ needs and
was implemented to reduce the scope of our prototype implementation.
In addition, they said it would be even more interesting to import WRF
runs that were neither configured nor executed using PROWIS, i.e., use
the system to explore runs manually created and previously executed by
the experts. This would make the system appealing to a larger audience.

9 CONCLUSION AND FUTURE WORK

PROWIS was designed to facilitate the setup, execution, management,
inspection, and analysis of WRF runs and dynamically create ensem-
bles, considering different ICBC data, physical parameterizations, and
domain configurations. The system was constructed as a client-server
web application. The backend comprises a MonetDB database, the
Apache Airflow workflow system, the WRF model, and a server core.
The database stores metadata regarding users, projects, and weather
simulations and controls data provenance to enable future queries. The
workflow system optimizes the modeling process. The server core
connects those modules, extracts, and automatically stores relevant at-
mospheric fields in the database, and organizes input/output files. Also,
it responds to the interface’s requests related to single and ensembles
of simulations, which usually involve dynamic data aggregations. The
system interface consists of three main views: one for setting up a
run, one for exploring a simulation, and one for exploring an ensemble.
The Setup view, and the entire process behind it, allows the user to
save time and effort during the setup and execution of a simulation.
This approach facilitates the development of studies in meteorology
because it takes the focus away from the model execution, which is
laborious in itself, and allows the user to devote time to the analysis
of the generated results. The Simulation and Ensemble views provide
visual structures that help manage the runs, inspect their outputs, and
even perform similarity analysis to identify patterns. Both views of-
fer visualizations that allow temporal and spatial aggregations using
statistical and probabilistic metrics.

With PROWIS, two case studies were performed considering rainfall
events caused by cold fronts. During their realization, it was possi-
ble to inspect multiple simulation outputs effortlessly, even when the
model was running. The experts could use the visualizations to analyze
spatiotemporal patterns and compare the results of several simulations.
The WRF results did not indicate the possibility of extreme events in
the areas of interest. The experts used the system to argue that these
simulations provided false negative results. Their analyses reinforce the
need for studies to improve atmospheric modeling. Given the results
and experts’ feedback, PROWIS met its primary purpose: to aid weather
analysis through data visualization and provenance.

In future work, we plan to extend the system so it can be used
to configure any WRF simulation. We also plan to propose other
visualizations and interactions that may take the visual exploration of
the simulation ensemble a step further. Future versions of PROWIS can
also provide a specialized workflow scheduler component to execute the
workflows in parallel. This mechanism can benefit from heterogeneous
environments to speed up workflow execution. Also, the provenance
data can be used for recommending PROWIS configurations for novice
users based on the previous runs configured by weather experts.

9



ACKNOWLEDGMENTS

We would like to thank the reviewers for their constructive comments
and feedback. This study was partly funded by CNPq (316963/2021-6),
FAPERJ (E-26/202.915/2019, E-26/211.134/2019), CAPES (Finance
Code 001), and the University of Illinois’ Discovery Partners Institute.

REFERENCES

[1] H. W. Behrens, K. S. Candan, X. Chen, A. Gadkari, Y. Garg, M.-L. Li,
X. Li, S. Liu, N. Martinez, J. Mo, E. Nester, S. Poccia, M. Ravindranath,
and M. L. Sapino. Datastorm-FE: A data- and decision-flow and coordi-
nation engine for coupled simulation ensembles. In Proceedings of the
VLDB Endowment, vol. 11, pp. 1906–1909, 2018. doi: 10.14778/3229863.
3236221 2

[2] A. Biswas, G. Lin, X. Liu, and H.-W. Shen. Visualization of time-varying
weather ensembles across multiple resolutions. IEEE Transactions on
Visualization and Computer Graphics, 23(1):841–850, 2017. doi: 10.
1109/TVCG.2016.2598869 2

[3] S. P. Callahan, J. Freire, E. Santos, C. E. Scheidegger, C. T. Silva, and H. T.
Vo. VisTrails: Visualization meets data management. In Proceedings of
the ACM SIGMOD International Conference on Management of Data, pp.
745–747. Association for Computing Machinery, New York, NY, USA,
2006. doi: 10.1145/1142473.1142574 2

[4] Center for Ocean-Land-Atmosphere Studies. Grid analysis and display
system (GrADS). http://opengrads.org/, 2021 (accessed June 17,
2023). 2, 4

[5] J. L. Coen, M. Cameron, J. Michalakes, E. G. Patton, P. J. Riggan, and
K. M. Yedinak. WRF-Fire: Coupled weather–wildland fire modeling
with the Weather Research and Forecasting model. Journal of Applied
Meteorology and Climatology, 52(1):16 – 38, 2013. doi: 10.1175/JAMC
-D-12-023.1 3

[6] J. Cox, D. House, and M. Lindell. Visualizing uncertainty in pre-
dicted hurricane tracks. International Journal for Uncertainty Quantifica-
tion, 3(2):143–156, 2013. doi: 10.1615/Int.J.UncertaintyQuantification.
2012003966 2

[7] T. Davies. Lateral boundary conditions for limited area models. Quarterly
Journal of the Royal Meteorological Society, 140(678):185–196, 2014.
doi: 10.1002/qj.2127 2

[8] D. C. de Oliveira, J. Liu, and E. Pacitti. Data-intensive workflow manage-
ment: for clouds and data-intensive and scalable computing environments.
Synthesis Lectures on Data Management, 14(4):1–179, 2019. doi: 10.
2200/S00915ED1V01Y201904DTM060 1

[9] C. V. F. de Souza, P. C. L. Barcellos, L. Crissaff, M. Cataldi, F. Miranda,
and M. Lage. Visualizing simulation ensembles of extreme weather events.
Computers & Graphics, 104:162–172, 2022. doi: 10.1016/j.cag.2022.01.
007 2, 3

[10] A. Diehl, L. Pelorosso, C. Delrieux, C. Saulo, J. Ruiz, M. E. Gröller, and
S. Bruckner. Visual analysis of spatio-temporal data: Applications in
weather forecasting. Computer Graphics Forum, 34(3):381–390, 2015.
doi: 10.1111/cgf.12650 2

[11] D. J. Gochis, M. Barlage, R. Cabell, M. Casali, A. Dugger, K. FitzGerald,
M. McAllister, J. McCreight, A. RafieeiNasab, L. Read, D. Y. K. Sampson,
and Y. Zhang. The WRF-Hydro modeling system technical description,
version 5.2.0. https://doi.org/10.5281/zenodo.4479912, 2020
(accessed June 17, 2023). 3

[12] S. Gratzl, A. Lex, N. Gehlenborg, N. Cosgrove, and M. Streit. From visual
exploration to storytelling and back again. Computer Graphics Forum,
35(3):491–500, 2016. doi: 10.1111/cgf.12925 2

[13] G. A. Grell, S. E. Peckham, R. Schmitz, S. A. McKeen, G. Frost, W. C.
Skamarock, and B. Eder. Fully coupled “online” chemistry within the
WRF model. Atmospheric Environment, 39(37):6957–6975, 2005. doi: 10
.1016/j.atmosenv.2005.04.027 2, 3

[14] D. Koop, M. Mattoso, and J. Freire. Provenance in workflows. In L. Liu
and M. T. Özsu, eds., Encyclopedia of Database Systems, pp. 2912–2916.
Springer New York, 2018. 2

[15] S. Li, S. Jaroszynski, S. Pearse, L. Orf, and J. Clyne. VAPOR: A visualiza-
tion package tailored to analyze simulation data in earth system science.
Atmosphere, 10(9), 2019. doi: 10.3390/atmos10090488 4

[16] M. Mizutori and D. Guha-Sapir. Human cost of disasters 2000-
2019. Technical report, United Nations Office for Disaster
Risk Reduction, 2020. https://www.undrr.org/publication/
human-cost-disasters-2000-2019. 1

[17] National Oceanic and Atmospheric Administration. WRF Domain
Wizard. https://esrl.noaa.gov/gsd/wrfportal/DomainWizard.
html, 2013 (accessed June 17, 2023). 2

[18] A. Nikfal. PostWRF: Interactive tools for the visualization of the WRF and
ERA5 model outputs. Environmental Modelling & Software, 160:105591,
2023. doi: 10.1016/j.envsoft.2022.105591 2

[19] NOAA Pacific Marine Environmental Laboratory. Ferret. https://
ferret.pmel.noaa.gov/Ferret/, 2012 (accessed June 17, 2023). 2

[20] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pas-
cucci, and C. R. Johnson. Ensemble-Vis: A framework for the statistical
visualization of ensemble data. In IEEE International Conference on Data
Mining Workshops, pp. 233–240, 2009. doi: 10.1109/ICDMW.2009.55 2

[21] M. Rautenhaus, M. Böttinger, S. Siemen, R. Hoffman, R. M. Kirby,
M. Mirzargar, N. Röber, and R. Westermann. Visualization in meteo-
rology—a survey of techniques and tools for data analysis tasks. IEEE
Transactions on Visualization and Computer Graphics, 24(12):3268–3296,
2018. doi: 10.1109/TVCG.2017.2779501 2, 3

[22] M. Rautenhaus, M. Kern, A. Schäfler, and R. Westermann. Three-
dimensional visualization of ensemble weather forecasts–part 1: The
visualization tool Met. 3D (version 1.0). Geoscientific Model Develop-
ment, 8(7):2329–2353, 2015. Publisher: Copernicus GmbH. doi: 10.
5194/gmd-8-2329-2015 2

[23] E. Santos, J. Poco, Y. Wei, S. Liu, B. Cook, D. N. Williams, and C. T.
Silva. UV-CDAT: Analyzing climate datasets from a user’s perspective.
Computing in Science & Engineering, 15(1):94–103, 2013. doi: 10.1109/
MCSE.2013.15 2

[24] J. Sanyal, S. Zhang, J. Dyer, A. Mercer, P. Amburn, and R. Moorhead.
Noodles: A tool for visualization of numerical weather model ensemble
uncertainty. IEEE Transactions on Visualization and Computer Graphics,
16(6):1421–1430, 2010. doi: 10.1109/TVCG.2010.181 2

[25] School of Ocean and Earth Science and Technology of the Univer-
sity of Hawaii. The Generic Mapping Tools (GMT). https://www.
generic-mapping-tools.org/, 2019 (accessed June 17, 2023). 2

[26] W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker,
W. Wang, and J. G. Powers. A description of the advanced research WRF
version 2. Technical report, National Center For Atmospheric Research,
2005. 3

[27] H. Stitz, S. Gratzl, H. Piringer, T. Zichner, and M. Streit. KnowledgePearls:
Provenance-based visualization retrieval. IEEE Transactions on Visualiza-
tion and Computer Graphics, 25(1):120–130, 2019. doi: 10.1109/TVCG.
2018.2865024 2

[28] University Corporation for Atmospheric. The NCAR command language.
https://www.ncl.ucar.edu/, 2019 (accessed June 17, 2023). 4

[29] University Corporation for Atmospheric Research. Definition of net-
work common data form (NetCDF). https://www.unidata.ucar.
edu/software/netcdf/, 2019 (accessed June 17, 2023). 3

[30] J. Wang, X. Liu, H.-W. Shen, and G. Lin. Multi-resolution climate en-
semble parameter analysis with nested parallel coordinates plots. IEEE
Transactions on Visualization and Computer Graphics, 23(1):81–90, 2017.
doi: 10.1109/TVCG.2016.2598830 2

[31] T. T. Warner. Numerical weather and climate prediction. Cambridge
University Press, 2010. 1

[32] J. Waser, H. Ribicic, R. Fuchs, C. Hirsch, B. Schindler, G. Bloschl, and
E. Groller. Nodes on Ropes: A comprehensive data and control flow for
steering ensemble simulations. IEEE Transactions on Visualization and
Computer Graphics, 17(12):1872–1881, 2011. doi: 10.1109/TVCG.2011.
225 2

[33] K. Watanabe, N. Sakamoto, J. Nonaka, and Y. Maejima. Angular-based
edge bundled parallel coordinates plot for the visual analysis of large en-
semble simulation data. In IEEE 12th Symposium on Large Data Analysis
and Visualization (LDAV), pp. 1–10, 2022. doi: 10.1109/LDAV57265.
2022.9966393 2

[34] Weather Meteorological Organization. Guide to public weather services
practices. Secretariat of the World Meteorological Organization, 1999. 1

[35] D. N. Williams, T. Bremer, C. Doutriaux, J. Patchett, S. Williams, G. Ship-
man, R. Miller, D. R. Pugmire, B. Smith, C. Steed, E. W. Bethel, H. Childs,
H. Krishnan, P. Prabhat, M. Wehner, C. T. Silva, E. Santos, D. Koop, T. El-
lqvist, J. Poco, B. Geveci, A. Chaudhary, A. Bauer, A. Pletzer, D. Kindig,
G. L. Potter, and T. P. Maxwell. Ultrascale visualization of climate data.
Computer, 46(9):68–76, 2013. doi: 10.1109/MC.2013.119 2

[36] S. Xu, C. Bryan, J. K. Li, J. Zhao, and K.-L. Ma. Chart Constellations:
Effective chart summarization for collaborative and multi-user analyses.
Computer Graphics Forum, 37(3):75–86, 2018. doi: 10.1111/cgf.13402 2

10

https://doi.org/10.14778/3229863.3236221
https://doi.org/10.14778/3229863.3236221
https://doi.org/10.1109/TVCG.2016.2598869
https://doi.org/10.1109/TVCG.2016.2598869
https://doi.org/10.1145/1142473.1142574
http://opengrads.org/
https://doi.org/10.1175/JAMC-D-12-023.1
https://doi.org/10.1175/JAMC-D-12-023.1
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003966
https://doi.org/10.1615/Int.J.UncertaintyQuantification.2012003966
https://doi.org/10.1002/qj.2127
https://doi.org/10.2200/S00915ED1V01Y201904DTM060
https://doi.org/10.2200/S00915ED1V01Y201904DTM060
https://doi.org/10.1016/j.cag.2022.01.007
https://doi.org/10.1016/j.cag.2022.01.007
https://doi.org/10.1111/cgf.12650
https://doi.org/10.5281/zenodo.4479912
https://doi.org/10.1111/cgf.12925
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.1016/j.atmosenv.2005.04.027
https://doi.org/10.3390/atmos10090488
https://www.undrr.org/publication/human-cost-disasters-2000-2019
https://www.undrr.org/publication/human-cost-disasters-2000-2019
https://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html
https://esrl.noaa.gov/gsd/wrfportal/DomainWizard.html
https://doi.org/10.1016/j.envsoft.2022.105591
https://ferret.pmel.noaa.gov/Ferret/
https://ferret.pmel.noaa.gov/Ferret/
https://doi.org/10.1109/ICDMW.2009.55
https://doi.org/10.1109/TVCG.2017.2779501
https://doi.org/10.5194/gmd-8-2329-2015
https://doi.org/10.5194/gmd-8-2329-2015
https://doi.org/10.1109/MCSE.2013.15
https://doi.org/10.1109/MCSE.2013.15
https://doi.org/10.1109/TVCG.2010.181
https://www.generic-mapping-tools.org/
https://www.generic-mapping-tools.org/
https://doi.org/10.1109/TVCG.2018.2865024
https://doi.org/10.1109/TVCG.2018.2865024
https://www.ncl.ucar.edu/
https://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/software/netcdf/
https://doi.org/10.1109/TVCG.2016.2598830
https://doi.org/10.1109/TVCG.2011.225
https://doi.org/10.1109/TVCG.2011.225
https://doi.org/10.1109/LDAV57265.2022.9966393
https://doi.org/10.1109/LDAV57265.2022.9966393
https://doi.org/10.1109/MC.2013.119
https://doi.org/10.1111/cgf.13402

	Introduction
	Related work
	Background
	Challenges
	Requirements
	ProWis system
	Backend
	Visual exploration interface
	Setup view
	Simulation view
	Ensemble view


	Case studies
	Extreme rainfall event in Maricá (2022)
	Rainfall event in São Paulo (2018)

	Experts' feedback
	Conclusion and future work

