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Abstract—Composable infrastructure holds the promise of 
accelerating the pace of academic research and discovery by 
enabling researchers to tailor the resources of a machine (e.g., 
GPUs, storage, NICs), on-demand, to address application needs. 
We were first introduced to composable infrastructure in 2018, 
and at the same time, there was growing demand among our 
College of Engineering faculty for GPU systems for data science, 
artificial intelligence / machine learning / deep learning, and 
visualization. Many purchased their own individual desktop or 
deskside systems, a few pursued more costly cloud and HPC 
solutions, and others looked to the College or campus computer 
center for GPU resources which, at the time, were scarce. After 
surveying the diverse needs of our faculty and studying product 
offerings by a few nascent startups in the composable 
infrastructure sector, we applied for and received a grant from the 
National Science Foundation in November 2019 to purchase a 
mid-scale system, configured to our specifications, for use by 
faculty and students for research and research training. 

This paper describes our composable infrastructure solution 
and implementation for our academic community. Given how 
modern workflows are progressively moving to containers and 
cloud frameworks (using Kubernetes) and to programming 
notebooks (primarily Jupyter), both for ease of use and for 
ensuring reproducible experiments, we initially adapted these 
tools for our system. We have since made it simpler to use our 
system, and now provide our users with a public facing 
JupyterHub server. We also added an expansion chassis to our 
system to enable composable co-location, which is a shared central 
architecture in which our researchers can insert and integrate 
specialized resources (GPUs, accelerators, networking cards, etc.) 
needed for their research.  

In February 2020, installation of our system was finalized and 
made operational and we began providing access to faculty in the 
College of Engineering. Now, two years later, it is used by over 40 
faculty and students plus some external collaborators for research 
and research training. Their use cases and experiences are briefly 
described in this paper. Composable infrastructure has proven to 
be a useful computational system for workload variability, uneven 
applications, and modern workflows in academic environments. 

Keywords—composable infrastructure, deep learning, 
visualization, resource management, workload management, user 
workflow, composable co-location, infrastructure as code 

I. INTRODUCTION 
Upon being introduced to composable infrastructure [13] in 

2018, we saw tremendous potential to College of Engineering 
faculty who are pursuing fundamental science and engineering 

research and research training in deep learning (data mining and 
data analytics, computer vision, natural language processing, 
artificial intelligence, machine learning), visualization 
(simulation, rendering, visual analytics, video streaming, image 
processing), and a combination of deep learning and 
visualization (e.g., when data is so large that it cannot be easily 
visualized, then deep learning is used to extract features of 
interest to be visualized). 

There was growing demand among faculty for GPU 
systems; many purchased their own individual desktop or 
deskside systems that required power, maintenance and support, 
a few pursued more costly cloud and HPC solutions, and others 
looked to the College or campus computer center for GPU 
resources which, at the time, were scarce. We recognized that 
composable infrastructure’s scalability and agility would 
provide benefits for on-premise computation over traditional 
cloud platforms and clusters that are rigid, overprovisioned and 
expensive. It would address the needs of our academic 
researchers with a sandboxed environment to discover and 
assess new techniques and approaches to solving problems 
while simultaneously providing secure environments for 
sensitive research.  

Major cyberinfrastructure (CI) projects realize the benefit 
and expressive power of Infrastructure as Code, where the user 
(administrator, CI researcher or data scientist) describes the 
required hardware and configuration, not through a portal and 
series of panels (web-based gateways) but through code and 
APIs running inside a programming notebook (primarily in 
Python within Jupyter). Projects such as Nautilus (PRP/UCSD) 
[1], Chameleon [2] and FABRIC [3] are doing this at different 
levels. Nautilus is a hypercluster that runs Big Data applications 
supporting Jupyter Notebooks. Chameleon provides bare-metal 
nodes that can be provisioned and configured through Python to 
build reproducible experiments. Similarly, FABRIC lets a user 
build virtual machines with specific requirements (in terms of 
SSD, NIC and GPU) that are passed through from the host 
machine to a virtual machine. 

In 2019, after surveying the diverse needs of our faculty and 
studying product offerings by a few nascent startups in the 
composable infrastructure sector, we applied for and received a 
grant from the National Science Foundation to purchase a mid-
scale system, configured to our specifications, for use by faculty 
and students for research and research training. We purchased a 
system that we named COMPaaS DLV – COMposable Platform 
as a Service Instrument for Deep Learning & Visualization [15]. 
It was delivered in November 2019 and access was provided to 

COMPaaS DLV is funded by NSF award #1828265 to the University of 
Illinois Chicago. 
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Fig. 2. Composable Infrastructure (Liqid) 

Given that science workflows can be quite diverse, it was our 
goal to implement a solution to enable our users to dynamically 
reconfigure, on demand, their own application-specific machine 
resources. To ensure adoption, we wanted to seamlessly 
integrate our solution with their scientific workflows. Modern 
workflows are progressively moving to containers and cloud 
frameworks (using Kubernetes) and to programming notebooks 
(primarily Jupyter), both for ease of use and for ensuring 
reproducible experiments. We succeeded in reducing the 
complexity and making operations more manageable by using 
Jupyter Notebooks to manage infrastructure, applications and 
visualizations. Recently, we expanded our system with a public-
facing JupyterHub server providing all users with the ability to 
enter through a Jupyter instance. It will soon become the only 
way to access the system; i.e., users will not use external 
terminal access with ssh. 

Our solution entailed our development of a management 
layer that abstracts Liqid’s REST API [16]. This higher-level 
layer provides Python support for the composition and 
management of pool resources. Once a machine is composed 
with the specified resources, we use MaaS.io (Metal as a 
Service) [6] to provision, commission, and deploy servers, either 
as bare-metal instances (custom OS images) or as container 
environments (using Kubernetes). MaaS.io is used for node 
management and operating system deployment. Ubuntu and 
CentOS distributions are provided with custom GRUB options 
to hot-plug composable elements within a running OS. Hot-plug 
capabilities in modern systems enable system engineers to 
reconfigure the capabilities of a machine (GPUs, storage, NICs), 
on-demand, from application specifications. Dell, working with 
Liqid, provides BIOS integration to facilitate these features. 
Dynamically, we can programmatically unplug components 
from one compute node (as long as the device is not in use) and 
plug it into another compute node using low-level fabric APIs 
(reconfiguration using PCIe switches) to achieve a Software 
Defined Infrastructure. 

IV. WORKLOAD MANAGEMENT 
COMPaaS did not come with any Liqid-supported 

workload/application management tools, so we implemented a 
software layer to handle it. Using Containerd and the Nvidia 
GPU operator, we implemented Kubernetes as the container 
orchestrator for GPU workloads. Kubernetes provides a 

responsive software-driven deployment architecture that 
increases flexibility in running and moving jobs across different 
hardware configurations quickly. By layering Kubernetes over 
composable hardware, we enabled our users to create 
containerized applications with reproducible hardware and 
software.  

Specific GPUs can be inventoried, reused, or tested against, 
to reduce and understand variability between application runs. 
Kubernetes is ephemeral in nature, an environment that 
inherently supports self-healing, auto-scalability and resource 
monitoring. The fluidity of composable infrastructure resources 
balances well with the Kubernetes model of execution. Within 
our Kubernetes deployment, we utilize several services that 
support application execution: reverse proxy (Traefik), load 
balancing (MetalLB), monitoring (Prometheus), and Kubernetes 
networking (services, ingress). Storage is provided through local 
NVMe persistent drives for applications requiring high-speed 
storage or through a NFS (Network File System) to access large, 
remote data storage at slower rates or when users prefer to 
directly connect to their IDE (integrated development 
environment) for development. The required Kubernetes pod 
description file (YAML syntax) requests GPU, networking and 
storage resources. From this request, we extract a user’s 
composable requirements and make API calls to the resource 
management layer requesting that these devices be added to a 
node. These hardware changes can be quickly updated for 
applications by restarting the Kubernetes deployments.  

V. USER WORKFLOW 
Once Kubernetes pods (or deployments) are running, our 

researchers then launch a JupyterLab Notebook from inside their 
container (Figure 3). JupyterLab enables researchers to put code, 
documentation and visualizations into a single computational 
notebook and then run their code on a remote server through a 
web interface. They use this instance of JupyterLab to access 
COMPaaS’s resources, exposed externally using Traefik, to 
execute their code and applications. Such notebooks can be 
shared and reproduced. JupyterLab is the current version of 
Jupyter offering a modern experience, with file management, 
multi-windows, and interactive layout. 

We now provide JupyterHub as the frontend where each user 
receives a dedicated Jupyter instance. The Hub runs on a 
powerful server, part of our 2021 COMPaaS hardware 
expansion, providing secure, web-based, public facing access to 
the infrastructure All backend APIs (MaaS.io, composable 
hardware, and monitoring) can be packaged into Python 
modules and pre-loaded into JupyterLab Notebooks. This work 
demonstrates the potential for a user to ‘program’ a machine and 
‘program’ an experiment as code using notebooks that are 
persistent and can be shared. 



 
Fig. 3. COMPaaS User Workflow 

VI. COMPOSABLE CO-LOCATION 
On-premise hardware is still required for many applications, 

such as robotics and visualization, that require specialized 
resources. As familiarity with composable infrastructure grows, 
the idea of using composable co-location instead of traditional 
servers co-located in racks is promising. By composable co-
location, we mean the integration of emerging hardware needs 
without changing the existing core infrastructure. 

The ability for departments and researchers to provide and 
quickly add (co-locate) only those resources required by their 
applications – GPUs (or other accelerators), specialized 
networking, etc. – to a shared central composable infrastructure 
system is far more cost effective than buying desktop or 
deskside systems that need maintenance and support (often 
wasting the time of graduate students and/or department IT staff, 
without building persistent institutional knowledge). 

In 2020, we began implementing a GPUoE (GPU over 
Ethernet) prototype. Using a GPU expansion chassis connected 
to compute nodes over Ethernet, we were able to compose 
remote GPUs into our existing composable infrastructure. Our 
APIs developed for composable infrastructure have been 
extended to support these remote GPUs.  

In 2021, we enhanced COMPaaS with a public-facing 
JupyterHub server, a modern PCIe fabric and a supporting 
expansion chassis, thereby making composable co-location 
available to our users (Figure 4). Researchers can now co-locate 
their own accelerators or compute nodes with COMPaaS. The 
JupyterHub server provides secure web-based access to 
resources while supporting their experiments. 

 

 
Fig. 4. 2021 Expansion Supporting Composable Co-location 

VII. USE CASES 
The infrastructure needs of science and engineering research 

and education are varied. This is exemplified in a recent 
anecdote by Larry Smarr, UCSD Distinguished Professor: “It all 
started while UC San Diego computer science and engineering 
professor Larry Smarr was waiting for coffee in the ‘Bear’ 
courtyard at the Jacobs School of Engineering a little more than 
three years ago. While standing in line, Smarr overheard a 
student say, ‘I can't get a job interview if I haven’t run 
TensorFlow on a GPU on a real problem’” [5]. Smarr’s PRP 
research platform [1], developed at UCSD, would later be 
leveraged to support data-science classes on real-world 
problems. We envision a similar path for COMPaaS at our 
institution. 

COMPaaS users – faculty from four College of Engineering 
departments (Computer Science, Civil, Materials & 
Environmental Engineering, Mechanical and Industrial 
Engineering, and Electrical and Computer Engineering) – 
primarily run applications that are GPU-centric for compute, 
with significant variability in storage and networking around 
their data requirements. 

Computer Science. Applications primarily focus on 
security, data science, computer vision and Machine Learning 
(ML). Security projects explore the complexity of modern web 
applications and the intricacies of security mechanisms that 
often result in flaws that expose users to significant security and 
privacy threats. These projects try to develop methods and tools 
that enable users to understand and more effectively manage 
retrospective privacy in the context of modern, long-lived, 
online archives. Composable resources were used to develop 
Natural Language Processing (NLP)-based domain-specific 
classifiers that identified data practices stated in privacy 
policies. Adherence of corresponding applications were then 
adjusted based on this ground truth [14]. 

Data-science applications have an intuitive framework that 
integrates state-of-the-art AI technologies with applications, 
workflows, smart visualizations and collaboration services to 
help users access, share, explore and analyze their data, whether 



local or remote, come to conclusions, and make decisions with 
greater speed, accuracy, comprehensiveness and confidence. 
One such project is developing and advancing tools that identify 
image data in biomedical literature to locate beneficial, targeted 
publications [7]. This work involves training image classifiers, 
integrating classifiers into labeling pipelines, designing retrieval 
user interfaces, and identifying related visual representations. 

Computer vision projects include semantic segregation and 
3D human pose estimation. Researchers are developing a novel 
network architecture, termed DependencyNet (dependency 
network), for semantic segmentation [8]. They also achieved 
experimental results that demonstrate an effective approach for 
3D human pose estimation [9]. Over the past two years, they 
found COMPaaS to be consistently stable and efficient, with 
result output as expected, and the group’s models achieved state-
of-the-art performance on their respective benchmarks. 

ML applications include frameworks for many complex 
real-world reinforcement learning problems, such as the 
coordination of autonomous vehicles, network packet delivery, 
and distributed logistics.  

Civil, Materials & Environmental Engineering. 
Applications focus on simulation and modeling. Researchers run 
data-driven models on high-performance computers to develop 
an accurate and general neural network ML model that uses 
crystallographic data to study patterns of synthesizability [10]. 
They also perform simulations of mass transport in alloys and 
ceramics. COMPaaS has been performing 1.5-10 times faster 
than comparable infrastructures they are familiar with. 
Additionally, they found our use of Jupyter Notebooks to be a 
significant asset.  

Mechanical and Industrial Engineering. Researchers use 
COMPaaS for three research projects: feature extraction in fluid 
flow using a Convolutional Neural Network (CNN); column 
height detection in metallic nanoparticles using a CNN [11]; 
and, electric vehicle battery state-of-charge estimation using 
different ML methods [12]. 

Electrical and Computer Engineering. Researchers 
recently started running mathematical models of ML algorithms 
and training language models using long-short term memory 
(LSTMs).  

VIII. CONCLUSIONS 
Composable infrastructure enables academic researchers to 

accelerate the pace of research and discovery by providing them 
with an on-premise centralized resource and the ability to 
quickly deploy bare metal or containers with appropriately sized 
resources, as required.  

COMPaaS is a cost-effective, mid-scale, agile resource for 
College of Engineering faculty. It can serve as an “on ramp” 
where codes are first developed and optimized before being 
scaled and ported to more costly cloud and large HPC 
environments. It has proven to be a useful tool for workload 
variability, uneven applications, and modern workflows in 
academic environments. Also, with our introduction of 
composable co-location, faculty can now add additional 
specialized components without having to purchase separate on-

premise systems. These factors are very important in an 
academic environment.  

COMPaaS’s two-rack composable infrastructure system has 
demonstrated that it is appropriately sized for a multi-
department university college. Additional racks can be added 
based on a college’s size and anticipated number of users. For a 
single department, one rack would likely provide sufficient 
composable resources to support a broad range of applications. 
At the time of writing, our infrastructure is fully utilized in terms 
of GPU, and we are onboarding several new users each week. 
Our 2021 expansion system is representative of what would be 
appropriate for a small research lab.  

Our Kubernetes orchestration and Jupyter Notebook 
implementations enable our users to get started quickly and to 
fully utilize COMPaaS. Without COMPaaS, researchers would 
continue to utilize desktop or deskside systems that are typically 
supported and maintained by student researchers who are also 
trying to do research. COMPaaS enables faculty and student 
researchers to quickly come to task with dedicated resources that 
are scaled to their applications. Using containers, multiple 
researchers can work on the same application in parallel. The 
skills learned developing codes on composable infrastructure 
enable users to build scalable applications faster, with 
knowledge that transfers directly to industry problems.  
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