Visualization of time-series biological data with spatial and non-spatial features embedded

Chihua Ma July 22, 2015 Why time series data?
Most real world problems are dynamic in nature.

• Why spatial data?

Those are the properties of biological systems. Such as the physical locations (coordinates) of neurons in networks.

Time series data visualization

- Time-To-Time Mapping
- Animation
- Time-To-2D Space Mapping (Timeline)
- Line graph: ThemeRiver
- , radial-based layout: Spiral Graph
- , small multiples
- Time-To-3D Space Mapping
- Space-time cube

Time series data visualization

Secrier and Schneider. Visualizing time-related data in biology, a review. Briefings in bioinformatics (2013)

Representing time at different levels

- At the molecular level
- At the gene level: linear methods and heat maps
- At the network level: animation
- At the cellular level
- At the organismal level
- At the population level
- At the evolutionary scales

Spatial and non-spatial data visualization

Multiple and coordinated views

Marai. Visual Scaffolding in Integrated Spatial and Nonspaial Analysis. *EuroVA* (2015)

Brain Viewer. http://gallantlab.org/brainviewer/huthetal2012/

Case Study 1: Dynamic mouse brain networks

Problem

We collaborate with domain scientists from neuroscience and computational biology who use the approach of dynamic network analysis to explore the change in **functional connections** and **community identities** over time within the mouse brain.

A dynamic community is defined as a time-series of sets of neurons that have similar functional behaviors.

Data Processing

A time series of neuron activity in the mouse brain

A time series of correlation networks

Dynamic communities

CommDy

CommDy is a method of detecting dynamic communities.

Two community identification codes:

- Home Community identifying the community that the neuron belongs to;
- Temporary Community identifying the community that the neuron currently visits.

Example for CommDy

Data features

- Time: ~1,000 time steps
- Spatial data: the coordinates of nodes (a set of neurons)
- Non-spatial data: pixel intensity, node degree, community identifications, network size, etc.

Visual encodings

- Time: linear representations and animation
- Spatial data: 2D mapping (map the nodes onto the brain slice images)
- Linked views

SwordPlots

Space attribute cube

Case Study 2: Probability distributions at states in the FFL network motif

Problem

Our domain scientists develop numerical methods for the simulation of biochemical networks. They need help with either journaling a set of simulations or exploring the simulation itself through visualizations.

# of Protein 0	 # of Protein N	Copies of Gene 0	 Copies of Gene M	Probability
2	 30	0	 0	0.000001
•••	 •••	•••	 •••	***
10	 100	0	 1	0.002
				$\Sigma \uparrow P=1$

Tasks

- Find the number of probability peaks
- Find the locations of peaks
- Describe the shapes of peaks
- Track how the peaks change over time
- Track how the peaks change over different system settings
- Comparison
- ...

Data features

• Time: 2,000 ~ 20,000 time steps

• Spatial data: corresponding states

• Non-spatial data: probability values, copies of genes, etc.

Visual encodings

- Time: heat maps OR spaghetti plots (considered as ensembles)
- Spatial data: radar charts

Multiple radar charts

Selected radar charts with time

1D projection and half-radar charts

Spaghetti plots for time

