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Abstract

LambdaRAM is a  high-performance,  multi-
dimensional, wide-area, distributed cache that takes
advantage of massively available memory from multiple
clusters interconnected by ultra high-speed networking to
provide data-intensive scientific applications with rapid
access to both local and remote data without suffering the
latency bottlenecks often associated with large storage sys-
tems and wide-area data access. LambdaRAM has been
demonstrated to yield significant performance speed-ups
for Geophysical and Bioscience applications accessing
extremely large datasets.  Currently, LambdaRAM is
being integrated by NASA for the Modelling, Analysis and
Prediction (MAP) Program applications to study tropical
cyclones. Formal verification of LambdaRAM is important
to NASA to ensure that LambdaRAM operates reliably in
real-time mission critical deployments.

We present our preliminary steps towards full formal ver-
ification of LambdaRAM. We first give an abstract descrip-
tion of the system and then verify several of its properties.
Most of the proofs are accomplished by automatic tech-
niques, while some require deductive steps.

1 Introduction

Interactive real time exploration and correlation of multi-
terabyte and petabyte datasets from multiple sources has
been identified as a critical enabler for scientists to glean
new insights in a variety of disciplines critical for na-
tional security. These include, e.g., climate modeling and
prediction, biomedical imaging, geosciences, and high-
energy physics [11]. The critical performance bottlenecks
in such data-intensive applications are the access latencies
associated with storage systems and remote data access.
In NASA’s Climate Modeling, Analysis, and Prediction
(MAP) project [8], the access latencies cause the compu-

tational clusters, used in the GEOSS5 global forecast model
calculation [7], to idle for 25-50% of the execution time dur-
ing the analysis phase. Reducing I/O latency while enabling
real-time, high-performance data access and data sharing
would allow employing more complex models, which, in
turn, will result in faster and more accurate weather pre-
diction and forecasts. Formal verification of these high-
performance computing (HPC) systems is considered to be
of utmost importance because they are often deployed in
safety-critical environments. Yet, the vast number of pa-
rameters they depend on, the variable message latency and
routing paths, as well as many other features, render their
verification extremely challenging.

The OptIPuter [16] is a new paradigm in data-intensive
distributed HPC whose goal is to build planetary-scale su-
percomputer that enables real-time, data-intensive HPC.
This is achieved by interconnecting distributed storage,
computing, and visualization resources over ultra-high
speed photonic networks at tens of gigabits per second.
LambdaRAM [17], the memory-subsystem of the Optl-
Puter, is a high-performance, multi-dimensional, distributed
RAM-disk abstraction that takes advantage of massively
available memory from multiple clusters and ultra high-
speed networking, to provide data-intensive scientific ap-
plications with rapid access to both local and remote data.
LambdaRAM employs latency mitigation heuristics, in-
cluding pre-fetching, pre-sending, and hybrid heuristics,
based on the access patterns of an application, and, novel
data transport protocols designed for ultra high-badwidth
networks, to mitigate data access latencies. It enables time-
critical data collaboration between applications over geo-
graphically distributed clusters by providing a shared cache
over the clusters interconnected by optical networks. Geo-
physical and Bioscience scientific data-analysis applica-
tions, using LambdaRAM to access remote datasets, have
demonstrated large speedups [9].

NASA is currently integrating LambdaRAM with the
MAP project for mission-critical deployment in tropical
hurricane analysis. Consequently, the formal verification



of the LambdaRAM protocol has become a high priority.
However, the only description of LambdaRAM is its over
30,000 C++ lines, which deems its formal verification vir-
tually impossible.

In this paper, we report on our initial successful expe-
rience at both abstracting and formally verifying (the ab-
straction of) the LambdaRAM code. We believe that the
work reported here is one of the first formal verifications of
a protocol for high-performance computing. Moreover, in
addition to describing the application of various theoretical
techniques, it provides an encouraging evidence to the ben-
efits of collaboration between system developers and formal
method researchers. In particular:

e The formal verification of the LambdaRAM protocol
was initiated to aid in the identification and elimina-
tion of bugs that were causing erroneous behavior as
LambdaRAM was scaled to large cluster systems, and
to enable its deployment in mission critical applica-
tions that require some certification. Although, the
development of the code followed a pattern which vi-
olates widely accepted software engineering theories
(which is yet too common) — rather than a top-down
design cycle, the goals of the protocols were “clear” to
the developers and the code was written as to satisfy
these clear, yet undocumented, goals. Consequently,
much of the effort had been targeted towards obtaining
a formal specification of the protocol from its imple-
mentation. This effort not only allowed for the formal
verification of the protocol, but also as a gave the de-
veloper a (much needed) starting point for expansion
of the protocol (to the write-once case);

e Many (if not all) formal verification techniques are
criticized as not being scalable. We show that, a close
collaboration between HPC and verification communi-
ties, with one can achieve a “good enough” abstraction
where the verification techniques, while not necessar-
ily scalable, are sill useful and applicable for the for-
mal analysis of a “real-life” complex protocol. In fact,
many steps of the abstraction were accomplished using
such automatic “unscalable” formal techniques;

e Even at the high level of abstraction accomplished, it
was possible to detect a bug in the protocol, which may
have been the source for erroneous behavior that had
been observed. This was reported to the developers
and has subsequently been fixed in the implementa-
tion.

Our results are promising and we hope our work will en-
courage closer collaboration between HPC and Formal Ver-
ification communities to apply formal techniques to com-
plex, HPC systems as to yield reliable systems. This is of

paramount importance as we scale up towards petascale sys-
tems.

The paper is organized as follows. In Section 2, we
present a brief overview of LambdaRAM and present a
step-by-step abstraction of the model. Section 3 describes
the underlying theory of the techniques and methodologies
used in the formal verification, and Section 4 describes the
verification process. In Section 5, we present our con-
clusions and discuss our future directions. We present
overview of LambdaRAM and the formal methods used in
the appendices.

2 The Abstraction Phase

In this section we present our abstraction of Lamb-
daRAM. A functional description of LambdaRAM is in
Appendix A. LambdaRAM currently supports a Read-
Only consistency mode where the original data is never
modified. This mode is sufficient for most data-intensive
HPC applications [19]. A typical scenario of an application
using LambdaRAM is shown in Fig. 1 where a 256-node
NASA Ames cluster in California and a 100-node NASA
Goddard GSFC cluster in Maryland are interconnected by a
dynamically provisionable ultra-fast high-speed optical net-
works over the National LambdaRail (NLR). The figure de-
picts a parallel weather prediction application running on
the NASA Ames cluster routinely accessing the MERRA
data store, which is a multi-terabyte weather data reposi-
tory located at NASA GSFC. The application uses Lamb-
daRAM for real-time data access to the remote dataset.
LambdaRAM encompasses the combined memory of the
two clusters and caches (at most 1.4TB of) the MERRA
data. It also manages the data access to the entire multi-
terabyte MERRA data repository for the application.

To abstract LambdaRAM, we made the following as-
sumptions:

1. HPC clusters are typically heterogeneous. Model-
ing heterogeneous cluster configuration drastically in-
creases the number of parameters in the model. We
have currently assumed homogeneous cluster configu-
ration wherein all the servers and clients have the same
system configuration.

2. High-speed optical networks are point-to-point net-
works. Thus, they do not facilitate all-to-all com-
munication needed for cluster-to-cluster communica-
tion. Aggregation technologies in Layer 2 (Ether-
net grooming), Layer 3 (Routers), etc. are used to
achieve all-to-all communication. Aggregation tech-
nologies and the multiple networks paths between any
source-destniation pair in optical networks result in re-
ordering of messages. We have currently not consid-
ered message re-orderings in our model.



LambdaRAM encompassing Two Clusters

NASA Ames Cluster

256 Cluster Nodes — 1TE RAM

[ I_I l_| [ 11 |
_n_u._n_u._u_u. 1

| LambdaRAM |
l TIT [R] [o [o—] [J—] |
I : I

10-40 Gbps Ultra
MERRA Data |
Lo €— FastOptical |
| MNetworks |
| 100 Cluster Nodes — 400 GB RAM :
| NN [N [ (| [
I LambdaRAM Ik
3k ) e | TS
MNASA GSFC Cluster
Local Interconnects

Multi-TeraByte Merra Data Store at GSFC

A 1400GB LambdaRAM encompassing two clusters

Figure 1. Typical Use-case Scenario Of Lamb-
daRAM

3. Data-intensive applications are inherently parallel,
where each data request is decomposed into requests
of data blocks from several nodes. If a node request
exceeds the node’s memory in a LambdaRAM com-
putation, the request is further decomposed into a se-
quence of data blocks, each fitting the node’s memory.
Here, we assume that requests do not exceed the max-
imum memory available on a single node and bypass
the need to model a sequence of requests.

4. LambdaRAM can encompass the memory of multi-
ple clusters interconnected by high-speed networks.
‘We restrict our attention to a two cluster, client-cluster
server-cluster configuration, which is one of the com-
mon configurations of LambdaRAM.

With these assumptions, we worked closely with the de-

velopment team to formulate a higher level abstraction of
LambdaRAM.

Initial Phase

The Initial abstraction of an application running on two
machines is as shown in Fig. 2

The client cluster of LambdaRAM, on which the ap-
plication typically executes, is composed of the following
modules:

Data Access Module (DA): responsible for satisfying an ap-
plication’s request for data blocks. DA first checks if the
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SERVER SERVER

Server Node 1 Server Node k

Figure 2. Initial Model Of The LambdaRAM
Protocol

data block is locally cached, and sends a request to an ap-
propriate client to fetch the block if is not cached.

Client Module (CLIENT): satisfies the DA’s request for un-
cached blocks from remote servers. It consists of a client
connection to each server.

Garbage Collector (GC): aids the memory management of
the Local LambdaRAM by employing various heuristics
including (e.g. LRU, and MRU).

Local LambdaRAM Cache (LRAM): a shared data struc-
ture on each node, which is part of the global LambdaRAM
Cache.

The server-cluster of LambdaRAM is composed of the
following modules: Local LambdaRAM Cache (LRAM),
Garbage Collector (GC) and the Server Module (SERVER).
The LRAM and GC are similar to the client-cluster case,
and, the SERVER is responsible for satisfying the data re-
quests from the clients.

Second Phase

We simplified the initial abstraction by assuming that the
datasets fit into the combined memory of the LambdaRAM
server nodes. This enabled us to eliminate the garbage col-
lector on the server nodes and simplify the server nodes
to a single server process serves clients’ requests. The
garbage collector on the client’s side could not be similarly
abstracted since assuming the datasets fit into the memory
at a client is not realistic. The resulting system is shown in
Fig. 3.
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LambdaRAM uses reliable transport protocols (TCP,
Parallel TCP, Celeritas, etc.) [18] and we assume reliable
communication between clients and servers. We combine
the client and server modules into a single client-server pair
module, shown in Fig. 4 as they exhibit a symmetric behav-
ior for the Read-Only case.

Final Abstraction

Applications that use LambdaRAM are typically data-
parallel applications and exhibit a symmetric behavior on
each node. The simplified abstraction, utilizing this sym-
metric behavior, is as shown in the Fig. 5.

Using the abstraction of , Figures 6 and 7 describe the
message sequence charts of the main events in the sys-
tem — Fig. 6 describes the events from the time applica-
tion requests data blocks until it receives them, and Fig. 7
describes the concurrent (and independent) activity of the
garbage collector.

APPLICATION

Client- Server

Figure 5. Abstracting The Symmetric Prop-
erty Of Parallel Systems
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Figure 7. Message Sequence Chart For
Garbage Collection

Formal Derivation/Verification of Abstrac-
tion

All steps in the abstraction described above were ob-
tained manually. In retrospect, we believe that, exploit-
ing locality, we could have automatically decomposed the
system into the GC, Application together with DA, and
Clients/Servers modules. This belief is supported by some
preliminary tests we performed. Verifying that the Client-
Server module of Fig. 5 abstracts the multiple client-server
modules of Fig. 2 is attainable in the theorem prover TLPVS
of [13], which combines the temporal logic framework with
Pvs [12], by using refinement mappings similar to those
described in [1]. To our knowledge, there is no model-
checking based technique to verify the correctness of this
abstraction, hence the need for a theorem prover. We did
model-check some (not too) small instantiations using TLV
[15] and obtained a sanity check for the correctness of this
abstraction. We note that the manual proof is rather straight-
forward.
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3 Formal Techniques and Tools

We present a brief overview of the formal techniques and
tools we used.

There are two properties we were requested to verify: a
safety property (of the type [] p where [] is the temporal
operator “always” and p is a state assertion, i.e., an asser-
tion whose truth depends only on the state it is interpreted
on), and a progress property of the type p=- > ¢, where
> is the temporal operator “eventually” and both p and ¢
are state assertion. This property read as “every p-state is
eventually followed by a g-state.” Since the system is pa-
rameterized (by, for example, the size of the memory, the
bound on the size of cached memory, etc.), each assign-
ment of values to the parameters defines an instantiation of
the system. Verification of such a system implies verifica-
tion of every instantiation, which, in general, is undecidable.
There are, however, several techniques one can use that are
sound, that is, if one succeeds verifying the system with
these techniques, every instantiation of the system satisfies
the properties.

Initial Steps

To make the verification task more manageable we made
some simplifying assumptions. See Section 4 for details.
With the simplifications, we obtained a single parameter
system, the parameter being the size of the memory. We
coded the resulting system in SMV, which allows to con-
sider it a bounded just transition system (BJTS, see Ap-
pendix B for details) — a transition system with justice

(weak fairness) assumptions. Having the system expressed
as a BJTS allows for analyzing it with several formal tech-
niques as well as to apply some existing symbolic model
checking tools on it (see the end of this section).

Verification Techniques

To prove safety ([] p above) we employed the Invisible
Invariant methodology of [14, 3, 20] which allows for auto-
matic verification such properties for a parameterized sys-
tem. See Appendix C for an overview of the method.

To prove progress, we use a simplification of the method
of [5]: Suppose we want to show that a system that is com-
posed of some parallel modules satisfies a progress property
p=- [ g, i.e., every p-state is eventually followed by a g-
state. Let P, ..., P, be a sequence of all the system’s mod-
ules, k > 0 be a constant, and assume that 1 < ¢ < n. Let
r be the property: “Once p becomes true, if P; takes k (not
necessarily consecutive steps), then P, takes k steps, then
..., then Py takes k steps, then a g-state must be reached
in this duration.” Then, obviously, r implies the progress
property p=- > gq.

More formally, let My be a new module described
in Fig. 8, where active and counter are fresh variables,
active € {0,1..4} and counter: [1..0] — [0..k].

Similarly, for each j = 1,...,¢, let M; be the module
described in Fig. 9.

We then have the following theorem, whose proof fol-
lows from a similar one in [5]:



If (active =0 A p A —q)
then active := 1; for all j € [1..£], counter[j] := 0
Elsif (q)
then active := 0
Elsif ((1 < active < £) A (counter|active] = k))
then active := active + 1

Figure 8. The process 1,

If (active = j A counter[j] < k)
then counter(j] := counter[j] + 1

Figure 9. The process /;

Theorem 1. [f system
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satisfies
¢
(active — \/ counter[j] < k)
j=1
then the system ||, P; satisfies p=— > q.

Note that we assumed that each module can always take an
idle step. We, however, don’t wish to count idle steps when
non-idle ones are enabled (which will allow the counters to
grow indefinitely, violating justice). In practical terms, we
have a single “Idle” module that performs all the idle steps,
and our processes, once scheduled, idle only if they have no
other option. Note also that the method described applies
to proofs where ¢ does not depend on the system parameter
N. Hence, this is a simpler situation than the one described
in [5].

Theorem 1 demonstrates how progress properties can be
transformed into safety properties. While £ is independent
of N, the progress property may be parameterized, hence,
we may need to verify the safety (implied by progress) of
the new system using parameterized verification techniques.

Tools

We use TLV [15] for model checking. TLV is a BDD-
based model checker that uses SMV for its input language,
and has some scripting that make it especially suitable for
our purposes.

4 Into the Verification Den

LambdaRAM is implemented in C++; the code base is
currently 30,000 lines, which renders it impossible to for-
mally verify by existing automated tool. The abstraction

described in Section 2 identified five modules. There were
two properties that needed to be formally verified:

1. (Safety) — the number of non-empty cache blocks
never exceeds the maximal memory that can be cached
(which is given as a parameter);

2. (Liveness) — every requested block is eventually is
granted;

These two properties seem like the typical toy proper-
ties given in basic formal verification texts, however, in the
case of the LambdaRAM code, there are several factors that
renders their verification considerably harder: The memory
is multi-dimensional, a “block™ consists of a list of hyper-
boxes “chunks” of the memory, the number of applications,
the shape of the memory, the maximal amount of memory
that can be cached at a given time, the number of requests
an application can issue, as well as numerous other param-
eters, can all vary, and formal verification should prove (1)
and (2) regardless of the value of the parameters'.

Simplifying Assumptions

We opted to make some simplifying assumptions in or-
der to obtain an initial formal verification, and then to re-
move the assumptions. The assumption were chosen so as
to be independent of one another with respect to verification
of (1) and (2). The main assumptions are:

The memory is a linear array. While the complex struc-
ture of both memory and requests are an inherent part of
the protocol, for proving (1) and (2) it suffices to assume
that the requests can be translated to sequences of memory
addresses, and that the latter can be represented as absolute
addresses over N. At some later point, it may be necessary
to verify this translation between the hyper-boxes into a se-
quence of addresses, but this is irrelevant to the properties
we are aiming to verify.

Most parameters can be assumed to be small constants.
The parameters that are relevant to proving (1) and (2) are
the bound on the maximal number of memory cells that can
be cached at a given time (MaxMemory), the number of
application threads, the number of memory blocks (V), and
the bound on the size of requests. Obviously, MaxMemory
should be larger than the maximal request size. However, as
our abstraction of the memory implies, it suffices to assume
that the request size is small. To simplify matters, we chose
the request size to be 1. For sanity checks, we also verified
the protocol with larger request sizes, and, as expected, ob-
tained no new behaviors. Similarly, we chose MaxMemory

'Alll TLV code used for the experiments, is in
http://www.evluic.edu/venkat/papers/memocode08.html



to be some multiple of the request size. Again, we experi-
mented with several values, and settled on 2 for the presen-
tation here. As we note in the future work section, we are
currently working on obtaining the automatic verification
with general parameters, or on formally proving that small
values we chose indeed suffice.

Module Abstraction. We chose to (manually) abstract
some modules, to verify the system with the abstracted
modules, and to separately verify that the abstraction is cor-
rect. The latter was accomplished by methods similar to [1].
Since we are using a model checker, we could not prove the
abstraction for arbitrary instantiations of parameters, how-
ever, we did obtain successful model checking runs with
non-trivial instantiations, and a deductive proof that we are
now “guiding” the tool TLPVS to generate.

Atomicity assumptions. As is common in this type of pa-
rameterized verification, we assumed that some tests are
performed atomically while in any reasonable implemen-
tation this is not a realistic assumption. We are currently
working on applying some of the new methodologies (e.g.,
[2]) to remove such atomicity assumptions.

Proving Safety

The safety property we wish to prove is that the number
of cache blocks that are cached or are in transit never ex-
ceeds the maximal memory that can be cached. For each
memory block 4, the variable CacheBlock Stateli] de-
notes the state of the it" memory block, and it is neither
cached nor in transit when it equals EMPTY. Hence, the
safety property we want to verify is that for every instan-
tiation IV,

N
() _(CacheBlock Stateli] # EMPTY) < MaxMemory)
i=1

To prove the property, we employed the method of In-
visible Invariants using total number of blocks as a the
single parameter. As discussed in Section 3, we chose
RequestSize to be 1 and MaxMemory to be 2. The
transition relation is of the form 3i.Vj.p(4, j) where ¢ and
j range over 1..TotBlocks and p(i, j) refers to two free
index variables. Suppose we are seeking an invariant of
the form Vi, j.¢(i,j). Using invisible invariants (see Ap-
pendix C), we can use instantiation of size Ny = 4. In fact,
we chose a larger Ny and succeeded in generating induc-
tive invariants for shapes that have a 2- and a 3- universally
quantified. We approached the problem in two directions —
in one, we went the usual invisible invariant way, starting
with the set of reachable states, projecting on two (or three)

processes, and generalizing onto the others. We also at-
tempted to produce the invariant by starting with ©, the ini-
tial assertion, and iteratively projecting and generalizing it,
until a fix point is reached. Surprisingly, both methods pro-
duced the same inductive invariants, only the latter (starting
with © and reaching a fix point) took considerably more
time. This is contrary to prior simpler experiences where
both methods produced the same invariants and the latter
method converged much faster. It’s hard to draw conclusion
from this, and as much as we can, we’ll continue to use both
methods simultaneously (if for nothing else, it proved to be
a very efficient debugging tool) and attempt to gauge their
relative merits. The results are shown in Fig. 10

We ran the experiments on 2.2GHz Intel Core 2 Duo
MacBook Pro with 2GB of 667Mhz DDR2 SDRAM. The
Darwin Kernel Version running on the MacBook Pro was
8.10.1. TLV 4.18.4 was used for model checking.

Proving Liveness

The liveness property we wish to establish is that every
requested block is eventually granted. A block i is requested
when RequestBlockList[i] is set, and is granted when
RequestBlockList[i] is reset. Hence, the liveness prop-
erty is that for every ¢ € [1..TotBlocks],

RequestBlockList[i] == <> —RequestBlockList][i]

Since all the blocks are treated symmetrically, it suffices to
establish the property for a representative block, say i = 2.
Hence, we focus on verifying:

RequestBlockList[2] == <> —RequestBlockList[2]

Following the ideas in Subsection 3, we arranged the mod-
ules where P is Application (App), P» is DataAccess (DA),
Ps is ClientServer (CS), and P, is GarbageCollector (GC).
Thus n = 4. We also choose ¢ to be 3 and k (the counter
bound) to be 3. With p = RequestBlockList[2] and
g = —RequestBlockList[2], we verified the system

(Mo I 5= (PiUIM)) I Pesa - - 11 P

against the safety property

¢
VN. (active — \/ counter[j] < k)

Jj=1

using the method of invisible invariants (taking the same Ny
as before). From Theorem 1, it now follows that the original
system satisfies

RequestBlockList[2] =~ <> —RequestBlockList[2]

In fact, before the successful verification, we obtained
error traces, which allowed each module to take infinitely
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Figure 10. Run Time Results

many idle steps. A more careful inspection revealed a triv-
ial bug — the garbage collector (GC) was always allowed
to change the observable behavior of the system even when
there were no changes in the memory since its last pass.
This enabled a scheduler that scheduled other modules only
when the garbage collector prevented them from taking
a “productive” step. The designers have then system to
make sure the garbage collector doesn’t perform unneces-
sary work, and we could the prove the liveness property.

5 Conclusion and Future Work

We presented a simplified model of LambdaRAM-
a high-performance, multi-dimensional, wide-area dis-
tributed cache for data intensive HPC applications — and
its protocol for the read-only case. We formally verified
the protocol using automated and deductive techniques.
Through formal verification, we were able to identify a bug
in the cache management of the protocol which has since
been subsequently fixed in the implementation.

Our work entailed a significant amount of reverse engi-
neering — faced with a 30K line code, we had to abstract
it and determine its correctness criteria. We were fortunate
enough to have an extremely cooperative LambdaRAM de-
velopment team who wished to identify and fix the bugs
in the protocol to enable a reliable deployment in NASA’s
mission-criticial applications. Another motivation was that
future expansions (e.g., for the write-once case) will be de-
signed in a top-down manner, that is, the abstract verified
model first, then a step-wise process leading in to the com-
plex code.

We are currently working towards incorporating addi-
tional parameters including, the k-dimensional memory
space with requests for hyperboxes of various dimensions,
the multiple applications, multiple datasets, memory qual-
ity of service requirements. Since it may not suffice to
use automatic techniques to handle such parameters (our
small model will possibly be small but not small enough
to avoid state-explosion), our plan is to use compositional
techniques. For example, our client-server model is an ab-
straction of a composition of two modules, and, this simpli-
fied obtaining an inductive invariant.

In the long term, we plan to build a tool-suite that will
allow for verification of similar systems by user-guided

combinations and composition of formal verification tech-
niques.
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Appendices

A Functional Architecture of LambdaRAM

The functional architecture of LambdaRAM [17] is
shown in Fig. 11. LambdaRAM consists of a data access
layer that satisfies the data requests of an application. The
data access layer interacts with the distributed data cache to
satisfy these data requests. The distributed data cache spans
the memory of multiple clusters and cluster nodes. If the re-
quested data is not present in the distributed data cache, the
data cache layer fetches the data from the storage system
using the I/O Abstraction layer. We briefly describe each
subsystem.

Serial / Parallel Applications

Data Access Layer

Data Interposer Layer

Custom Formats via Plugins
LambdaRAM API

Multi-Cluster Distributed Cache Interconnected By High-Speed Networks

Data Data Latency Memory Metadata
Representation Transport Mitigation Management Manager
Layer Layer Layer Layer

Extensible I/0 Abstraction Layer

Data Format Custom IO
Abstraction via Plugins
HDF4, Binary SRB, SRM

Filesystem
Abstraction
MPI-IO, POSIX

Figure 11. Functional Architecture Of Lamb-
daRAM

Data Access Layer. An application can use either the
LambdaRAM API or the data format interposer layer to ac-
cess data. The data format interposer layer enables an appli-
cation to use LambdaRAM without modifying a single line
of the applications code. The LambdaRAM API provides
an intuitive API to access multi dimensional datasets.

Multi-DimensionalDistributed Cache Layer. The Mul-
tidimensional Distributed Cache Layer enables efficient
access to the data. The data representation layer and
memory management layer are responsible for the multi-
dimensional cache management over the multiple clusters.
The latency mitigation layer helps overcome the network la-
tencies by fetching data just before an application needs it.
The data is transferred efficiently between the various levels
of caches using the Data Transport Layer.

Extensible I/O Abstraction Layer. The extensible I/O
layer enables efficient access to multi-dimensional datasets
on storage systems. The Filesystem abstraction layer en-
ables the use of high-performance parallel IO interfaces,
including MPI-IO, to efficiently access data on parallel
filesystems. The Data format abstraction layer enables ac-



cess to datasets present in scientific data formats.

B Bounded Just Transition Systems

As a computational model for parameterized bounded-
data systems we use bounded just transition systems, that
are a compassion-less variant of the model of bounded fair
transition system of [6].

B.1 Just Transition Systems

We present a variant of the just transition system of [10].
A JTS is described by S = (V, 0,7, J), with:

e IV — A finite set of typed system variables. A state s
of the system provides a type-consistent interpretation
of the system variables V, assigning to each variable
v € V avalue s[v] in its domain. Let ¥ denote the
set of all states over V. An assertion over V is a first
order formula over V. A state s satisfies an assertion
¢, denoted s = o, if  evaluates to TRUE by assigning
s[v] to every variable v appearing in . We say that s
is a p-state if s = .

e © — The initial condition: An assertion characterizing
the initial states. A state is called initial if it is a ©-
state.

e 7 — A finite set of transitions. Every transition 7 € 7
is an assertion 7(V,V’) relating the values V' of the
variables in state s € X to the values V' in an D-
successor state s' € Y. Given a state s € X, we say
that s’ € X is a 7-successor of s if (s, s") E 7(V, V')
where, for each v € V, we interpret v as s[v] and v’ as

s'[v]. We assume an idle transition 77 = A\ o, v = v'.

e J — A setof assertions over V. A computation should
have infinitely many J states for every J € J.

Let o : sg, s1, S2, . .., be an infinite sequence of states. We
say that o is a computation of S if it satisfies the following
requirements:

e [nitiality — sg is initial, i.e., so = ©.

e Consecution — For each £ = 0,1, ..., state sy is a
T-successor of s, for some 7 € 7.

o Justice — for every J € J, there are infinitely many
positions k£ > 0, such that sj is a J-state.

Composition of Just transition Systems Assume two
JTS’s Sy: <Vv17 @1, 7—1, ._71) and Sy : <V§, @2, 7'27 ._72> The
asynchronous parallel composition of S; and Ss, denoted
by S1|S2, is the JTS

(ViU V2,01 A 05, T, 71 U J2)

where 7 includes, for every i = 1,2, all the transitions in
7 € 7; with the conjunct /\uevﬁvs,i v = v’. That is, each
transition of Sy || S5 is a transition of one of its components
requiring the transition to alter no value not in its compo-
nent’s domain.

The synchronous parallel composition of S1 and S, de-
noted by S1]||.Se, is the TS

(Vlu‘/g,@1/\@2, \/ 7'1/\7'2)

T1€T1,72€T2

B.2 Bounded Just Transition Systems

To allow the application of the invisible invariants
method, we further restrict the systems we study, leading
to the model of bounded just transition systems (BITS). For
brevity, we describe here a simplified two-type model; the
extension for the general multi-type case is straightforward.

Let N € N7 be the system’s parameter. We allow the
following data types:

1. bool: the set of boolean and finite-range scalars;

2. index: a scalar data type that includes integers in the
range [1..N];

3. data: a scalar data type that includes integers in the
range [0..N]; and

4. Any number of arrays of the type index — bool. We
refer to these arrays as boolean arrays.

5. At most one array of the type b : index — data. We
refer to this array as the data array.

Atomic formulas may compare two variables of the same
type. E.g., if y and 3’ are index variables, and z is an
index — data array, then y = 3/ and z[y] < z[y'] are both
atomic formulas. For z : index — data and y : index, we
also allow the special atomic formula z[y] > 0. We refer to
quantifier-free formulas obtained by boolean combinations
of such atomic formulas as restricted assertions. As the ini-
tial condition ©, we allow assertions of the form VZU(Z),
where u(f) is a restricted assertion. As the transitions
7 € T, we allow assertions of the form 7(7) : Vj.9(i,5)

for a restricted assertion (%, 7).
B.3 Example of a BITS

Consider program MutSem in Fig. 12, which is a sim-
ple mutual exclusion algorithm that guarantees deadlock-
freedom access to critical section for any NV processes.

In this version of the algorithm, location 0 consti-
tutes the non-critical section which a process may non-
deterministically exit to the trying section at location 1. Lo-
cation 1 is the waiting location where a process waits until



V. { 7 : array[l..N] of [0..3]
' t: bool;
©: Vi:n[i]=0At=1
(1) : Vj#i: w[i)=0A7[i] € {0,1} Apres({r[j],t})
T, (i) Vi#i: wil=1At=1A7"[i]=2At =0Apres{r[j]})
’ (1) 1 Vi #i: wi) =2A7[i] =3 Apres({r[j],t})
T3(i): Vj#£i: 7| =3A7[]| =0At =1Apres({r[j]})
Figure 13. BJTS for Program MutSem
tion. Similarly to project&generalize, the verification of in-
in N natural where N > 1 ductiveness can be accomplished by symbolic techniques.
local ¢ bool where t = 1 Since the generated candidates are A-formulae (i.e., when
loop forever do in prenex normal form, the only quantification is univer-
N 0: NonCritical sal), the most difficult premise to prove is the inductive-
H Pli] 1: whent=1dot:=0 ness, which is an AE-formula. As the following theorem
i=1 2 : Critical (first stated in [14] and later extended in, e.g., [3]) estab-
3: t:=1 lishes, verification of AE-formuale has a small model theo-

Figure 12. Program MutSem

the token (%) is available and then takes it. Location 2 is the
critical section, and location 3 is the exit section where the
process returns the token. As we show, the program guar-
antees that if some processes are waiting to enter the critical
section, eventually some process will succeed. Fig. 13 de-
scribes the BJTS corresponding to program MutSem.

C The Method of Invisible Invariants

See [4] for a description of a tool that implements the
method as well as a citation list.

The method of invisible invariants generates candidate
inductive invariant for a given parameterized system, and
checks whether the candidate invariant is inductive and
whether it implies the safety property one wishes to prove
holds over the system. The generation of the candidate in-
variant is accomplished by instantiating the system to some
small number, and projecting the set of reachable states
on a small number of processes, and generalizing it to an
arbitrary number of process. For example, when seeking
an invariant of the type Vi, j.¢(4,j) (¢(3,7)) is quantifier
free, the system is generated onto two processes, say %1
and 7o, and generalized from then into arbitrary ¢ and j.
The process of generating the candidate invariants is called
project&generalize.

After the candidate invariant is generated, it needs to be
checked for inductiveness (that is, being implied by the ini-
tial states and being preserved by every step) and for im-
plying the property safety that is the goal of the verifica-

rem property:

Theorem 2 (Small model property). For every AE-
formulae over a BITS, there exists an Ny such that ¢ is valid
iff it is valid over all instances S(N) for N < Nj,.

In practice, the theorem implies that in order to
verify the inductiveness of a A-candidate of the form
Vi1, ..., ikxP(i1,... i) over a BITS, it suffices to verify
that the formula holds over instantiation of size Ny =
k + H, where H is the number of variables under exis-
tential quantification in the transition relation (which is an
EA-formula), and conclude that the candidate is inductive
over instantiation of size N > N.

When applying the method, we usually choose some N’
which is at least as large as the computed Ny, and use the
same instantiation for both obtaining the candidate and ver-
ifying its inductiveness. See, e.g., [4] for details.



