
XXX-X-XXXX-XXXX-X/XX/$XX.00 ©2022 IEEE

Composable Infrastructures for an Academic
Research Environment: Lessons Learned

Lance Long
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

llong4@uic.edu

Timothy Bargo
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

tbargo2@uic.edu

Luc Renambot
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

renambot@uic.edu

Maxine Brown
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

maxine@uic.edu

Andrew E. Johnson
Electronic Visualization
Lab, Computer Science
Univ Illinois Chicago
Chicago, Illinois, USA

ajohnson@uic.edu

Abstract—Composable infrastructure holds the promise of
accelerating the pace of academic research and discovery by
enabling researchers to tailor the resources of a machine (e.g.,
GPUs, storage, NICs), on-demand, to address application needs.
We were first introduced to composable infrastructure in 2018,
and at the same time, there was growing demand among our
College of Engineering faculty for GPU systems for data science,
artificial intelligence / machine learning / deep learning, and
visualization. Many purchased their own individual desktop or
deskside systems, a few pursued more costly cloud and HPC
solutions, and others looked to the College or campus computer
center for GPU resources which, at the time, were scarce. After
surveying the diverse needs of our faculty and studying product
offerings by a few nascent startups in the composable
infrastructure sector, we applied for and received a grant from the
National Science Foundation in November 2019 to purchase a
mid-scale system, configured to our specifications, for use by
faculty and students for research and research training.

This paper describes our composable infrastructure solution
and implementation for our academic community. Given how
modern workflows are progressively moving to containers and
cloud frameworks (using Kubernetes) and to programming
notebooks (primarily Jupyter), both for ease of use and for
ensuring reproducible experiments, we initially adapted these
tools for our system. We have since made it simpler to use our
system, and now provide our users with a public facing
JupyterHub server. We also added an expansion chassis to our
system to enable composable co-location, which is a shared central
architecture in which our researchers can insert and integrate
specialized resources (GPUs, accelerators, networking cards, etc.)
needed for their research.

In February 2020, installation of our system was finalized and
made operational and we began providing access to faculty in the
College of Engineering. Now, two years later, it is used by over 40
faculty and students plus some external collaborators for research
and research training. Their use cases and experiences are briefly
described in this paper. Composable infrastructure has proven to
be a useful computational system for workload variability, uneven
applications, and modern workflows in academic environments.

Keywords—composable infrastructure, deep learning,
visualization, resource management, workload management, user
workflow, composable co-location, infrastructure as code

I. INTRODUCTION
Upon being introduced to composable infrastructure [13] in

2018, we saw tremendous potential to College of Engineering
faculty who are pursuing fundamental science and engineering

research and research training in deep learning (data mining and
data analytics, computer vision, natural language processing,
artificial intelligence, machine learning), visualization
(simulation, rendering, visual analytics, video streaming, image
processing), and a combination of deep learning and
visualization (e.g., when data is so large that it cannot be easily
visualized, then deep learning is used to extract features of
interest to be visualized).

There was growing demand among faculty for GPU
systems; many purchased their own individual desktop or
deskside systems that required power, maintenance and support,
a few pursued more costly cloud and HPC solutions, and others
looked to the College or campus computer center for GPU
resources which, at the time, were scarce. We recognized that
composable infrastructure’s scalability and agility would
provide benefits for on-premise computation over traditional
cloud platforms and clusters that are rigid, overprovisioned and
expensive. It would address the needs of our academic
researchers with a sandboxed environment to discover and
assess new techniques and approaches to solving problems
while simultaneously providing secure environments for
sensitive research.

Major cyberinfrastructure (CI) projects realize the benefit
and expressive power of Infrastructure as Code, where the user
(administrator, CI researcher or data scientist) describes the
required hardware and configuration, not through a portal and
series of panels (web-based gateways) but through code and
APIs running inside a programming notebook (primarily in
Python within Jupyter). Projects such as Nautilus (PRP/UCSD)
[1], Chameleon [2] and FABRIC [3] are doing this at different
levels. Nautilus is a hypercluster that runs Big Data applications
supporting Jupyter Notebooks. Chameleon provides bare-metal
nodes that can be provisioned and configured through Python to
build reproducible experiments. Similarly, FABRIC lets a user
build virtual machines with specific requirements (in terms of
SSD, NIC and GPU) that are passed through from the host
machine to a virtual machine.

In 2019, after surveying the diverse needs of our faculty and
studying product offerings by a few nascent startups in the
composable infrastructure sector, we applied for and received a
grant from the National Science Foundation to purchase a mid-
scale system, configured to our specifications, for use by faculty
and students for research and research training. We purchased a
system that we named COMPaaS DLV – COMposable Platform
as a Service Instrument for Deep Learning & Visualization [15].
It was delivered in November 2019 and access was provided to

COMPaaS DLV is funded by NSF award #1828265 to the University of
Illinois Chicago.

?;0/=,A#*'#[)(-/;-A#5656"#H9&#A);-:#=;,)-8#*,#*:#'&9#/:).#(A ^6#
-):);-0B# ?;0/=,A# ;'.# :,/.)',:# *'# ?&/-# >&==)+)# &?# @'+*'))-*'+#
.)%;-,<)',:#;'.#:&<))G,)-';=#0&==;(&-;,&-:"

!!" >_RJQQY T.2R*-+2-1.+
>&<%&:;(=)# *'?-;:,-/0,/-)# *:# '&,# :,;'.;-.*F).K# .*??)-)',#

0&<%;'*):# C)"+"8# `*M*.8# I*+;!_8# NJ@8# [/'+*(=)8#),0"E# /:)#
.*??)-)',# ?;(-*0# ,)0B'&=&+*):# ;'.# B;D)# .*??)-)',# <&.)=:# &?#
0&<%&:;(=)"#!'#5627Q562]8#,B)-)#9)-)#D)-A#?)9#0&<%;'*):#,&#
0B&&:)#?-&<8#(/,#&/-#:&=/,*&'#9;:#+/*.).#(A#,B)#.*D)-:)#')).:#
&?# .;,;Q*',)':*D)# :0*)',*?*0# -):);-0B# ;'.# -):);-0B# ,-;*'*'+# *'#
;0;.)<*;8# '&,# ,B)# ')).:# &?# 0&<<)-0*;=# 0&<%;'*):# &-# .;,;#
0)',)-:8# ;'.# ?=)G*(*=*,A# 9;:# L)A"# O)# 9)',# 9*,B# ,B)# `*M*.#
:&=/,*&'8#.):0-*().#B)-)"

aT:# ,-;.*,*&';=# 0&<%/,*'+#)'D*-&'<)',:# ?;=,)-# /'.)-# ,B)#
.)<;'.:#&?#T!Q0)',-*08#.A';<*0#;%%=*0;,*&':#.-*D*'+#)0&'&<*0#
)G%;':*&'8# `*M*.P:# *''&D;,*&'# *'# 0&<%&:;(=)# *'?-;:,-/0,/-)#
%-&D*.):#;#0&<%-)B)':*D)#%=;,?&-<#,&#&%,*<*F)#;'.#)??*0*)',=A#
;-0B*,)0,#.;,;#0)',)-:#,&#;..-)::#,B)#)D&=D*'+#-)M/*-)<)',:#&?#;#
.;,;Q-*0B# 9&-=.8b# :;*.# Y/<*,# J/-*8# `*M*.# >@_# 1^4"# `*M*.P:#
0&<%&:;(=)# *'?-;:,-/0,/-)# :&=/,*&'# :/%%&-,:# </=,*Q,)';',#
&-0B):,-;,*&':# CcR8# 0&',;*')-:E8# (;-)Q<),;=8# ;';=A,*0:8# ;'.#
T-,*?*0*;=# !',)==*+)'0)XR;0B*')# `);-'*'+# CT!XR`E8# %-&D*.*'+#
,B)# ?=)G*(*=*,A# ,&# .A';<*0;==A# ;.S/:,# -)M/*-)<)',:# ;'.# :0;=)#
C:,&-;+)8# IJ$:# ;'.# &,B)-# ;00)=)-;,&-:8# ;'.# 266I(%:# ;'.
:%)0*;=,A#V!>:E"#

>_RJ;;Y -)%=;0):#;# ,-;.*,*&';=#/'*?*).#)'D*-&'<)',#9*,B#
;+*=)# C<&./=;-#;'.#)G,)':*(=)E#%&&=:#&?#>J$:8#IJ$:8#:,&-;+)#
;'.# '),9&-L*'+8# *',)-0&'')0,).# 9*,B# ;# B*+BQ(;'.9*.,B#
0&'?*+/-;(=)# ?;(-*0# CJ>!Q)G%-)::8# &-# J>!)E"# !,# -)./0):# ,B)#
)::)'0)# &?# ;# :)-D)-# ,&# (;-)Q<),;=#)=)<)',:# d 0&<%/,)8#IJ$8#
:,&-;+)#;'.#'),9&-L*'+#d ,B;,#?&-<#;#?=/*.#%&&=#&?#-):&/-0):#,B;,#
0;'# ()# /'*M/)=A# 0&'?*+/-).# ;'.# ;%%-&%-*;,)=A# :*F).# ,&# -/'#
</=,*%=)#;%%=*0;,*&':#:*</=,;')&/:=A"

HB)#>_RJ;;Y#:A:,)<#*:e

• E+2F(G* -()H+'()I >&<%/,)-# 0&<%&')',:# ;-)# ,-);,).# ;:#
%&&=:# &?# -):&/-0):"# @;0B# ;%%=*0;,*&'# .)?*'):# 9B;,#
-):&/-0):# *,# ')).:# ;'.# ,B)# *'?-;:,-/0,/-)# 0&<%&:):8# &-#
0&<(*'):8# ,B)<# &'# ,B)# ?=A"# \;-)Q<),;=# :)-D)-:# ;-)#
%-&D*:*&').#f-*+B,#:*F).P#;'.#-):*F).#;:#')).)."#

• ;!&(&'()I T:# <&-)# *'?-;:,-/0,/-)# *:# ;..).8# *,# *:# ;/,&Q
',)+-;,).#9,B#)G*:,*'+#*'?-;:,-/0,/-)#;'.#()0&<):#%;-,#
&?# ,B)# %&&=# &?# 0;%;0*,A8# :/%%&-,*'+# 0&<%&:;(=)# 0&Q
=&0;,*&'#&?#;0;.)<*0#-):&/-0):"

• E+2F*/F."02F$0/I !,:#0&<%&')',:#;-)#*',)-0&'')0,).#9*,B#
;# B*+BQ:%)).# *',)-';=# ?;(-*0"# *+# Z;,;# <&D):# M/*0L=A#
;<&'+#>J$8#IJ$8#'),9&-L*'+#;'.#:,&-;+)#;,#&%,*</<#
:%)).#9*,B#=*,,=)#,&#'&#(&,,=)')0L:"

>_RJ;;Y#C[*+/-)#2E#9;:#.):*+').#;'.#(/*=,#*'#0&==;(&-;,*&'#
9*,B#`*M*.#;'.#Z)==#C9B&#%-&D*.).#,B)#0&<%/,)#'&.):#;'.#,&%Q
&?Q-;0L#'),9&-L#<;';+)<)',#:9*,0B):E"#!,#0&':*:,:#&?#,9&#^5$#
-;0L:#9*,B#;#,&,;=#&?#5^#0&<%/,)#'&.):#CZ)==#:)-D)-:E#9*,B#J>!)#
N\T#*',)-?;0):#0&'')0,).#,&#;#J>!)#*'?-;:,-/0,/-)#C:9*,0B):#;'.#
)'0=&:/-):E"#HB)#)'0=&:/-):#B&:,#J>!)#0&<%&:;(=)#.)D*0):e#g^#
B*+BQ)'.# VD*.*;# IJ$:# C35G# c266# ;'.# 35G# H^E8# 2h3H\# &?#
VcR)#YYZ:8#gH\#&?#'&'D&=;,*=)#!',)=#_%,;')#<)<&-A8#;'.#2g#

266I(%:# '),9&-L# *',)-?;0):" HB)# ,9&# 0=;::):# &?# IJ$:# 9)-)#
:)=)0,).#;:#;#(;=;'0)#(),9))'#0&:,#;'.#;%%=*0;,*&'#-)M/*-)<)',:e#
=;-+)#IJ$:#Cc266E#;-)#/:).#?&-#,-;*'*'+#9&-L=&;.:#;'.#:<;==)-#
IJ$:# CH^E# ;-)# <&:,=A# /:).# ?&-# *'?)-)'0)# ,;:L:# ;'.# ?&-#
.)D)=&%<)',# ;'.# ,):,*'+"#@;0B# -;0L# *:# ;# :)%;-;,)# 0&<%&:;(=)#
'?-;:,-/0,/-)#0&'::,*'+#&?#</=,*%=)#).+)#J>!)#?;(-*0#:9*,0B):#
*',)-0&'')0,).# ,&# ;# J>!)# ?;(-*0# <;';+)<)',# :9*,0B"# HB)#
)'0=&:/-):#B&:,*'+#,B)#.)D*0):#;=&'+#9*,B#,B)#0&<%/,)#'&.):#;-)#
0&'')0,).#,&#,B)#).+)#:9*,0B):"

B9P%'F% 2/34556'R5D>C5D?'.5OS:

!!!" W+6/1.2+'RQ,QT+3+,-

>_RJ;;Y# 0;<)#9*,B# `*M*.P:# -):&/-0)#<;';+)<)',# =;A)-#
,B;,# 0&':*:,).# &?# ;# %-&%-*),;-A# %&*',Q;'.Q0=*0L# +-;%B*0;=# /:)-#
',)-?;0)#CI$!E#;'.#W@YH#TJ!#C[+/-)#5E"#T#W@YH#TJ!#C;=:&#
L'&9'# ;:# W@YH?/=# TJ!E# *:# ;'# ;%%=*0;,*&'# %-&+-;<<*'+#
',)-?;0)#,B;,#0&'?&-<:#,&#,B)#0&':,-;',:#&?#W@YH#;-0B*,)0,/-;=#
:,A=)# ;'.# ;==&9:# ?&-# *',)-;0,*&'# 9*,B# 9)(# :)-D*0):"# HB):)#
:)-D*0):#)';(=)# ;'# *'?-;:,-/0,/-)#)'+*'))-# /:*'+# ,B)# I$!# ,&#
0&<(*')# J>!)Q0&'')0,).# -):&/-0):# ?-&<# ;'# ;D;*=;(=)# %&&=8#
0&'?*+/-)#,B)#J>!)#?;(-*0#:9*,0B8#;'.#0&'')0,#,B)#0&<%&:;(=)#
)=)<)',:"#OB*=)# ,B*:# ;%%-&;0B#<;*',;*':# :A:,)<# :)0/-*,A8# ,B)#
/:)-#*',)-?;0)#*:#,*<)#0&':/<*'+#,&#/:)#;'.#.*??*0/=,#,&#.)%=&A#,&#
&/-#)'.#/:)-:#d .;,;#:0*)',*:,:#;'.#0&<%/,)-#:0*)'0)#-):);-0B)-:#
d 9B&#=;0L#L'&9=).+)#&?#,B)#/'.)-=A*'+#B;-.9;-)"#

Fig. 2. Composable Infrastructure (Liqid)

Given that science workflows can be quite diverse, it was our
goal to implement a solution to enable our users to dynamically
reconfigure, on demand, their own application-specific machine
resources. To ensure adoption, we wanted to seamlessly
integrate our solution with their scientific workflows. Modern
workflows are progressively moving to containers and cloud
frameworks (using Kubernetes) and to programming notebooks
(primarily Jupyter), both for ease of use and for ensuring
reproducible experiments. We succeeded in reducing the
complexity and making operations more manageable by using
Jupyter Notebooks to manage infrastructure, applications and
visualizations. Recently, we expanded our system with a public-
facing JupyterHub server providing all users with the ability to
enter through a Jupyter instance. It will soon become the only
way to access the system; i.e., users will not use external
terminal access with ssh.

Our solution entailed our development of a management
layer that abstracts Liqid’s REST API [16]. This higher-level
layer provides Python support for the composition and
management of pool resources. Once a machine is composed
with the specified resources, we use MaaS.io (Metal as a
Service) [6] to provision, commission, and deploy servers, either
as bare-metal instances (custom OS images) or as container
environments (using Kubernetes). MaaS.io is used for node
management and operating system deployment. Ubuntu and
CentOS distributions are provided with custom GRUB options
to hot-plug composable elements within a running OS. Hot-plug
capabilities in modern systems enable system engineers to
reconfigure the capabilities of a machine (GPUs, storage, NICs),
on-demand, from application specifications. Dell, working with
Liqid, provides BIOS integration to facilitate these features.
Dynamically, we can programmatically unplug components
from one compute node (as long as the device is not in use) and
plug it into another compute node using low-level fabric APIs
(reconfiguration using PCIe switches) to achieve a Software
Defined Infrastructure.

IV. WORKLOAD MANAGEMENT
COMPaaS did not come with any Liqid-supported

workload/application management tools, so we implemented a
software layer to handle it. Using Containerd and the Nvidia
GPU operator, we implemented Kubernetes as the container
orchestrator for GPU workloads. Kubernetes provides a

responsive software-driven deployment architecture that
increases flexibility in running and moving jobs across different
hardware configurations quickly. By layering Kubernetes over
composable hardware, we enabled our users to create
containerized applications with reproducible hardware and
software.

Specific GPUs can be inventoried, reused, or tested against,
to reduce and understand variability between application runs.
Kubernetes is ephemeral in nature, an environment that
inherently supports self-healing, auto-scalability and resource
monitoring. The fluidity of composable infrastructure resources
balances well with the Kubernetes model of execution. Within
our Kubernetes deployment, we utilize several services that
support application execution: reverse proxy (Traefik), load
balancing (MetalLB), monitoring (Prometheus), and Kubernetes
networking (services, ingress). Storage is provided through local
NVMe persistent drives for applications requiring high-speed
storage or through a NFS (Network File System) to access large,
remote data storage at slower rates or when users prefer to
directly connect to their IDE (integrated development
environment) for development. The required Kubernetes pod
description file (YAML syntax) requests GPU, networking and
storage resources. From this request, we extract a user’s
composable requirements and make API calls to the resource
management layer requesting that these devices be added to a
node. These hardware changes can be quickly updated for
applications by restarting the Kubernetes deployments.

V. USER WORKFLOW
Once Kubernetes pods (or deployments) are running, our

researchers then launch a JupyterLab Notebook from inside their
container (Figure 3). JupyterLab enables researchers to put code,
documentation and visualizations into a single computational
notebook and then run their code on a remote server through a
web interface. They use this instance of JupyterLab to access
COMPaaS’s resources, exposed externally using Traefik, to
execute their code and applications. Such notebooks can be
shared and reproduced. JupyterLab is the current version of
Jupyter offering a modern experience, with file management,
multi-windows, and interactive layout.

We now provide JupyterHub as the frontend where each user
receives a dedicated Jupyter instance. The Hub runs on a
powerful server, part of our 2021 COMPaaS hardware
expansion, providing secure, web-based, public facing access to
the infrastructure All backend APIs (MaaS.io, composable
hardware, and monitoring) can be packaged into Python
modules and pre-loaded into JupyterLab Notebooks. This work
demonstrates the potential for a user to ‘program’ a machine and
‘program’ an experiment as code using notebooks that are
persistent and can be shared.

Fig. 3. COMPaaS User Workflow

VI. COMPOSABLE CO-LOCATION
On-premise hardware is still required for many applications,

such as robotics and visualization, that require specialized
resources. As familiarity with composable infrastructure grows,
the idea of using composable co-location instead of traditional
servers co-located in racks is promising. By composable co-
location, we mean the integration of emerging hardware needs
without changing the existing core infrastructure.

The ability for departments and researchers to provide and
quickly add (co-locate) only those resources required by their
applications – GPUs (or other accelerators), specialized
networking, etc. – to a shared central composable infrastructure
system is far more cost effective than buying desktop or
deskside systems that need maintenance and support (often
wasting the time of graduate students and/or department IT staff,
without building persistent institutional knowledge).

In 2020, we began implementing a GPUoE (GPU over
Ethernet) prototype. Using a GPU expansion chassis connected
to compute nodes over Ethernet, we were able to compose
remote GPUs into our existing composable infrastructure. Our
APIs developed for composable infrastructure have been
extended to support these remote GPUs.

In 2021, we enhanced COMPaaS with a public-facing
JupyterHub server, a modern PCIe fabric and a supporting
expansion chassis, thereby making composable co-location
available to our users (Figure 4). Researchers can now co-locate
their own accelerators or compute nodes with COMPaaS. The
JupyterHub server provides secure web-based access to
resources while supporting their experiments.

Fig. 4. 2021 Expansion Supporting Composable Co-location

VII. USE CASES
The infrastructure needs of science and engineering research

and education are varied. This is exemplified in a recent
anecdote by Larry Smarr, UCSD Distinguished Professor: “It all
started while UC San Diego computer science and engineering
professor Larry Smarr was waiting for coffee in the ‘Bear’
courtyard at the Jacobs School of Engineering a little more than
three years ago. While standing in line, Smarr overheard a
student say, ‘I can't get a job interview if I haven’t run
TensorFlow on a GPU on a real problem’” [5]. Smarr’s PRP
research platform [1], developed at UCSD, would later be
leveraged to support data-science classes on real-world
problems. We envision a similar path for COMPaaS at our
institution.

COMPaaS users – faculty from four College of Engineering
departments (Computer Science, Civil, Materials &
Environmental Engineering, Mechanical and Industrial
Engineering, and Electrical and Computer Engineering) –
primarily run applications that are GPU-centric for compute,
with significant variability in storage and networking around
their data requirements.

Computer Science. Applications primarily focus on
security, data science, computer vision and Machine Learning
(ML). Security projects explore the complexity of modern web
applications and the intricacies of security mechanisms that
often result in flaws that expose users to significant security and
privacy threats. These projects try to develop methods and tools
that enable users to understand and more effectively manage
retrospective privacy in the context of modern, long-lived,
online archives. Composable resources were used to develop
Natural Language Processing (NLP)-based domain-specific
classifiers that identified data practices stated in privacy
policies. Adherence of corresponding applications were then
adjusted based on this ground truth [14].

Data-science applications have an intuitive framework that
integrates state-of-the-art AI technologies with applications,
workflows, smart visualizations and collaboration services to
help users access, share, explore and analyze their data, whether

local or remote, come to conclusions, and make decisions with
greater speed, accuracy, comprehensiveness and confidence.
One such project is developing and advancing tools that identify
image data in biomedical literature to locate beneficial, targeted
publications [7]. This work involves training image classifiers,
integrating classifiers into labeling pipelines, designing retrieval
user interfaces, and identifying related visual representations.

Computer vision projects include semantic segregation and
3D human pose estimation. Researchers are developing a novel
network architecture, termed DependencyNet (dependency
network), for semantic segmentation [8]. They also achieved
experimental results that demonstrate an effective approach for
3D human pose estimation [9]. Over the past two years, they
found COMPaaS to be consistently stable and efficient, with
result output as expected, and the group’s models achieved state-
of-the-art performance on their respective benchmarks.

ML applications include frameworks for many complex
real-world reinforcement learning problems, such as the
coordination of autonomous vehicles, network packet delivery,
and distributed logistics.

Civil, Materials & Environmental Engineering.
Applications focus on simulation and modeling. Researchers run
data-driven models on high-performance computers to develop
an accurate and general neural network ML model that uses
crystallographic data to study patterns of synthesizability [10].
They also perform simulations of mass transport in alloys and
ceramics. COMPaaS has been performing 1.5-10 times faster
than comparable infrastructures they are familiar with.
Additionally, they found our use of Jupyter Notebooks to be a
significant asset.

Mechanical and Industrial Engineering. Researchers use
COMPaaS for three research projects: feature extraction in fluid
flow using a Convolutional Neural Network (CNN); column
height detection in metallic nanoparticles using a CNN [11];
and, electric vehicle battery state-of-charge estimation using
different ML methods [12].

Electrical and Computer Engineering. Researchers
recently started running mathematical models of ML algorithms
and training language models using long-short term memory
(LSTMs).

VIII. CONCLUSIONS
Composable infrastructure enables academic researchers to

accelerate the pace of research and discovery by providing them
with an on-premise centralized resource and the ability to
quickly deploy bare metal or containers with appropriately sized
resources, as required.

COMPaaS is a cost-effective, mid-scale, agile resource for
College of Engineering faculty. It can serve as an “on ramp”
where codes are first developed and optimized before being
scaled and ported to more costly cloud and large HPC
environments. It has proven to be a useful tool for workload
variability, uneven applications, and modern workflows in
academic environments. Also, with our introduction of
composable co-location, faculty can now add additional
specialized components without having to purchase separate on-

premise systems. These factors are very important in an
academic environment.

COMPaaS’s two-rack composable infrastructure system has
demonstrated that it is appropriately sized for a multi-
department university college. Additional racks can be added
based on a college’s size and anticipated number of users. For a
single department, one rack would likely provide sufficient
composable resources to support a broad range of applications.
At the time of writing, our infrastructure is fully utilized in terms
of GPU, and we are onboarding several new users each week.
Our 2021 expansion system is representative of what would be
appropriate for a small research lab.

Our Kubernetes orchestration and Jupyter Notebook
implementations enable our users to get started quickly and to
fully utilize COMPaaS. Without COMPaaS, researchers would
continue to utilize desktop or deskside systems that are typically
supported and maintained by student researchers who are also
trying to do research. COMPaaS enables faculty and student
researchers to quickly come to task with dedicated resources that
are scaled to their applications. Using containers, multiple
researchers can work on the same application in parallel. The
skills learned developing codes on composable infrastructure
enable users to build scalable applications faster, with
knowledge that transfers directly to industry problems.

ACKNOWLEDGMENT
This publication is based on work supported by NSF award

#1828265 to the University of Illinois Chicago. We wish to
acknowledge our industry collaborator Liqid, Inc., who
provided invaluable technical support for COMPaaS. Any
opinions, findings, and conclusions or recommendations
expressed in this publication are those of the authors and do not
necessarily reflect the views of our funding agency or
collaborator.

REFERENCES
[1] I. Altintas, K. Marcus, I. Nealey, S.L. Sellars, J. Graham, D. Mishin, J.

Polizzi, D. Crawl, T. DeFanti, L. Smarr, “Workflow-Driven Distributed
Machine Learning in CHASE-CI,” https://arxiv.org/pdf/1903.06802.pdf

[2] K. Keahey J. Anderson Z. Zhen, P. Riteau, P. Ruth, D. Stanzione, M.
Cevik, J. Colleran, H.S. Gunawi, C. Hammock, J. Mambretti, A. Barnes,
F. Halbach, A. Rocha, J. Stubbs, “Lessons Learned from the Chameleon
Testbed,” Proceedings of the 2020 USENIX Annual Technical
Conference (USENIX ATC ‘20). USENIX Association. July 2020

[3] I. Baldin et al., “FABRIC: A National-Scale Programmable Experimental
Network Infrastructure,” IEEE Internet Computing, Vol. 23, No. 6, pp.
38-47, 1 Nov-Dec 2019, https://doi.org/10.1109/MIC.2019.2958545.

[4] “Liqid Announces $28 Million Series B Funding to Deliver Industry-
leading Composable Infrastructure Solutions,” BusinessWire, November
13, 2019, https://tinyurl.com/6mrmnj3f

[5] Daniel Kane, UC San Diego News: “From Coffee Cart to Educational
Computing Platform,” January 20, 2022,
https://ucsdnews.ucsd.edu/feature/from-coffee-cart-to-educational-
computing-platform

[6] https://maas.io
[7] Juan Trelles Trabucco, Pengyuan Li, Cecilia Arighi, Hagit Shatkay, G.

Elisabeta Marai, “Modality-Classification of Microscopy Images Using
Shallow Variants of Deep Networks,” 2020 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM), pp. 2379-2385,
2020, IEEE, 2020, https://doi.org/10.1109/BIBM49941.2020.9313467

[8] Mingyuan Liu, Dan Schonfeld, Wei Tang, “Exploit Visual Dependency
Relations for Semantic Segmentation,” Proc. IEEE/CVF Conference on

Computer Vision and Pattern Recognition (CVPR), pp. 9726-9735, 2021,
https://openaccess.thecvf.com/content/CVPR2021/papers/Liu_Exploit_
Visual_Dependency_Relations_for_Semantic_Segmentation_CVPR_20
21_paper.pdf

[9] Kenkun Liu, Zhiming Zou and Wei Tang, “Learning Global Pose Features
in Graph Convolutional Networks for 3D Human Pose Estimation,”
Proceedings of the Asian Conference on Computer Vision (ACCV) 2020,
Kyoto, Japan, November 30-December 4, 2020,
https://openaccess.thecvf.com/content/ACCV2020/papers/Liu_Learning
_Global_Pose_Features_in_Graph_Convolutional_Networks_for_3D_A
CCV_2020_paper.pdf

[10] Ali Davariashtiyani, Zahra Kadkhodaie, and Sara Kadkhodaei,
“Predicting Synthesizability of Crystalline Materials via Deep Learning,”
Communications Materials (a Nature research journal), Vol. 2, Issue 115,
2021, https://doi.org/10.1038/s43246-021-00219-x2021

[11] Marco Ragone, Lance Long, Matthew Tamadoni, Reza Shahbazian-
Yassar, Farzad Mashayek and Vitaliy Yurkiv, “Deep Learning for
Mapping Element Distribution of High-Entropy Alloys in Scanning
Transmission Electron Microscopy Images,” Computational Materials
Science, Vol. 201, 2022, p. 110905,
https://doi.org/10.1016/j.commatsci.2021.110905

[12] Marco Ragone, Vitaliy Yurkiv, Ajaykrishna Ramasubramanian, Babak
Kashir, Farzad Mashayek, “Data driven estimation of electric vehicle
battery state-of-charge informed by automotive simulations and multi-
physics modeling,” Journal of Power Sources, Vol. 483, 2021, pp.
229108, https://doi.org/10.1016/j.jpowsour.2020.229108

[13] S.D. Lowe, Composable Infrastructure for Dummies, HPE, John Wiley &
Sons, 2016, www.hpe.com/us/en/resources/composable-infrastructure-
for-dummies.html

[14] https://gwusec.seas.gwu.edu/privacylabels/root/
[15] M. Brown, L. Renambot, L. Long, T. Bargo, A. Johnson, “COMPaaS

DLV: Composable Infrastructure for Deep Learning in an Academic
Research Environment,” MERIT (Midscale Education and Research
Infrastructure and Tools) Community Event Workshop, 27th IEEE
International Conference on Network Protocols (ICNP 2019), Chicago,
Illinois, USA, October 7,
2019, http://doi.org/10.1109/ICNP.2019.8888070

[16] Zhongyi Chen, Luc Renambot, Lance Long, Maxine Brown, Andrew
Johnson, “Moving from Composable to Programmable,” First Workshop
on Composable Systems (COMPSYS ‘22), co-located with the 36th IEEE
International Parallel and Distributed Processing Symposium, Lyon,
France, June 3, 2022, accepted

