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ABSTRACT

The design, implementation, and testing of virtual en-
vironments is complicated by the concurrency and real-
time features of these systems. Therefore, the develop-
ment of formal methods for modeling and analysis of
virtual environments is highly desirable. In the past,
Petri-net models have led to good empirical results in
the automatic veri�cation of concurrent and real-time
systems. We applied a timed extension of Petri nets
to modeling and analysis of the CAVETM1 virtual envi-
ronment at the University of Illinois at Chicago. Here,
we report on our time Petri net model and on empirical
studies that we conducted with the Cabernet toolset
from Politecnico di Milano. Our experiments uncov-
ered a aw in the way a shared bu�er is used by CAVE
processes. Due to an erroneous synchronization on the
bu�er, di�erent CAVE walls can simultaneously display
images based on di�erent input information. We con-
clude from our empirical studies that Petri-net-based
tools can e�ectively support the development of reliable
virtual environments.
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1 INTRODUCTION

Virtual Reality (VR) systems are becoming increas-
ingly widespread. Projection-based systems, such as the
CAVE, consist of several walls that display computer-
generated images for the bene�t of a human viewer.
These images are drawn in real-time on the basis of the
viewer's perspective in the virtual world in such a way as
to create the impression of a real-life, three-dimensional
view of a given scene.

1CAVETM is a registered trademark of the Regents of the
University of Illinois.

Several features of VR systems complicate modeling,
analysis and testing of these systems. For instance,
VR systems usually consist of multiple hardware and
software components that operate asynchronously, such
as sensors, image computation and rendering processes,
and analog-to-digital converters. However, the output
of a VR system typically consists of video and audio
streams that must be output synchronously to create
the impression of a real scene to human eyes and ears.
Thus, the computations occurring in a VR system must
comply with real-time constraints in order for the sys-
tem to work convincingly. Moreover, the presence of
multiple asynchronous components introduces the pos-
sibility of concurrency errors, such as missed updates or
inconsistent changes to shared data. When these errors
occur, the output of the VR system is often compro-
mised, sometimes resulting in \simulation sickness" for
the unfortunate human viewer.

Given the high cost and the timing requirements of
VR systems, there is a need for automated tools that
can predict the performance of these systems before the
systems are deployed. To date, numerous techniques
have been de�ned for the automated analysis of general
concurrent and real-time systems [1, 4{11, 14, 16, 19, 22].
However, these techniques and tools have yet to be ap-
plied to modeling and analysis of VR systems.

Our goal here is to analyze a speci�c VR system,
the CAVE environment at the University of Illinois at
Chicago, using a timed extension of Petri nets for mod-
eling and analysis [12]. We selected a Petri-net-based
formalism for many reasons. First, Petri nets can cap-
ture quite naturally the main features of VR systems.
It is well known that Petri nets can model easily nonde-
terminism and parallel computation, two essential fea-
tures of concurrent systems, such as VR systems. In
addition, Petri nets can model easily synchronization of
asynchronous processes, which is commonplace in VR
systems. For instance, VR systems often carry out the
computation and the rendering of the images for multi-
ple walls as asynchronous processes. However, the pro-
cesses must be synchronized with each other (and, when
applicable, with processes producing audio streams) be-
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fore their output is displayed.

An additional advantage is that Petri nets can accom-
modate quite easily models at di�erent abstraction lev-
els. Although we have only considered high-level models
of the CAVE thus far, we plan to use Petri nets also for
�ner-grained analysis, such as automatic veri�cation of
CAVE application code. Other authors have shown that
Petri nets can be easily generated from high-level code
written, for instance, in the Ada language [5, 13, 24]. Fi-
nally, Petri nets have been studied extensively in the
past three decades, resulting in the de�nition of nu-
merous tools and techniques for analysis. In particular,
Petri nets are amenable both to formal veri�cation and
simulation techniques [5, 13].

To date, many extensions of Petri nets to the timed
domain have been de�ned (see, for instance, [15, 18, 23,
25]). These models di�er in terms of their expressive
power and their ability to support analysis. In gen-
eral, the more expressive notations are also more di�-
cult to analyze and vice versa. For our work we chose
Merlin and Faber's time Petri nets mostly because they
were the least expressive notation that could adequately
model the properties of interest of VR systems [18].
These nets associate a so-called �ring interval (i.e., a
delay bounded by two constants) with net transitions.

Our work on Petri-net-based analysis of the CAVE en-
vironment has led to two main results. First, we built
a time-Petri-net model of the CAVE environment. Sec-
ond, we applied the Cabernet toolset to the simulation
and automatic veri�cation of the net model [2]. Here
we report on the model we de�ned and on the results of
our simulations with the model.

Our experiments uncovered a aw in the way a shared
bu�er is used by CAVE processes. The bu�er is written
by a process producing sensor information about the
current position and orientation of the CAVE viewer.
Four additional processes use information from the
bu�er to compute the images to be displayed simultane-
ously on each of the CAVE walls. Due to an erroneous
synchronization on the bu�er, the four processes some-
times use inconsistent information (e.g., by missing an
update to the bu�er) about the position and the ori-
entation of the viewer. As a result, di�erent walls can
simultaneously display images based on di�erent sen-
sor information. This possibility was discovered concur-
rently but independently from us by another CAVE re-
searcher. Evidently, this aw could have been detected
before CAVE's code was written|and corrected more
easily|if tools similar to ours had been used during the
CAVE's design stages.

This paper is organized as follows. Section 2 summa-
rizes the CAVE environment. Section 3 introduces time
Petri nets. Our Petri net model of the CAVE is dis-

cussed in Section 4. We discuss our empirical results in
Section 5. Some conclusions and future research direc-
tions are discussed in Section 6.

2 THE CAVE ENVIRONMENT

The CAVE is a multi-person, room-sized, high-
resolution, 3D video and audio environment [12]. The
CAVE is a theater 10x10x9 feet, made up of three
rear-projection screens for walls and a down-projection
screen for the oor. Electrohome Marquis 8000 or 8500
projectors throw full-color workstation �elds (1024x768
stereo) at 96 Hz onto the screens, giving 3000 x 2000
linear pixel resolution to the surrounding composite im-
age. Computer-controlled audio provides a soni�cation
capability to multiple speakers. A viewer's head and
hand are tracked with Ascension tethered electromag-
netic sensors operating at a 96 Hz sampling frequency
for a dual sensor con�guration. The tracking system
has a valid operating range of 7.5 feet and a delay of
about 50{75 ms.

Stereo images are generated by Stereographics' LCD
stereo shutter glasses that are used to present the al-
ternating right and left eye images viewed by the sub-
ject. The correct perspective and stereo projections are
based on values returned by the position sensor attached
to the Stereographics shutter glasses. Two SGI Onyxes
with In�nite Reality (IR) Engines are used to create the
imagery that is projected onto the walls and oor.

The heart of the image generation is the In�nite Real-
ity Engines running on two SGI Onyx hosts with three
high-speed graphics pipelines each linked to an inde-
pendent R10,000 processor. The processors within each
Onyx host share a common memory space where vari-
ables for the generation of the scenes can be stored and
accessed by each processor; however, the two Onyx hosts
are connected through a high-speed communication net-
work. Each processor uses input data from the tracker
and information stored in a visual database to gener-
ate an image. The database stores a 3D representation
of the scene on display in the CAVE. Some processors
can be used to update visual scene variables while other
are used to generate database changes and communi-
cate with other computers over high-speed networks for
multi-system collaborative environments.

A typical CAVE application starts by initializing inter-
nal graphics and external projection and sensory hard-
ware. An initial scene is generated and displayed on all
walls of the CAVE. Next, the application begins reading
real-time data from the sensors attached to the viewer
moving about in the environment. These data are used
to change the generated look-at point and to interact
with objects in the scene. The images are either up-
dated at a �xed interval set by the program or run free.
In the free-running mode, there is no deadline for the



program to �nish computing an image. When this hap-
pens, the image is displayed. In the �xed-interval mode,
there is a strict timing loop whereby the program must
display the content of a suitable bu�er, whether the im-
age is complete or not, upon expiration of a deadline.
After the new image has been sent to the projectors,
the program returns to the point where it obtains new
input data from the sensors or other devices.

3 TIME PETRI NETS

A time Petri net is a 5-tuple N = (P; T; F;D;M0),
where P is a �nite set of places, T is a �nite set of
transitions, F is an arc set, D associates a static delay
interval � = [a; b] with each transition t 2 T , and M0

is an initial marking, that is, an initial assignment of
tokens (i.e., markers) to each place p 2 P . Given an
arc f from a place p (a transition t) to a transition t (a
place p), p is said to be an input (output) place for t,
and t is an output (input) transition for p. A static de-
lay is bounded by two numeric constants, a and b, with
0 � a < +1 and a � b � +1.

State changes are carried out by �ring �reable transi-
tions. A transition is said to be enabled when all its
input places have at least one token. A transition with
delay interval � = [a; b] is �reable if it is continuously
enabled for at least a, but no more than b, time units.
Thus, if transition t with delay interval � = [a; b] be-
comes enabled at time �0, then transition t must �re in
the time interval [�0 + a; �0 + b], unless it becomes dis-
abled by the removal of tokens from some input place
in the meantime. The static earliest �ring time of tran-
sition t is a; the static latest �ring time of t is b; the
dynamic earliest �ring time of t is �0 + a; the dynamic
latest �ring time of t is �0+b; the dynamic �ring interval
of t is [�0 + a; �0 + b].

A state of a time Petri net consists of a marking (i.e.,
an assignment of tokens to each place) and a vector of
dynamic �ring intervals for each enabled transition. The
initial net state is de�ned by the initial net marking,
time � = 0, and dynamic delays equal to the static
delays for all enabled transitions. When a transition t is
�red the net moves from a state x to a new state y. The
marking of y is obtained by removing a token from each
input place of t and adding a token to each output place
of t. The dynamic �ring delays of transitions enabled
in y are computed as follows. If a transition was not
enabled in x, its dynamic delay is equal to its static
delay. If a transition was enabled in x, its dynamic delay
in y is the di�erence between its dynamic delay in x and
�(t), the dynamic delay of the transition that �red. An
important property of time Petri nets is that their state
space (i.e., the set of states reachable from the initial
state) can be fully represented as a �nite graph [3].

4 PETRI NET MODEL OF THE CAVE

Our �rst objective was to build a Petri-net-based model
of the CAVE. This activity turned out to be more dif-
�cult than we had anticipated because there were no
documents describing in su�cient detail the interactions
among CAVE components and the e�ect of delays intro-
duced by the components on the overall CAVE behavior.
We did have access to some high-level descriptions of the
CAVE [12, 17, 20] and to operational speci�cations for
some of the components. We also conducted interviews
with CAVE developers when these descriptions proved
inadequate. The time Petri net that we de�ned is the
�rst formal model of the CAVE's operational and timing
behavior.

In brief, the CAVE consists of the following three main
subsystems. First, the tracker subsystem obtains input
data about the position and orientation of the CAVE
viewer. This subsystem also calibrates the data in or-
der to reduce noise in the data. The main subsystem
uses this data to compute the images to be displayed on
the four CAVE walls and renders (i.e., draws) the im-
ages. Finally, a monitor subsystem displays the images
on four screens. In this section, we �rst summarize the
behavior of each subsystem and then describe how the
subsystems are modeled in our time Petri net.

4.1 Cave subsystems

We will now provide a brief description of the functional
subsystems of the CAVE. We understand that this or-
ganization is fairly common among VR environments.

Tracker subsystem. This subsystem computes the
position and orientation of the head and wand of a
CAVE viewer. Measured data are sent to two SGI Onyx
hosts in the main subsystem, where the images to be dis-
played are computed. In brief, the tracker transmits a
pulsed direct current DC magnetic �eld that is simulta-
neously measured by all the receivers in the Ascension
sensors. These receivers are located on the viewer's eye-
glasses and wand; they provide input data about the
position and orientation of the viewer's head and wand.
The signal read by the antenna located on the viewer's
eyeglasses provides six readings, corresponding to the
six degrees of freedom of the viewer's head. This infor-
mation is important because it allows the VR system
to compute the viewer's perspective on the scene being
displayed.

An additional antenna located on the wand tracks the
wand's position and orientation. This antenna works in
a similar way to the antenna on the viewer's head. In
addition, the wand has three buttons and a pressure sen-
sitive joystick. The joystick is a two-dimensional device
that allows the viewer to enter navigation information.



The buttons allow the viewer to set modes and select
options.

The tracking sample is synchronized with the leading
edge of the monitor signal coming from the display sub-
system. Once a tracker sample is obtained, it is cali-
brated by electronic �lters that reduce the noise present
in the input data. The tracker communicates with the
rest of the VR system through a 33.6 Kbaud serial line
connected to an IBM PC. The PC, which also takes in-
put from the joystick and buttons, is connected to the
two Onyx hosts through a high-speed �ber-optic net-
work link.

Main subsystem. This subsystem creates images to
be displayed on the walls of the CAVE. The created
images are stored in a bu�er shared with the display
subsystem. Image creation is accomplished in two steps.
First, an image computation process de�nes the geomet-
ric features of each image to be displayed. The main
purpose of this process is to identify the objects that
will appear in each image. Second, an image render-
ing process de�nes the full visual representation of the
image and stores it in the shared bu�er. A rendering
process running on one of the Onyx hosts reads the data
from the tracker and copies it to the internal memory
shared by the Onyx processors. Given that there are
four walls in the CAVE and each SGI-Onyx has only
3 graphics pipelines, two Onyxes are required to ren-
der the four walls. After reading tracker data, Onyx 1
forks a master process. The master process �rst forks
a network process to communicate with Onyx 2. This
system computes and renders the image for the bottom
wall of the CAVE. Next, the master process forks two
additional processes on Onyx 1 that compute and ren-
der the left and right walls. Finally, the master process
proceeds to compute and render the front wall.

The CAVE implementation uses double bu�ering to
avoid interference between the main subsystem and the
display subsystem. The bu�er between these subsys-
tems consists of two components. While the main sub-
system is writing into one bu�er component, the dis-
play subsystem reads from the other component and
vice versa.

The processes rendering the four images must be syn-
chronized with each other before the images are dis-
played on the CAVE walls. Whenever a process �nishes
an image, it sends a message to the master process and
suspends itself while waiting for a response from the
master process. Upon completion of all four images, the
master process instructs the other processes to swap the
double bu�er; bu�er swapping takes place at the next
monitor cycle.

Image displaying subsystem This subsystem con-
sists of a large screen, high resolution, passive (or active)
stereo, projection display well-suited for large audiences.
The swapping between the front and back bu�ers is syn-
chronized with the leading edge of the monitor which
has a frequency of 48 Hz. When all the four walls are
ready, swapping takes place at the next edge of the mon-
itor signal. If any of the walls is not ready to swap, the
monitor signal is ignored and a new monitor signal is
issued at the next monitor cycle (i.e., after 20.8 ms).
Once the bu�ers are swapped the four images are dis-
played on the CAVE walls.

4.2 Time Petri net model

Figure 1 shows a time Petri net model of the CAVE vir-
tual environment. This model was entered into Caber-
net using Cabernet's graphical editor. Subsequently, we
ran numerous experiments on the Petri net, which are
discussed in the next section. Except when stated oth-
erwise, assume that transitions appearing in the Petri
net have either zero or negligible delays (i.e., because
they model synchronization among CAVE processes or
short process computations).

The Petri net in Figure 1 models all the subsystems of
the CAVE as well as the interactions among the subsys-
tems. This net has 48 places and 35 transitions.

Places Head, Wand, and Button Input represent input
sources from a CAVE viewer. These places are ini-
tally marked, meaning that input data is available when
an experiment is started. Transition Head Wand Input

�res whenever Head and Wand are marked. The
Tracker Obtain Data transition has an interval delay of
[10.4, 10.4]. Thus, this transition �res every 10.4 ms in
order to model a 96 Hz Monitor signal. Thus, a token
appearing in Tracker Got Data signi�es that the data
has been sampled from the tracker sensors.

Transition Trans Delay represents the sending of data
from the tracker to the IBM PC. When transi-
tion Trans Delay �res, a token is deposited in place
PC Receive, meaning that the PC has received tracker
data. Transitions Conversion and Calibration capture
computations performed by the IBM PC. Transition
Write enabled models synchronization on the line con-
necting the IBM PC to the SGI Onyx hosts. When place
Read Write Lock is marked, transition Write enabled

can �re, meaning that the PC can send data to the
Onyx hosts. When this happens, tokens are deposited
in places Rendering Available and Data Ready. Tokens
in places Data Ready and Used Data (which is initially
marked) enable transition Replace Old Data. The �ring
of this transition deposits a token in places New Data

(meaning that new data are available for drawing a new
set of images) and Read Write Lock (meaning that the
lock on high-speed communication link between the PC



and the Onyx hosts has been released).

Now transition Use New Data is enabled. When
this transition �res, a token is deposited in place
Tracker Data For Rendering, signifying that the com-
putation of the images can actually start. The �ring
of transition Use Old Data signi�es that the tracker fell
behind the image computation processes. In this case,
old tracker data is reused to perform a new rendering. In
the net, this happens when place Used Data is marked
and place Data Ready is not marked. As with transi-
tion Use New Data, �ring transition Use Old Data re-
moves the token from place Rendering Available and de-
posits a token into place Tracker Data For Rendering.
When this place is marked, transition Fork Process

�res and deposits a token in places Master Process1,
Onyx1 Barrier and Forked Network Process.

Place Master Process1 represents the starting point of
the master process. This process spawns two addi-
tional processes, which we model by �ring two ad-
ditional transitions labeled Fork Process. The mas-
ter process and the two spawned processes proceed
to compute and render images for the front wall,
right wall, and left wall of the CAVE. These com-
putations are captured by the transitions labeled
Comp Rend Front Wall, Comp Rend Right Wall, and
Comp Rend Left Wall.

When transition Comp Rend Front Wall is �red, a to-
ken is deposited in places Swp Rdy 1 andWait Swap 1.
Place Swp Rdy 1 is used for synchronization among
the processes computing the four walls. Place
Wait Swap 1 is used for synchronization between the
display subsystem and the main subsystem. The
behavior of transitions Comp Rend Right Wall and
Comp Rend Left Wall is similar to the case of transi-
tion Comp Rend Front Wall.

The image to be displayed on the bottom wall is
computed on the second Onyx host in parallel with
the other three walls. Place Rendering 4th Available

captures a mutual-exclusion lock on the network be-
tween the two Onyx hosts. When this place, which
is initially marked, and place Forked Network Process

are marked, transition Shared Mem Write Enabled is
�red, meaning that data is transferred from Onyx 1
to Onyx 2. At this point, Onyx 2 computes and ren-
ders the bottom wall, which is captured by the �ring
of transition Comp Render Bottom Wall. When this
happens, tokens are deposited in places Swp Rdy4 and
Wait Swap 4. The token in place Swp Rdy4 enables
transition Onyx Barrier reached whose �ring adds a to-
ken to place Ready For Swap.

Transition Swap Bu�er captures the swapping of the
two components in the double bu�er between the main
subsystem and the display subsystem. This transi-

tion is enabled when places Swp Rdy 1, Swp Rdy 2,
Swp Rdy 3, and Ready For Swap are marked, signifying
that all four images have been computed. If all these
places are marked, transition Swap Bu�er is �red as
soon as a token appears in place Mon Swap. This place
captures the monitor signal that synchronizes bu�er
swapping. If, however, any of the input places is not
marked when a token appears in Mon Swap, the token
in placeMon Swap is removed by the �ring of transition
Mon Sync Sink. In this case, the token will reappear in
Mon Swap after 20.8 ms.

The �ring of transition Swap Bu�er adds a to-
ken to places Rendering Available and Render-

ing 4th Available. A token in the �rst of the two places
signi�es that the main subsystem can start the compu-
tation of a new set of images. A token in the other place
signi�es that the communication network between the
Onyx hosts is available again.

Transition Swap Bu�er also adds tokens to places
Swap1 through Swap4. These places, along with places
Wait Swap1 through Wait Swap4 enable the display
processes. The displaying actions are modeled by four
sets of transitions, one for each of the display devices
used by the CAVE. In particular, when transition Swap-
Comm1 �res the front wall is able to read from the
bu�er. Transition Swap FW Complete captures the ac-
tual reading. Transition Display FW Complete models
the displaying on the walls. This transition has a de-
lay interval of [20.8, 20.8] in order to capture the time
required by the walls to display the images. The behav-
ior of the transitions modeling the other three walls is
similar.

When the images have been displayed on all four walls,
transition Display4WallsComplete is �red, which adds
a token to place Monitor Swap. Note that the total
amount of time required to return a token to this place
is 20.8 ms.

We observe that the static delay of most transitions in
our Petri net is a point, rather than an interval. A tran-
sition has a point delay when its earliest and latest static
�ring times are identical. There are several reasons for
this fact. Some transitions model computations that re-
quire a negligible amount of time. We de�ned the static
delay of these transitions to be [0, 0], meaning that the
transition must always �re as soon as it becomes en-
abled unless it is disabled by another �reable transition.
Other transitions model synchronous events, such as the
monitor clock at 48 Hz or the tracker sampling period at
96 Hz. For instance, we capture the beginning of each
monitor cycle by �ring a transition with a delay interval
of [20.8, 20.8], meaning that a new cycle begins exactly
every 20.8 ms.



5 EMPIRICAL RESULTS

We conducted numerous experiments with the Caber-
net toolset for the analysis of Petri-net models [22]. Our
experiments used either simulation or automatic veri�-
cation techniques on our model of the CAVE. Cabernet
performs veri�cation by applying standard reachability
analysis techniques. Starting from the initial net state,
Cabernet iteratively explores states reached by �ring
�reable transitions. However, whenever a new state is
found, Cabernet does not check whether the state has
been visited previously. For this reason, Cabernet can
only verify so-called bounded safety and bounded live-

ness properties. These properties hold within a time
interval starting with the initial net state [22].

We used automatic veri�cation to establish certain
bounded safety properties of our net models. For in-
stance, we checked that deadlock cannot occur within
40 ms from the beginning of an experiment. Deadlock
is possible whenever the state space contains a non�-
nal state without successors. This experiment took less
than two hours of CPU time on a Sun Sparcstation IPC
with 24 MBytes of memory. However, we were unable to
use the veri�cation capabilities of Cabernet for experi-
ments whose duration was greater than 40 ms because of
the state explosion problem. In the sequel, we summa-
rize relevant simulation experiments with our Petri-net
model.

In general, our simulation experiments di�er from each
other in the way we associate delay intervals with tran-
sitions appearing in our Petri-net model. The �rst ex-
periment that we discuss is the simulation of the normal
behavior of the CAVE. The goal of this experiment is
to de�ne a baseline for the timing of CAVE events. The
second and third experiments are aimed at observing the
e�ects of delays on the arrival of head data on CAVE
behavior. The fourth, �fth, and sixth experiments im-
pose delays on the processes that compute and render
images. In practise, such delays can occur when com-
plex images (i.e., images containing many objects) must
be drawn. The goal of the seventh experiment is to es-
tablish absence of starvation in the CAVE. Starvation is
an erroneous condition in which a process cannot make
progress because it lacks a required resource, although
the resource never becomes permanently unavailable.

All experiments reported below were run on our Sun
Sparcstation IPC with 24 MBytes of memory.

5.1 Normal Behavior

This experiment is aimed at observing normal (i.e., cor-
rect) CAVE behavior. Relevant transition delays that
we used for this experiment are shown in Table 1. The
delay on the arrival of tracker data reects the 96 Hz
frequency of the tracking devices. The interval delay on

transition Trans Delay models transmission of 224 bits
over a 33.6 KBaud serial line between the tracker and
the IBM PC. The 224 bits consist of 12 16-bit words giv-
ing the position and orientation of the viewer's head and
wand. Two additional 16-bit words start and end the
transmission of information. The delays on the transi-
tions corresponding to the image computation processes
were set to a small amount (e.g., 1 ms), in order to
model a simple CAVE application. Finally, the delay
on the monitor transition is set to 20.8 ms to capture
the standard delay of all display devices.

Transition name Time intervals in ms.

Tracker Obtain Data [10.4, 10.4]
Trans Delay [6.7, 6.7]
Comp Render Front Wall [1, 1]
Comp Render Right Wall [1, 1]
Comp Render Left Wall [1, 1]
Comp Render Bottom Wall [1, 1]
Display4WallsComplete [20.8, 20.8]

Table 1: Time intervals of key transitions.

The timing of relevant events is shown in Table 2. The
computation of all images is completed at 19.4 ms. This
is after tracker data is sampled, the sampling is synchro-
nized with the Monitor signal, the sampling is sent to
the IBM PC for calibration, and the images are com-
puted by the Onyx hosts. Because these activities are
completed before the end of the �rst monitor cycle at
20.8 ms, the images are displayed, as expected, upon
completion of the second monitor cycle (i.e., at 41.6 ms).

Transition name Firing time in ms.

Comp Render Front Wall 19.4
Comp Render Right Wall 19.4
Comp Render Left Wall 19.3
Comp Render Bottom Wall 18.3
Display4WallsComplete 41.6

Table 2: Transition �ring time for the four walls.

5.2 Arrival of head data with a delay of 5 ms

In the �rst experiment the data is immediately avail-
able at time zero. In the second experiment, we modify
the model to make head data arrive at time 5 ms. Ta-
ble 3 shows that the drawings on all the walls are again
completed by time 20.8 ms, despite the additional de-
lay. This is so because head data must be synchronized
in the tracker with a Monitor signal at time 10.4 ms.
Thus, the delay that we introduce is absorbed by the
tracker subsystem before the main subsystem receives
the data. Again, the images are displayed on the four
walls at time 41.6 ms.



Transition name Firing time in ms.

Comp Render Front Wall 19.4
Comp Render Right Wall 19.4
Comp Render Left Wall 19.3
Comp Render Bottom Wall 18.4
Display4WallsComplete 41.6

Table 3: Transition �ring time for the four walls.

5.3 Arrival of head data with a delay of 15 ms

For this experiment we further increase the delay of the
head data to 15 ms. Our goal is to see how a delay
of more than 10.4 ms (i.e., the sampling period of the
monitor signal) a�ects the displaying of images. The
increased delay causes Head and Wand data to be read
at time 20.8 ms, rather than 10.4 ms. In this case,
bu�ers are swapped at time 41.6 ms and the four images
are displayed 62.4 ms after the start of the experiment
(see Table 4).

Transition name Firing time in ms.

Comp Render Front Wall 29.8
Comp Render Right Wall 29.8
Comp Render Left Wall 29.7
Comp Render Bottom Wall 28.8
Display4WallsComplete 62.4

Table 4: Transition �ring time for the four walls.

5.4 Computation of front wall in 5 ms

In this experiment we increase the time to draw the
front wall from 1 ms to 5 ms by changing the interval
delay of transition Comp Render Front Wall from [1, 1]
to [5, 5]. Here we are working on the assumption that
the image on the front wall is far more graphics intensive
than the images on the other walls, resulting in a long
computation time for the front wall. Data at the head
and wand is assumed to be available at the start of the
simulation, similar to the �rst experiment.

In this case, the left, right, and bottom walls must wait
for the front wall to �nish its computation. From Ta-
ble 5 we observe that the three walls complete their
drawing by time 20.8 ms; however, the front wall fails
to do so, which causes all the walls to miss a monitor
cycle. From time 22.9 ms to time 41.6 ms the processes
computing all walls are idle while they wait for synchro-
nization with the next monitor cycle. The interesting
result of this experiment is that a relatively small in-
crease in the computation of the front wall is magni�ed
to a delay of 20.8 ms on the displaying of the images.

Transition name Firing time in ms.

Comp Render Front Wall 22.9
Comp Render Right Wall 19.0
Comp Render Left Wall 19.0
Comp Render Bottom Wall 18.0
Display4WallsComplete 62.4

Table 5: Transition �ring time for the four walls.

5.5 Computation of front and right walls in 5 ms

and 10 ms

This experiment is similar to the previous one, except
for the time to compute the right wall being increased
to 10 ms. This is achieved by changing the delay on
transition Comp Rend Right Wall to [10, 10]. Table 6
shows that the added delay on the righ T igh�
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transitions are �red within 1 ms, except for
Comp Render Front Wall, which �res at 42.7 ms. How-
ever, at time 20.8 ms the next tracker input is sampled;
this input reaches the image computation processes af-
ter a delay of 6.77 ms, approximately at time 28 ms.
In our Petri net, this phenomenon is modeled by tokens
appearing again in the input places of the four image
computation transitions at time 28 ms. Thus, all walls
begin computing a new image except for the front wall,
which is still working on the old image, as evidenced by
multiple tokens accumulating in place Master Process3.
At time 62.4 ms the next monitor signal arrives, as sig-
ni�ed by the appearance of a token in place Mon Swap.
At this time, the left, right and bottom wall have pro-
cessed the �rst and third tracker samples; however, the
front wall has only processed the �rst sample.

In this case, the frame drawn by the front wall lags
the frame drawn by the other three walls, which can
result in simulation sickness on the part of the CAVE
viewer. This phenomenon was con�rmed by a CAVE
developer, who discovered the anomaly independently
and concurrently with us [21]. At the time of this writ-
ing, the anomaly has been corrected by introducing an
additional synchronization between the tracker subsys-
tem and the main subsystem.

We tried to detect this error using the automatic veri-
�cation capabilities of Cabernet. However, this exper-
iment requires that all states reachable within 62.4 ms
from the beginning of the experiment be explored. The
state explosion problem prevented Cabernet from com-
pleting this experiment. We discontinued our run after
three hours of CPU time on our Sun Sparcstation IPC.

Transition name Firing time in ms.

Comp Render Front Wall 42.7
Comp Render Right Wall 19.7
Comp Render Left Wall 18.7
Comp Render Bottom Wall 17.7
Display4WallsComplete 83.2

Table 7: Transition �ring time for the four walls.

5.7 Absence of starvation on front wall

For this experiment we used a predicate-checking capa-
bility of the Cabernet toolset. In particular, we checked
whether the computation of the front wall must be com-
pleted before time 20.8 ms under normal operating con-
ditions. Thus, we used the same Petri net as for the �rst
experiment. In this case, Cabernet returns the value
true, indicating that we can guarantee the computation
of the front wall to be completed within 20.8 ms. The
analyzer generates the reachability graph and does a
graph traversal in order to determine if this assertion is
true or not.

6 CONCLUSIONS AND FUTURE WORK

Our preliminary results indicate that Petri-net-based
techniques can e�ectively support the design and valida-
tion of virtual reality environments. To our knowledge,
ours is the �rst comprehensive model of a VR environ-
ment. We are also strongly encouraged by our ability
to �nd a aw in the CAVE version that we studied.

We observe that the synchronous aspects of the CAVE's
behavior have a signi�cant e�ect on our Petri-net model.
As we noted earlier, most of our net transitions have
point, rather than delay, intervals. We suspect that
synchronous aspects will play less of a role in models
at lower levels of abstraction than our current model.
However, the predominance of transitions with point de-
lays suggests that we should experiment also with less
expressive models than Merlin and Faber's time Petri
nets. In general, less expressive models are more con-
ducive to automated veri�cation and vice versa.

At present, we are pursuing several additional research
directions. First, we wish to \hide" Petri-net mod-
els from developers of VR applications. In particular,
we are in the process of developing a front-end system
with an easy-to-use graphical user interface. Developers
would use this interface to enter descriptions of virtual
environments. Subsequent273 4nets.
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Figure 1: Time Petri net model of the CAVE virtual environment.


