
1

Modeling and Analysis of Collaborative Virtual Environments by

Using Extended Fuzzy-Timing Petri Nets

Y. Zhou, T. Murata, and T. DeFanti

Department of Electrical Engineering and Computer Science
University of Illinois at Chicago

Chicago, Illinois 60607-7053 USA
{yzhou1, murata, tom}@eecs.uic.edu

Abstract. Virtual Reality (VR) systems (such as the CAVETM1) generate images in real-

time on the basis of the viewer’s view in the virtual world, so that the viewer sees a three-

dimensional view of a given scene. The concurrency and real-time features in virtual

environments systems make them difficult to design, implement and test. Collaborative

Virtual Environments (CVEs) make this more complicated by adding network

considerations into their designs. CVEs demand high Quality-of-Service (QoS)

requirements on the network to maintain natural and real-time interactions among users.

By using formal methods to model CVEs and analyze their real-time behavior, we can

evaluate the network effects on CVEs and the performance of CVEs. To model temporal

uncertainties in CVEs, we propose an extension of Fuzzy-Timing Petri Nets (EFTN) in

this paper. We give our EFTN models for the CAVE, the TCP protocol and the NICE

(Narrative Immersive Constructionist/Collaborative Environments) project and we analyze

the network effects on the NICE and the dynamic performance of NICE.

1 Introduction

Virtual Reality (VR) can be defined as interactive computer graphics that provide viewer-

centered perspective, large field of view and stereo. The CAVETM1 (Cave Automatic Virtual

1 CAVETM is a registered trademark of the Regents of the University of Illinois

2

Environment) ([4], [15], [16]) is a virtual reality environment designed and implemented at the

Electronic Visualization Laboratory at the University of Illinois at Chicago. The CAVE, as shown

in Fig. 1, is a surround screen, projection based virtual reality environment system. The actual

environment is a 10x10x10 foot cube, where images are rear-projected in stereo on 3 walls (front

wall, left wall, and right wall), and down-projected onto the floor. (The floor can be considered as

floor wall. So there are 4 walls total.) The 4 walls display computer generated stereo images of

the virtual world in real-time based on the position and orientation of the user’s head and hand in

the CAVE. The viewer wears LCD shutter glasses to mediate the stereo images. The viewer’s

head and hand position and orientation are tracked through sensors on the shutter glasses and on

the ‘wand’ (the CAVE input device). And the viewer can grab and move objects in the virtual

world with the wand.

Fig. 1 A picture of the Cave Automatic Virtual Environment (CAVE)

Because of the concurrency and real-time features in virtual environments systems, it is

difficult to design, implement and test VRs. Collaborative Virtual Environments (CVE) make this

more complicated by adding network considerations. CVEs allow people in remote virtual

environments to learn from each other, work together on designing systems, or perform a

complex group task together over networks.

The Narrative Immersive Constructionist/Collaborative Environments (NICE) project

([2], [3]) at the Electronic Visualization Laboratory at the University of Illinois at Chicago, is a

collaborative learning environment: a virtual garden, where children can do gardening and

learning cooperatively. In the NICE, children located in distributed virtual environments (e.g.,

3

CAVEs), can take care of a virtual garden together in the center of a virtual island. The children,

represented by avatars, collaboratively plant, grow, and pick vegetables and flowers. They make

sure that the plants have sufficient water, sunlight, and space to grow, and they keep hungry

animals away from sneaking in the garden and eat the plants.

Fig. 2. (a) Jim (an avatar) is handing a flower to Eddie (another avatar); (b) A child is interacting with an
avatar in the CAVE.

NICE uses a central server to simulate the garden and maintain consistency across all the

participating virtual environments, and a repeater to broadcast all avatar state information. Each

virtual environment (VE) sends the local avatar information (the local tracker data) to the repeater

by using UDP, and sends the information about the local child’s world-changing activities to the

central garden by using TCP. The central server receives the world-changing messages from each

client, updates the world state and sends the new world information (the information about the

garden) to each client by using TCP so that all clients can share the same world information.

Meanwhile, the repeater receives each avatar’s state information and broadcasts them to all other

clients by using UDP. It is very important to draw remote entities in real-time in each VE so that

the user will not notice any difference between the local and remote entities in the environment.

CVEs demand high Quality-of-Service (QoS) requirements on the network to maintain

natural and real-time interactions among users. QoS refers to the requirements on network

latencies and jitters (the variability in network latency). By using formal methods to model CVEs

and analyze their real-time behavior, we can evaluate the network effects on CVEs and the

performance of CVEs. Petri Nets have rigorous analysis capability and have been shown useful

4

for assuring the reliability and correctness of concurrent systems. In order to model and analyze

real-time systems, various timed extensions of Petri Nets have been proposed. However, many

real-time systems have temporal uncertainty. For example, the time duration of rendering an

image for a wall in CAVE varies on the complexity of the geometric objects in the image, and the

network delays in CVEs vary over a large range. To deal with temporal uncertainties in real-time

systems, Murata [7] proposed Fuzzy-Timing High-Level Petri Nets (FTHNs) to model time

explicitly in terms of fuzzy set theory. FTHNs model temporal uncertainties in real-time systems,

and provides possibility distributions of events. So FTHNs can capture all temporal uncertainties

in CVEs and they would be suitable models for CVEs.

This paper is organized as follows: Section 2 reviews Fuzzy-Timing Petri Nets and

proposes an extension of Fuzzy-Timing Petri Nets (EFTN); Section 3 gives our EFTN models for

the CAVE; Section 4 analyzes the dynamic behavior of our EFTN model of the CAVE; Section

5 proposes our EFTN models for the NICE; Section 6 gives the Design/CPN implementation of

EFTN models for the NICE; Section 7 discusses the simulation results of EFTN models for the

TCP protocol and the NICE; Section 8 concludes the paper and gives our future research plan.

2 Fuzzy-Timing Petri Nets and Extended Fuzzy-Timing Petri Nets

The main features of Fuzzy-Timing High-Level Petri Nets (FTHNs) are the following four fuzzy

set theoretic functions of time called fuzzy timestamp, fuzzy enabling time, fuzzy occurrence time

and fuzzy delay. A fuzzy timestamp π(τ) is associated with each token and each place, and π(τ) is

a fuzzy time function or possibility distribution giving the numerical estimate of the possibility

that a particular token arrives at time τ in a particular place. In FTHNs, arcs (t, p) from transitions

t to places p are associated with fuzzy delays dtp(τ). For simplicity, trapezoidal or triangular

possibility distributions specified by the 4-tuple (π1, π2, π3, π4) as shown in Fig. 3, are used to

represent fuzzy time functions.

5

π1
0 τ

π(τ)

1

π2 π3 π4

Fig. 3 Trapezoidal possibility distribution

The formal definition of FTHNs and the method to compute and update fuzzy enabling

time and fuzzy occurrence time when a transition firing occurs, are given in [7]. A Fuzzy-timing

Petri Net (FTN) [11] model is an unfolded version of the fuzzy-timing high-level Petri Net

(FTHN). We extend FTN by integrating FTN with Merlin’s Time Petri Net [5]. We define an

Extended Fuzzy-Timing Petri Net (EFTN) model as a 6-tuple (P, T, A, D, FT, CT), where: (P, T,

A, D, FT) is a Fuzzy Timing Petri Net, with the default value of dtp(τ) being (0,0,0,0); CT: T →

Q+ × Q+ × (Q+ ∪ ∞) is a mapping from the transition set T to firing intervals with possibility: i.e.,

each transition is associated with a firing interval p[α, β], where the default interval is 1[0, 0] (a

transition definitely fires as soon as it is enabled). If a transition t is enabled at time instant τ, t

may not fire before time instant τ + α, and t must fire before or at time instant τ + β. Possibility p

∈ [0,1]. p is 1 if transition t is not in conflict with any other transition. p can be less than 1 when

we want to assign different chances to transitions in structural conflict. For example, if transition

t1 and transition t2 are in structural conflict, t1 fires with 99% chance and t2 fires with 1%

chance, we assign p1 = 0.99 and p2 = 0.01. A transition firing itself is an atomic event and takes

zero time. (CT is taken from Merlin’s Time Petri Net [5].)

Now, in EFTN, the fuzzy enabling time et(τ) of transition t is computed by et(τ) =

latest{πi(τ), i = 1, 2, ..., n}, where latest is the operator that constructs the “latest-arrival/lowest-

possibility distribution” from n distributions ([7], [11]), as shown in Fig. 4(a).

6

 1 2 3 4 5 6

0.5

1

π1(τ)

π2(τ)

τ0

(a)

1 3 4 5 7

1

0.5

0 τ

e 1 a(τ)
e1 b(τ)

(b)

Fig. 4 (a) latest{π1(τ), π2(τ)} shown by heavy line; (b) earliest{e1a(τ), e1b(τ)} is shown by the heavy line.

When there are m transitions enabled with their fuzzy enabling times, ei(τ), i = 1, 2, ..., t, ..., m,

and CT(ti) = pi[αi, βi], we compute the fuzzy occurrence time ot(τ) of transition t whose fuzzy

enabling time et(τ), as follows: ot(τ) = min{et(τ) ⊕ pt(αt, αt, βt, βt), earliest{ei(τ) ⊕ pi (αi, αi, βi,

βi

7

FTHNs provide additional information on partial ordered events in terms of their degrees

of possibilities, instead of transforming them into a total ordering. The computations involved in

FTHNs are basically repeated additions and comparisons of real numbers and are necessary only

for certain finite firing sequences, and need not generate the entire state space. Thus these

computations can be done very fast and thus FTHNs are suited for estimating the performance of

time-critical systems.

0
τ

1

πf

πe

A

B C

D
G

H L

M

] ,(F−∞
) ,[∞+E

0
τ

1

πe

 f

A

B
C

D

G

H

(a) (b)
Fig. 5 (a) [E, F] = [E, +∞) ∩ (-∞, F] is trapezoidGHCD shown by the heavy line, and [E, F] ∩ πe is also

trapezoidGHCD shown by the shaded area. (b) The part of πe where τ ≤ f is shown by , the part of πe where

τ ≥ f is shown by .

3 EFTN models for the CAVE

The CAVE has the following three main subsystems [4]: (Fig. 7 shows our EFTN model for the

CAVE. A timed Petri Net model of the CAVE can be found in [6].)

• Tracker subsystem: which obtains data about the position of the viewer’s head and hand. Since

the viewer wears a head tracker and holds a wand where sensors are located, his position is

detected by the tracker operating at 96 HZ sampling frequency. A tracking sample is obtained

every 10.4 ms when the monitor signal arises.

• Main subsystem: which creates images to be displayed on the walls of the CAVE. There are

four graphic pipelines working concurrently. Each of them is used to render the image on one

wall. The CAVE implementation uses double buffering between the main subsystem and the

display subsystem. While the main subsystem is writing into one buffer, the display subsystem

8

reads from the other buffer. The buffer swapping is synchronized by a monitor signal at 46 HZ

frequency. Once images for all 4 walls have been rendered, a buffer swapping takes place at

the leading edge of the next coming monitor signal if the display subsystem is also ready to

swap buffers.

• Image display subsystem: which draws the images on the four walls. When the drawings of 4

images are all finished, the display subsystem is ready to swap buffers.

4 The Analysis of EFTN models for the CAVE

• Reduction Rules for EFTN

In order to analyze EFTN models, we illustrate two reduction rules ([1], [13]) for EFTNs in this

section. Our reduction rules can reduce the size of EFTN models and preserve safeness, deadlock

and timing properties of EFTN. Applying the two rules shown in Fig. 8 to our EFTN model for

the CAVE in Fig. 7, results in a reduced EFTN model as shown in Fig. 9.

• Behavior of EFTN models for the CAVE:

In Fig. 9, transitions Swap_and_draw and Swap_Signal_passed are in conflict. Assume that

transition Generate_Monitor_signal fires at time π and it is immediately followed by the firing of

transition Swap_and_draw, then the next round of image rendering begins with the firing of

transition use_data_render. In that round, the 1st monitor signal coming at 20.8 ms will be

passed since the image rendering delay is latest(Drender_front(τ), Drender_left(τ), Drender_right(τ), Drender_floor(τ) =

(25.0,37.4,50.0,62.4) ms > 20.8 ms. When the 2nd monitor signal comes at 41.6 ms, the possibility

that transition Swap_and_draw fires instead of Swap_Signal_passed, is computed as follows:

possibility((π ⊕ latest(Drender_front(τ), Drender_left(τ), Drender_right(τ), Drender_floor(τ)) ⊕ (0,0,0,0))

 < (π ⊕ (41.6,41.6,41.6,41.6) ⊕ (ε 4, ε4, ε4, ε4)))

= possibility((π ⊕ (25.0,37.4,50.0,62.4) ⊕ (0,0,0,0)) < (π ⊕ (41.6,41.6,41.6,41.6)⊕ (0.2,0.2,0.2,0.2)))

= possibility((25.0,37.4,50.0,62.4) < (41.8,41.8,41.8,41.8))

= shaded_area/area_trapizoidal(25.0,37.4,50.0,62.4) = 0.424, as shown in Fig. 6.

9

If transition Swap_Signal_passed fires, the display subsystem will not begin to draw any new

image until the 3rd monitor signal comes. In that case, transition Swap_and_draw can certainly

fire when the 3rd monitor signal comes at 62.4 ms, since the image rendering delay is

(25.0,37.4,50.0,62.4) ms < 62.4 ms.

0

1

 25.0 37.4 41.8 50.0 62.4
τ

Fig. 6 Possibility of transition Swap_and_draw fires instead of Swap_Signal_passed

The possibility that transition Swap_and_draw fires instead of Swap_Signal_passed when the

2nd monitor signal comes at 41.6 ms, determines that the delay that the user’s movement being

reflected on the walls is around 104 ms or around 125 ms: possibility(delay ≈ 104 ms) = 0.424,

and possibility(delay ≈ 125 ms) = 0.576.

We use Design/CPN [14] to simulate our EFTN model for the CAVE. As shown in Fig.

12, a timestamp origt is attached to each token generated by firing transition

Head_Wand_Input. When transition DrawComplete fires, the current time and the original

timestamp (origt) of the token will be recorded into a file. We can calculate the delay by

reading the file after the simulation. Our simulation result shows that, the delay is around 104 ms

for 1339 times (42.33%), and around 125 ms for 1824 times (57.67%) in total of 3163 times

transition DrawComplete firing we recorded. The simulation result is consistent with our

possibility analysis.

5 EFTN models for the NICE

The main distributed components of the NICE consist of a garden simulation server, an avatar

repeater for avatar state information, and NICE clients ([2], [3]). A NICE client uses an unreliable

protocol (UDP) to send avatar information (local tracker data) to the avatar repeater and a reliable

10

socket connection (TCP protocol) to send local avatar’s world-changing messages to the server.

The avatar repeater broadcasts avatar state information by using UDP. The NICE server supports

the garden simulation, updates the world (graden) once receiving an avatar’s world-changing

message, and broadcasts the new world state information to all clients by using TCP.

The Information Request Broker (IRB) is the core of all client and server applications in

the NICE. An IRB is an autonomous repository of persistent data that is accessible by a variety of

networking interfaces. A key is a handle to a storage location in an IRB's database. Keys are

uniquely identified across all IRBs. A local key can initiate and accept multiple linkages to and

from other remote IRBs. Any modifications that are made to one key will automatically be

propagated to all the other linked keys ([2], [3]).

The garden server is an IRB with two main keys: an incoming message key and an

outgoing message key. If the local avatar has any action changing the garden (e.g., plant a tree),

the local VE will send a message from the local OUT Key to the server’s IN key by using TCP.

Then the garden server updates the world state and sends the new world state information to each

client’s IN key via the server’s OUT keys by using TCP. The garden world evolves itself as the

plant grows, the weather changes, and animals appear. So the server sends each client the new

world state information by using TCP once it updates.

The avatar repeater has a key for each client to hold its avatar-state information. When

client1 updates the local screen (swapping-buffer happens), avatar1’s state information will be

sent from client1 to the avatar1-state key on the repeater by using UDP. Another client (e.g.

avatar2) will get the state of avatar1 by subscribing to the avatar1-state key on the repeater.

In Fig. 10, we give the EFTN model for the garden server, avatar repeater and

communication interface of two existing NICE clients communicating with each other, the

repeater and the garden server. Each client sends local avatar’s tracker information to the repeater

by using UDP and the repeater broadcasts it to all other clients also by using UDP. UDP is a

11

simple unreliable transport layer protocol. By using UDP, the sender just sends out the Protocol

Data Unit (PDU) and never retransmits. So we use a transition UDP with fuzzy delay DUDP(τ) =

(50,100,150,200) ms to represent UDP channel in Fig. 10, and we assume the data loss rate of

UDP is 1%.

Each TCP transition in Fig. 10 is an abstract of a subnet for TCP protocol. TCP is a

reliable and ordered transport layer protocol. One Protocol Data Unit (PDU)’s loss will delay all

subsequent PDUs. No subsequent PDU can be delivered to the application layer until that PDU is

successfully received. The Design/CPN implementation of our EFTN model for TCP protocol is

shown in Fig. 21. And we explain our TCP model in Section 6.

In the NICE, a local VE (e.g., CAVE) will need local avatar state information, remote

avatars state information, and world state information to render images. The EFTN model for a

CAVE in the NICE as a distributed component is shown in Fig. 11. When an avatar wants to

change the world, it usually takes him about 1 second (possibility distribution

(800,1000,1200,1500) ms) to complete his action. During an avatar’s world-changing action, all

of his tracker data used for updating local screen, will be sent to the server by using TCP. An

avatar may change the world for 2~3 times per minute and the local screen may be updated for

16~24 times per second (16 times/sec if the image rendering delay ≤ 41.6 ms each time, 24

times/sec if the image rendering delay is in the interval (41.6, 62.4) ms each time). So, we assume

0.2% of the tracker data used for updating local screen may indicate that local avatar wants to

change the garden. (In Fig. 11, when the avatar is not already in an world-changing action, place

ChangeWorldOrNot has two output transitions, the possibility of firing transition Change is

0.002, and the possibility of firing Not_Change is 0.998.) After we put the communication

interface and internal structure of distributed CAVEs together, we can analyze the network effects

on the NICE and the dynamic performance of the NICE.

12

complete_render_frontwall

Swap_Buffer
SwapMonitor

Generate_Monitor_signal

Swap_signal

[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

complete_render_leftwall complete_render_rightwall complete_render_floor

swapped1

Draw_front

Ddraw_front(τ)

complete_draw_front

swapped2

Draw_left

Ddraw_left(τ)

complete_draw_left

swapped3

Draw_right

Ddraw_right(τ)

complete_draw_right

swapped4

Draw_floor

Ddraw_floor(τ)

complete_draw_floor

ready_to swap

begin_render

render_front

Drender_front(τ)

render_left

Dconvert(τ)

render_right

Drender_right(τ)
render_floor

Drender_floor(τ)

begin_render_frontwall
begin_render_leftwall

begin_render_rightwall

begin_render_floor

Tracker_Got_Data

convert_and_transfer
Data_ready

DataReady_render

TrackerdataCome

use_data

drawing_completed

Drender_left(τ)

Wand Head Button_Input

Head_Wand_Input Button_Press

NewData

Tracker_Obtain_Data
Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]
Signal_passed

(ε1, ε1, ε1, ε1)

(ε1, ε1, ε1, ε1)

Dheadwand_to_tracker(τ)

(ε1, ε1, ε1, ε1)
(ε1, ε1, ε1, ε1)

Ready_render

[0,0]

DataComeTracker

(ε1, ε1, ε1, ε1)

Fig. 7 An EFTN model for the CAVE, where the timestamps of tokens arriving in Head, Wand,
Button_Input, TrackerMonitor and SwapMonitor at initial state are πHead(τ) = πWand(τ) = πButton_Input(τ) = (0,0,0,0),
πTrackerMonitor(τ) = (10.4,10.4,10.4,10.4) ms, and πSwapMonitor(τ) = (20.8,20.8,20.8,20.8) ms. The delay for Head
and Wand data arriving at the Tracker is Dheadwand_to_tracker(τ) = (50,50,50,50) ms. The delay for converting and
transferring tracker data to the Unix workstation is Dconvert(τ) = (10,10,10,10) ms. Drender_front(τ), Drender_left(τ),
Drender_right(τ), and Drender_floor(τ) are the fuzzy delays of rendering images for front wall, left wall, right wall, and
the floor. Assume Drender_front(τ) = (25.0,37.4,50.0,62.4) ms, and Drender_left(τ) = Drender_right(τ) = Drender_floor(τ) =
(10,20,30,35) ms, since the image on the front wall is usually more complicated than the ones on other
walls. The delay for drawing images on each wall is Ddraw_front(τ) = Ddraw_left(τ) = Ddraw_right(τ) = Ddraw_floor(τ) =
(2,2,2,2) ms, and ε3 = ε4 = 0.2 ms (a short time period that a monitor signal lasts).

13

pa pa

ta
da(τ)

tb1tbn

db1(τ)dbn(τ)

pb1pbn

tfn tf1

pbn pb1

db1(τ) ⊕ da(τ)dbn(τ) ⊕ da(τ)

N NR t

tb

latest{da1(τ), dan(τ)}

N

da1(τ)dan(τ)
t

NR

tb

(a)
(b)

Fig. 8 (a) Post-fusion (post-fuse transition ta with tb1, …, tbn); (b) Parallel fusion of places.

complete_render_4walls

Swap_and_draw
SwapMonitor

Generate_Monitor_signal

Swap_signal
[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

latest(Ddraw_front(τ),Ddraw_left(τ),Ddraw_right(τ),Ddraw_floor(τ))

complete_draw_4walls

ready_to swap

latest(Drender_front(τ),Drender_left(τ),Drender_right(τ),Drender_floor(τ))

Ready_render use_data_render

drawing_completed

Data

HeadWandButton

Head_Wand_Input

NewData
Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]

Signal_passed

DataCom

(ε1, ε1, ε1, ε1)

Dheadwand_to_tracker(τ)

Tracker

Dconvert(τ)
Tracker_Got_Data

convert_and_transfer Data_ready

TrackerdataCome

Tracker_Obtain_Data
[0,0]

Fig. 9 The reduced EFTN model, where latest(Drender_front(τ), Drender_left(τ) , Drender_right(τ), Drender_floor(τ)) =
latest((25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35), (10,20,30,35)) = (25.0,37.4,50.0,62.4) ms, and
latest(Ddraw_front(τ), Ddraw_left(τ), Ddraw_right(τ), Ddraw_floor(τ)) = (2,2,2,2) ms.

14

NICE Client 1
NICE Garden server

OUT
IN

OUT1

world_state

IN

send_avatar1_state

got_avatar1_state

broadcast

receive_avatar1_state

send_to_avatar2
ICE Client 2

send_avatar2-state

receive_avatar2_state

TCP

TCP

UDP

UDP

UDP

OUT TCP

TCP

UDP

got_avatar2_state

send_to_avatar1

OUT2

IN

Changed

DUDP(τ)
DUDP(τ)

DUDP(τ)
DUDP(τ)

world_evolve

broadcast

Ev-Timer

Time_to_evolve

world_change

broadcast

DEV(τ)Lost

0.01[0,0]
0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

Lost
0.01[0,0]

0.99[0,0]

NICE avatar Repeater

Fig. 10 An EFTN model for 2 existing NICE clients communicating with each other, the repeater and the
server, where the delay of UDP channel is DUDP(τ) = (50,100,150,200) ms, the world evolves in the interval
DEV(τ) = (10,60,180,300) sec.

15

SendIt

Tacker_Monitor

WorldData
RemoteData

OUT

IN

receive_avatar2_state

send_avatar1_state

receive_World_state

Change

ChangeWorldOrNot

0.002[0,0]

Got_new_avatar2_data

Tracker_Data_No

complete_render_4walls

Swap_and_draw
SwapMonitor

Generate_Monitor_signal

Swap_signal
[0,0]

(20.8,20.8,20.8,20.8)[ε4,ε4]

Swap_Signal_passed

latest(Ddraw_front(τ),Ddraw_left(τ),Ddraw_right(τ),Ddraw_floor(τ))

complete_draw_4walls

ready_to swap

latest(Drender_front(τ),Drender_left(τ),Drender_right(τ),Drender_floor(τ))

Ready_render
use_data_render

drawing_completed

HeadWandButton

Head_Wand_Input

NewData
Tacker_Monitor

Generate_Monitor_signal

Monitor_signal

(10.4,10.4,10.4,10.4)

[ε3,ε3]

Signal_passed

DataCom

(ε1, ε1, ε1, ε1)

Dheadwand_to_tracker(τ)

Tracker

Dconvert(τ)
Tracker_Got_Data

convert_and_transfer Data_ready

TrackerdataCome

Tracker_Obtain_Data
[0,0]

Not_Change

0.998[0,0]

DuringWorldChangeAction

ActionFinished

NotInWorldChangeAction
InWorldChangeAction

ActionTimeOut

(800,1000,1200,1500)

Fig. 11 The EFTN model for a CAVE in NICE as a distributed component

6 Design/CPN implementation

6.1 Global Declaration Node and Fuzzy Time Function

Fig. 15 shows the global declaration node of the Design/CPN implementation for our

EFTN models of the NICE. To use Design/CPN for implementing our EFTN models, we need a

function to generate fuzzy delays in trapezoidal possibility distributions. Given a fuzzy delay

D(τ) = (a,b,c,d), we use a function FUZZY(a,b,c,d) to generate a delay value in trapezoidal

possibility distribution (a,b,c,d). In function FUZZY(a,b,c,d), a random value atime in

the interval [a,d] is generated first. Since the possibility is 1 in the interval [b,c], atime will be

picked up as the delay value if atime is in the interval [b,c]. If atime is in the interval [a,b) or

(c,d], we compute the possibility D(atime) in the trapezoidal distribution and generate a random

16

value in (0,1). atime can be picked up as the delay value only if D(atime) ≥ the random value

in (0,1). Repeat the procedure until a delay value can be picked up.

6.2 Design/CPN implementation of EFTN models for the NICE

Fig. 12 shows Design/CPN implementation of our EFTN model for a CAVE as a

distributed component in the NICE. And Fig. 13 shows Design/CPN implementation for the

EFTN model of garden server and communication interface between two NICE clients and the

server.

We want to analyze remote avatar’s display behavior on local screen and the response

time from the time that a client sends out a world_changing message from its OUT key to the

time that the client receives the world_changed response from the server via the IN key. So, in

Fig. 12, a timestamp origt is attached to each token generated by firing transition

Head_Wand_Input. The token (tracker data) will carry the timestamp origt when it is used to

draw images on the local screen and it is sent to the avatar repeater and broadcasted to all other

clients. A VE (e.g., CAVE) as a distributed component in NICE, will need local avatar state

information, remote avatars state information, and world state information to render images. So,

in Fig. 12, transition DrawComplete fires by using a token carrying local tracker data’s original

timestamp (origt) and remote tracker data’s origin time (origtk). By recording origt,

origtk, and the timestamp that transition DrawComplete fires, remote avatar’s display behavior

can be clearly evaluated. Section 7 will give the detail of the analysis.

Similarly, in order to analyze the response time for a client’s world_changing message,

we attach a timestamp sendt to each token sent to the client’s OUT key (e.g., places 1Out, 2Out)

when the transition SendIt fires. And we record the input token’s timestamp sendt, transition

ReceiveWorldEvent’s firing time, and the ID of the world_changing event’s initiator

(world_changing avatar’s ID), when transition ReceiveWorldEvent fires. As we’ll see in Section

17

7, the characteristic and bottleneck of the response time via the TCP channel can been easily

captured.

6.3 Design/CPN implementation of an EFTN model for TCP Protocol

The Transmission Control Protocol (TCP) is a reliable and ordered transport layer protocol. The

data transmission in TCP is basically a sliding window mechanism, where the window size is

advertised by the receiver. Fig. 14 shows a Design/CPN implementation of an EFTN model for

TCP protocol. The features of TCP modeled in Fig. 14 are as follows:

♦ Window size advertised by the receiver: assuming that the receiver’s window size is 64K

initially and that each data unit is 1024 byte, for simplicity, we initialize receiver’s window

size as 64. An ACK message sent by the receiver is composed of a sequence number, the

sequence number of next data unit that the receiver is expecting, and receiver’s available

window size. The receiver’s available window size tells the sender how many bytes the

receiver can accept.

♦ Congestion window: the sender uses 2 windows to determine how many bytes it can send.

One is the receiver advertised window, and the other is the congestion window that the sender

uses to detect network congestion. If the number of bytes stored in the sender’s buffer waiting

for ACK ≤ min (receiver_advertised_window, congestion_window), the sender

can keep on transmitting new coming data. Otherwise, no new data can be transmitted.

♦ Slow start and Congest Avoidance: the sender’s congestion window is initialized as 1 data

unit. The sender has a parameter: threshold, initialized as 64. Once a data unit in the

sender buffer is time out before the sender receives an ACK message for it, the sender sets:

congestion_window =1 and threshold = max (1, 0.5*(min(congestion_window,

receiver_window))). Once a data unit in the sender buffer has been acknowledged, the

sender will grow the congestion window. At that time, if congestion_window ≤

18

threshold, then the sender is in the slow start mode and congestion_window =

congestion_window + 1; if congestion_window > threshold, then the sender is in

the congest avoidance mode and congestion_window = congestion_window + (1 /

congestion_window).

♦ Delayed ACK: the receiver will not send an ACK right after a data unit is received. An ACK

corresponding to a data unit i will wait for 200 ms before being sent. However, if the ACK for

data unit i+1 comes when ACK for i is waiting, the receiver will cancel ACK for i and send

ACK for i+1 immediately. Also, when an out-of-order data unit arrives, the receiver will

discard the data unit and send an ACK immediately to tell the sender which data unit the

receiver is expecting.

♦ Retransmission timer and persistence timer: when a data unit is sent, a retransmission timer is

started. If the retransmission timer expires before the data unit is acknowledged, the sender

will resend that data unit. Most TCP implementations use retransmission timeout =

RTT + 4 * D, where RTT is the best estimate of round-trip time and D is the estimation of

standard deviation. The retransmission timer should be dynamically updated. But for

simplicity, we set it to 550 ms in our model. The persistence timer is used to prevent the

following deadlock: the receiver advertised the receiver window as 0, so the sender will stop

transmitting and wait for the receiver to update the receiver window. Later, the receiver

advertises a larger available window size. However, this ACK message is lost on the way.

Then the sender and receiver will wait for each other. To prevent this deadlock, the persistent

timer will be starter once the receiver advertised the window as 0. If the persistent timer

expires and the receiver window is still 0, the sender will send the receiver a probe. Once the

probe reaches the receiver, the receiver will immediately send an ACK with the current

receiver-window size.

19

1O
u

t
W

D F
G

1o
u

tw

S
en

d
A

va
ta

r1

T
D

F
G

se
n

d
A

va
ta

r1

R
ec

ei
ve

A
va

ta
r2

S
ta

te

T
D

F
G

1r
ec

ei
ve

2

1I
N

W
D F
G

1I
N

R
ec

ei
ve

W
o

rl
d

E
ve

n
tC

i
n
p
u
t

(
w
d
,
s
e
n
d
t
,
i
d
)
;

a
c
t
i
o
n

l
e
t

v
a
l

r
e
c
e
i
v
e
t
i
m
e

=

t
i
m
e
(
)

v
a
l

w
o
r
l
d
r
e
s
p
o
n
s
e

=

o
p
e
n
_
a
p
p
e
n
d

"
w
o
r
l
d
r
e
s
p
o
n
s
e
"

i
n

((

o
u
t
p
u
t
(
w
o
r
l
d
r
e
s
p
o
n
s
e
,

m
a
k
e
s
t
r
i
n
g

s
e
n
d
t

^

"
\
t
"

^

m
a
k
e
s
t
r
i
n
g

r
e
c
e
i
v
e
t
i
m
e

^

"
\
t
"

^

m
a
k
e
s
t
r
i
n
g

i
d

^

"
\
n
"

)
)
;

(
c
l
o
s
e
_
o
u
t

(
w
o
r
l
d
r
e
s
p
o
n
s
e
)
)
)

e
n
d
;

R
ec

ei
ve

A
va

ta
r1

1D
at

a

T
D

(0
,0

.0
)

W
an

d
H

an
d

B
u

tt
o

n

E

e

N
ew

D
at

aS
T

A
M

P

M
o

n
it

o
r

S
ig

n
al E

T
R

ea
d

y_
to

_g
en

er
at

e

E
e@

+
10

.4

T
ra

ck
er

G
o

t_
D

at
a

S
T

A
M

P

D
at

a_
re

ad
y

S
T

A
M

P

D
at

a
0.

0 S
T

A
M

P

C
o

m
p

le
te

R
en

d
er

A
LL

D
A

T
A

C
o

m
p

le
te

D
ra

w
A

LL
D

A
T

A

D
R

ea
d

y
G

en
er

at
e

E
e@

+
20

.8

R
ea

d
y

S
w

ap
Ee

D
M

o
n

it
o

r
S

ig
n

al

E

In
p

u
t

C

o
u
t
p
u
t

o
r
i
g
t
;

a
c
t
i
o
n

(
t
i
m
e
(
)
)
;

T
ra

ck
er

O
b

ta
in

D
at

a

[o
ri

g
t>

0.
0]

T
S

ig
n

al
P

as
s

D
G

en
er

a

C
o

n
ve

rt
T

ra
n

sf
er

R
ec

ei
ve

L
o

ca
lA

va
ta

r

R
en

d
er

S
w

ap
A

n
d

D
ra

w

D
ra

w
C

o
m

p
le

te
C

i
n
p
u
t

(
t
n
,
o
r
i
g
t
,
t
k
,
o
r
i
g
t
k
,
w
k
l
)
;

a
c
t
i
o
n

l
e
t

v
a
l

t
e
m
p

=

t
i
m
e
(
)

v
a
l

n
i
c
e
f
i
l
t

=

o
p
e
n
_
a
p
p
e
n
d

"
n
i
c
e
f
i
l
t
"

i
n

((

o
u
t
p
u
t
(
n
i
c
e
f
i
l
t
,

m
a
k
e
s
t
r
i
n
g

o
r
i
g
t

^

"
\
t
"

^

m
a
k
e
s
t
r
i
n
g

o
r
i
g
t
k

^

"
\
t
"

^

m
a
k
e
s
t
r
i
n
g

t
e
m
p

^

"
\
t
"

^

"
\
n
"

)
)
;

(
c
l
o
s
e
_
o
u
t

(
n
i
c
e
f
i
l
t
)
)
)

e
n
d
;

T
G

en
er

at
e

S
ig

n
al

P
as

s

D
T

im
eo

u
t

E

e

T
ra

ck
er

D
at

aS
T

A
M

P 0.
0

T
T

im
eo

u
t

E
e

T
ra

ck
er

D
at

aN
o

IN
T

1

D
at

a
C

o
m

e

S
en

d
It

C

o
u
t
p
u
t

s
e
n
d
t
;

a
c
t
i
o
n

(
t
i
m
e
(
)
)
;

W
o

rl
d

W
D

L

[]

R
ea

d
y

R
en

d
er

E

e

S
T

A
M

P

R
ea

d
yT

o
S

en
d

C
h

an
g

eW
o

rl
d

O
rN

o
t

W
DN
o

tI
n

W
o

rl
d

C
h

an
g

eA
ct

io
n

E
e

In
W

o
rl

d
C

h
ag

eA
ct

io
nE

A
ct

io
n

T
im

eO
u

t

E

S
ta

rt
A

C
h

an
g

e
A

ct
io

n
D

u
ri

n
g

W
o

rl
d

C
h

an
g

eA
ct

io
n

A
ct

io
n

F
in

is
h

ed
Ju

d
g

eI
t

C
h

an
g

W
o

rl
d

W
D

(w
d

,s
en

d
t,

id
)

(t
k,

o
ri

g
tk

)

if
 t

n
>t

k
th

en
 (

tn
,o

ri
g

t)
el

se
 (

tk
, o

ri
g

tk
)

e
e@

+1
.0

o
ri

g
t@

+5
0.

0

o
ri

g
t

e
e@

+0
.0

1
e

o
ri

g
t

o
ri

g
t

o
ri

g
t@

+1
0.

0

o
ri

g
t

o
ri

g
t

e

e

e@
+1

0.
4

e@
+2

0.
8

(o
ri

g
t,

tk
,o

ri
g

tk
,w

kl
)@

+F
U

Z
Z

Y
(2

4.
9,

37
.3

,4
9.

9,
62

.3
)

(o
ri

g
t,

tk
,o

ri
g

tk
,w

kl
)

e

(o
ri

g
t,

tk
,o

ri
g

tk
,w

kl
)@

+2
.0

(o
ri

g
t,

tk
,o

ri
g

tk
,w

kl
)

e
e

e@
+0

.1

e@
+0

.2
e

e

e@
+0

.2

e

e

tn

tn
+1

o
ri

g
tk

e

e

o
ri

g
t

o
ri

g
t

o
ld

t

o
ri

g
t

w
kl

[]

o
ri

g
t

e

w
kl

(w
d

,s
en

d
t,

id
):

:w
kl

(t
n

,o
ri

g
t)

(t
n

,o
ri

g
t)

(t
k,

o
ri

g
tk

)

o
ri

g
t

(t
n,

se
nd

t,1
)

e
e

w
s

w
se@

+F
U

Z
Z

Y
(8

00
.0

, 1
00

0.
0,

12
00

.0
,1

50
0.

0)

w
s

e

w
s

e
e

e

if
 C

P
N

’r
an

d
re

al
(0

.0
, 1

0.
0)

 <
=

0.
02

th
en

 1
‘w

s
el

se
 e

m
p

ty
w

s

e

Fig. 12 Design/CPN implementation of EFTN model for a Nice client

20

1O
u

t
W

D

F
G

1o
u

tw

S
en

d
A

va
ta

r1

T
D

F
G

se
n

d
A

va
ta

r1

R
ec

ei
ve

A
va

ta
r2

S
ta

te

T
D

F
G

1r
ec

ei
ve

1I
N

W
D

F
G

1I
N

In

W
D O
u

t1
W

D

O
u

t2
W

D re
ce

iv
e

A
va

ta
r1

T
D

S
en

d
T

o
A

va
ta

r2

T
D

re
ce

iv
e

A
va

ta
r2

T
D

S
en

d
T

o
A

va
ta

r1

T
D

W
o

rl
d

IN
T

0

C
h

an
g

ed

W
D

E
vT

im
er

E
e

T
im

e
T

o
E

VE

C
h

an
g

e
W

o
rl

d

S
ta

rt
E

vT
im

er

S
en

d
W

o
rl

d
S

ta
te

E
vo

lv
e

W
o

rl
d

C

o
u
t
p
u
t

o
r
i
g
t
;

a
c
t
i
o
n

(
t
i
m
e
(
)
)
;

B
ro

ad
ca

st
A

va
ta

r1
T

ra
ck

er B
ro

ad
ca

st
A

va
ta

r2
T

ra
ck

er

T
C

P
11

H
S

T
C

P
11

#

T
C

P
12

H
S

T
C

P
12

#6

U
D

P
2

@
+

F
U

Z
Z

Y
(5

0.
0,

10
0.

0,
15

0.
0,

 2
00

.0
)

U
D

P
1

@
+

F
U

Z
Z

Y
(5

0.
0,

10
0.

0,
15

0.
0,

 2
00

.0
)

2O
u

t

W
D

F
G

2O
u

t

S
en

d
A

va
ta

ta
r2

T
D

F
G

se
n

d
A

va
ta

r2

R
ec

ie
ve

A
va

ta
r1

S
ta

te

T
D

F
G

2r
ec

ei
ve

1

2I
N

W
D

F
G

2I
N

T
C

P
22

H
S

T
C

P
22

#8

U
D

P
2

@
+

F
U

Z
Z

Y
(5

0.
0,

10
0.

0,
15

0.
0,

20
0.

0)

U
D

P
1

@
+

F
U

Z
Z

Y
(5

0.
0,

10
0.

0,
15

0.
0,

20
0.

0)

T
C

P
21

H
S

T
C

P
21

#7

A
va

ta
r

R
ep

ea
te

r

G
ar

de
n

S
er

ve
r

N
IC

E
 C

lie
nt

1

N
IC

E
 C

lie
nt

2

(t
n

,o
ri

g
t,

id
)

w
d

(w
d

+1
, o

ri
g

t,
id

)
@

+5
.0

(w
d

,o
ri

g
t,

id
)

(w
d

,o
ri

g
t,

id
)

(w
d

,o
ri

g
t,

id
)

e

e@
+F

U
Z

Z
Y

(1
00

00
.0

, 6
00

00
.0

, 1
80

00
0.

0,
30

00
00

.0
)

w
d e

21

Send
Packet

[aw<min(wr, floor(wc))]

Transmit
Packet

@+FUZZY(10.0,60.0,110.0, 160.0)

Receive
PDU

[(ptype = D)
andalso
(n=uw+1)
andalso
(aw >0)]

Receive
Acknow.

[ani<an]

Transmit
Acknow.

@+FUZZY(10.0,60.0,110.0, 160.0)

Send INTxDATA

NextSend
INT

1

A

INTXDATAXTYPE

D INTXINTXWIN

C

INTXINTXWIN

B

INTXDATAXTYPE

DataTo
Application

DATA

P Out

Sender

Network

Receiver

TCP Protocol

Timout

TIME

550.0 Send
Buffer INTXDATAXTYPETime

Count
INT

Win
Receiver

WIN64

Win
Congest

REALWIN1.0

Threshold
WIN

64

Change
Win

WIN

Linear
Congest

[floor(wc)>=th]

Exp
Congest

[floor(wc)<th]

PDU
ACKed

(0,64)

INTXWIN

ReSend

GetOut
Buffer

[n<b]

Start
Persistent

Timer

[w=0]

Persistent
Timer

TIME
100.0

Persistent
TimeOut

E

Not
Probe

[wr<>0]

Send
Probe

[wr=0]

Receiver
Win

WIN 64

Receiver
Buffer

INTxDATA

Last
Received

INT 0

NextTo
Application

INT
1

Receive
Probe

[ptype=P]

Discard
PDU

[ptype=D
andalso
n<=uw]

DeliverTo
Application

[n=k]

@+5.0

Win
Size

WIN

0

New
ACK INTXWIN

Get
New

ACKNo

INT

1

Has
ACKed

INT

0

Discard
Ack

[an<=ani]

DataFrom
Application DATAP In

Attach
TCPHead

NextSend
INT

1

ACK

INTXINTXWIN

NODelayed
ACK

E
e

E

Delay
Timeout

INTXINTXWIN Delayed
ACK

Start
DelayTimer

Replace
OldACK

[n0=n]

Send
DelayedACK

NoACK
Tosend

NoMore
Delay [n0 < n]

E

ACK
HasSent

(n,p,D)@+20.0

(n,p,ptype)

if CPN’randreal(0.0, 10.0) < 9.9
then 1‘(n,p,ptype)
else empty

(n,p,ptype)

p

(an, n+1, aw-1)
@+20.0

(an,n,w)

if CPN’randreal(0.0, 10.0) < 9.9
then 1‘(an,n,w)
else empty

(an,n,w)

n n+1@+20.0

(n,p)

wait

wc (n,p,D)@+20.0
n@+wait+20.0

w

w

wc

wc+(1.0/wc)

th

k

w

wc

wc+1.0

w

k

th

wr

(b,bw)

(n,w)@+7.0

(n,p,D)

nwait

th

max(1,min(floor(wc/ 2.0), wr div 2))

wc

1.0

n@+wait+20.0

(n,p,D)@+20.0

(n,p,D)@+20.0

(b,bw)

(n,p,D)

bw

e@+pt

e
e

(0,p,P)@+9.0

pt

wr

wr

e@+pt

pt

(n,p)@+20.0

(n,p,ptype)

(n,p,ptype)

uw uw

(an,uw+1,aw)@+20.0 uw+1

aw

aw-1

aw

(n,p)

aw

aw+1

k
k+1

aw

aw+1

aw

aw-1

(an,uw+1, aw+1)

(n,w)

(n,w)

uw

aw

(an,uw+1,aw)@+20.0

an

an+1

an

an+1

an+1

an

ani

an (an,n,w)

ani

an+1

an

p

n

n+1

(n,p)

uw

(n,w)

wr

(an,n,w)
e

e@+200.0
(an,n,w)

(an,n,w)

(an0,n0,w0)
(an,n,w)

e
(an,n,w)

(an0,n0,w0)

(an,n,w)

(an,n,w)

e

e

e

e
(an,n,w)

e

Fig. 14
 D

esign/C
PN

 im
plem

entation of E
FT

N
 m

odel for T
C

P protocol

22

color INT = int timed;
color WIN = int;
color STAMP = real timed;

color AVATARID = INT;
color WD = product INT * STAMP * AVATARID;
color WDL = list WD ;
color DATA = WD ;

color TYPE = with D | P ;
color INTxDATA = product INT * DATA;
color INTXDATAXTYPE = product INT * DATA * TYPE;
color INTXINTXWIN = product INT * INT * WIN;
color INTXWIN = product INT * WIN;
color E = with e timed;
color TD = product INT * STAMP;
color ALLDATA = product STAMP * INT * STAMP * WDL;
color REALWIN = real timed;

var n, n0 : INT;
var p,str : DATA;
var aw, w,w0,k, wr, th, bw : WIN;
var wc : REALWIN;
var b, uw, an,ani, an0 : INT;
var ptype: TYPE;
var wkl : WDL;
var wait, pt : TIME;
var id : AVATARID;
var ad : ALLDATA;
var td : TD;
var origt, origtk, oldt, origw, sendt : STAMP;
var tn, tk : INT;
var wd : INT;
var ws, wk : WD;

fun FUZZY(a: real,b: real,c: real,d: real) =
let
val atime = CPN’randreal(a,d);
in
(if atime >= b andalso atime <= c
then atime
else if (atime <b)
then if (a<b)
then if ((atime-a)/(b-a) >= CPN’randreal(0.0, 1.0)) then atime

else FUZZY(a,b,c,d)
else if (atime = a) then a
 else FUZZY(a,b,c,d)

else
if (d>c)
then if ((atime-c)/(c-d)+1.0 >=

CPN’randreal(0.0, 1.0)) then atime
else FUZZY(a,b,c,d)

else if (atime = c) then c
else FUZZY(a,b,c,d)

)
end;

Fig. 15 Global Declaration node in Design/CPN implementation

23

7 Simulation Results

7.1 Remote Avatar’s Display Behavior on Local Screen

2Data

TD

(0,0.0)

Receive
Avatar2

Receive
Avatar2

State

TD

(tn,origt)

(tk,origtk)

(tn,origt)

Fig. 16 The remote avatar data receiving without using the filter

Unreliable protocols (e.g. UDPs) are used for the transmission of avatar state information (remote

tracker data). That is because: 1) The loss of one tracker data is usually followed shortly

afterwards by newer ones; and 2) Unreliable protocols have a lower latency and utilize lower

bandwidth than reliable protocols. However, UDP protocol is unordered. Using unordered remote

tracker data will make the remote avatar jump back and forth on the local screen. Originally, a

NICE client uses remote avatar tracker data in their arriving order. Fig. 16 shows how the

transition ReceiveAvatar2 works in the original design. Fig. 17 shows the time of avatar2’s

original movement and the time that movement is displayed on NICE client1’s screen in the

original design. We can see that the remote avatar’s display may jump back and forth. To avoid

the jumping back behavior, the NICE currently uses a filter to accept remote avatar data in

increasing order. As shown in Fig. 12, the transition ReceiveAvatar2 works as a filter. Fig. 18

shows the display behavior using the filter. Now the jumping back phenomenon is eliminated.

However, one early arriving remote avatar tracker data will make the filter discard all remote

tracker data that are sent before, but received later than that early arriving data. From Fig. 18, we

can see that the display of the remote avatar is not very smooth. Fig. 19 shows the distribution of

the delay from the time that a remote avatar has a movement to the time that remote tracker

24

information is displayed on local screens. And Fig. 20 shows the distribution of the time that

remote tracker data lags behind the local data.

To display the remote avatar’s movement more smoothly, we can use a buffer to store the

incoming remote avatar state information sent after the last one used for local display. And we

use the remote avatar’s state information in smooth gap. Fig. 21 shows the improved strategy

using a buffer for remote avatar tracker data. Once a new remote tracker data comes, if its

sequence number is greater than the last one’s used for rendering images, the function

inserttd (as shown in Fig. 22) inserts the new data into the buffer and keeps the list of

sequence numbers of the remote tracker data in ascending order in the buffer. When it is time to

render new images, we pick up the remote tracker data in the middle of the list from the buffer.

Fig. 23 shows that the display of the remote avatar is much smoother using the improved strategy

than using the filter.

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [ms] that avatar2's original movement

T
im

e
[m

s]
 t

h
at

 a
va

ta
r2

's
 m

o
ve

m
en

t
d

is
p

la
ye

d
 o

n
 N

IC
E

cl

ie
n

t1
's

 s
cr

ee
n

Fig. 17 The simulated display behavior of a remote avatar on the local screen without using the filter

25

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [ms] that avatar2's original movement

T
im

e
[m

s]
 t

h
at

 a
va

ta
r2

's
 m

o
ve

m
en

t
d

is
p

la
ye

d
 o

n
 N

IC
E

cl

ie
n

t1
's

 s
cr

ee
n

Fig. 18 The simulated display behavior of a remote avatar on the local screen with using the filter

0

10

20

30

40

50

60

70

80

90

250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480

Delay time [ms]

F
re

q
u

en
cy

Fig. 19 The distribution of the delay from the time that a remote user has a movement to the time that
movement is displayed on the local screen in simulation.

26

0

10

20

30

40

50

60

70

80

90

100

110

120

130

150 170 190 210 230 250 270 290 310 330 350 370 390

Lag time [ms]

F
re

q
u

en
cy

Fig. 20 The distribution of the time that remote avatar’s display lags behind local avatar in simulation

Ready
Render

E

Render

Receive
Avatar2

State

TD

Receive
Avatar2

Remote
AvatarTDL

[]

Last
used

TD

FindNext
To use

C

input (tdl, tk, origtk);
output (td, resttdl);
action
let
val nexttd = findclose((tk,origtk),tdl)
in
((nexttd, removelesstn(nexttd, tdl)))
end;

Remote
AvatarData

TD (0,0.0)

Begin
Render

E

e

e

e

(tn,origt)

(tk,origtk)

if tn > tk
then inserttd((tn,origt), tdl)
else tdl

(tk,origtk)

(tk,origtk)

tdl

tdl

(tk,origtk)

td

e

resttdl

Fig. 21 Improved strategy: use a buffer for remote avatar state information

27

color TD = product INT * STAMP;
color TDL = list TD ;

var td, td1 : TD;
var tdl, resttdl, tdl1 : TDL;

fun mid(number: int) = if number mod 2 = 0 then number div 2
else number div 2 +1 ;

fun greater((tn,_): TD, (tk,_): TD) = if tn > tk then true else false;

fun muchgreater((tn,_): TD, (tk,_): TD) = if tn > (tk+2) then true else false;

fun findclose(td, tdl) =
let
val numbertd = length(tdl)
in
(if numbertd = 0 then td
 else if (numbertd = 1) andalso muchgreater(hd(tdl),td) then td
 else nth(tdl, mid(numbertd) - 1)
)
end;

fun removelesstn(_, nil) = nil
| removelesstn(td, td1 :: tdl1) = if greater(td,td1) then removelesstn(td, tdl1)

else tdl1 ;

fun inserttd(td, nil) = [td]
| inserttd(td, td1 ::tdl1) = if greater(td1,td) then td::td1::tdl1

else td1::inserttd(td, tdl1);

Fig. 22 Definition of functions used in improved strategy for remote avatar state information

200

700

1200

1700

2200

2700

3200

3700

4200

4700

5200

5700

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500

Time [ms] that avatar2's original movement

T
im

e
[m

s]
 t

h
at

 a
va

ta
r2

's
 m

o
ve

m
en

t
d

is
p

la
ye

d
 o

n
 N

IC
E

cl

ie
n

t1
's

 s
cr

ee
n

Fig. 23 The simulated display behavior of a remote avatar on the local screen with using buffer

28

7.2 Test of TCP protocol

We tested our model for TCP protocol by giving a data unit to the TCP sender for

transmission every 50 ms, and every 100 ms, respectively, and recording the delay from the time

that the data unit is passed to the TCP sender to the time that the TCP receiver delivers the data

unit to the application. Our simulation result is consistent with the experimental results in [9],

which is obtained by monitoring the network delay on internet.

♦ Case 1: give the TCP sender a data unit every 50 ms:

0

20

40

60

80

100

120

140

160

50 110 170 230 290 350 410 470 530 590 650 710 770 830 890

Delay times [ms]

F
re

q
u

en
cy

Fig. 24(a) Delay distribution for data unit coming every 50 ms

0

100

200

300

400

500

600

700

800

900

1000

1 38 75 112 149 186 223 260 297 334 371 408 445 482 519 556 593 630 667 704 741 778

Data unit sequence number

D
el

ay
 t

im
e

[m
s]

Fig. 24 (b) History chart for each data unit (for data unit coming every 50 ms)

29

As shown in Fig. 24 , it is obvious that the TCP has a slow start and one data unit’s long delay

will delay all subsequent data units after it starts. TCP’s reliable and ordered behavior greatly

increases the average network latency and jitter.

♦ Case 2: give the TCP sender a data unit every 100 ms:

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

30

Fig. 25 (a) shows that decreasing the traffic to 1 data unit every 100 ms makes the delay

distribution very similar to UDP’s delay distribution (50,100,150, 200) ms. However, Fig. 25 (b)

shows that 1 data unit’s long delay (because of loss and retransmit), still greatly delays the

subsequent data units. Also the slow start still exists.

7.3 Response Time via TCP channel

By using the method described in Section 6, we can analyze the response time for a

client’s world_changing message.

150

250

350

450

550

650

750

850

950

1050

1150

1250

1350

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Tim e [m s] th at a c lien t s en ds a w or ld-cha ng ing m e ss age to th e s erve r

D
e

la
y

 [
m

s
]

u
n

ti
l

c
li

e
n

t1
 r

e
c

e
iv

e
d

 t
h

e
 r

e
s

p
o

n
s

e
 f

ro
m

th
e

 s
e

rv
e

r

A vatar1 A vatar2

Fig. 26 History chart of the response time (from time that a message is sent out by client1 (or client2) to
time that client1 get the broadcasted response from server via TCP channel) in simulation.

Fig. 26 shows the history chart recorded at client1’s site for the NICE with 2 clients.

Avatar1 has 3 world-changing actions starting around 125, 4763, and 10338 ms, respectively.

Avatar2 has 3 world-changing actions starting around 2371, 4326, and 11003 ms, respectively.

Each action takes around 1000 ms. We can see the effects of TCP’s slow start. Also, avatar1 and

avatar2 tried twice to change the world at the same time, one after 4763 ms, the other after 11003

31

ms. For the first time (after 4763 ms), a long delay happens on the TCP channel from client2’s

OUT key to the server’s IN key. If two data are sent from client1 and client2 to the server at the

same time and client2’s data arrives much later than client1’s, each one of client2’ subsequent

data arrives at the server later than client1’s corresponding data (the data sent from client1 at

almost the same time as client2). Then the response for each of cleint2’s data will be behind the

response for client1’s corresponding data, in the queue of responses from the server to client1. So

the response for each of client2’s data, arrives at client1’s IN key later than the response for

client1’s corresponding data.

For the second time (after 11003 ms), long delays happen on the TCP channel from the

server’s OUT key to client1’s IN key after 11200 ms. The response for both of client1 and

client2’s data are delayed.

To create more traffic on TCP channels, we run the simulation for 5 clients. Fig. 27

shows the history chart recorded at client1’s site for the NICE with 5 clients. More obviously than

in the case of 2 clients, the response times for all avatars’ world-changing activities have the same

trend at client1’s site, if it happens that all avatars want to change the world at the same moment

(e.g., arround 78000 ms in Fig. 27.) A data lost on the TCP channel from the server’s OUT key to

a client’s IN key will not only cause long delay for client1 receiving response for one avatar’s

world-changing activity, but also postpone client1 receiving response for all avatar’ world-

changing activities. The TCP channel from the server’s OUT key to a client’s IN key may get

congested when the number of clients is increased and all avatars happen to try changing the

world at the same time. In this situation, it becomes a bottleneck.

32

200

400

600

800

1000

1200

1400

1600

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000 110000 120000

Time [ms] that a client sends a world-changing message to the server

D
el

ay
 [

m
s]

 f
ro

m
 t

h
e

m
es

sa
g

e
se

n
t

o
u

t
to

 c
lie

n
t1

re
ce

iv
ed

 t
h

e
re

sp
o

n
se

 f
ro

m
 t

h
e

se
rv

er

Avatar1 Avatar2 Avatar3 Avatar4 Avatar5

Fig. 27 History chart of the response time for the NICE with 5 clients

8 Conclusion and Future Work

CVEs demand high requirements on network delays and jitters, so that remotely distributed users’

collaboration will not be disturbed. By using reduction, simulation, or occurrence graph on our

EFTN model, the network effects on CVEs can be easily evaluated.

Our EFTN models for the CAVE and NICE and the analysis of our EFTN models for the

NICE, indicate that EFTNs are powerful to specify and verify VRs. EFTNs can capture the

temporal uncertainties in CVEs. By simulating our EFTN models, we can analyze the network

effects on CVEs and the dynamic performance of CVEs.

In Section 4, we show a simple example of possibility analysis of our EFTN model for

the CAVE. EFTN models can give information on partial ordered events in terms of their degrees

of possibilities. The possibility analysis is based on model checking on transition firing sequences

[11] or occurrence graphs. The possibility analysis of our EFTN models for CVEs is to be

included in our future paper.

33

The simulation indicates that TCP’s reliable and ordered behavior greatly increases the

average network latency and jitter. Thus, it is desirable to design a new transport layer protocol

which is suitable for transmitting world state information with shorter latency and lower jitter

than TCP. We plan to propose new protocols, model and analyze theirs performance and effects

on CVEs in our future paper.

ACKNOWLEDGEMENTS

We sincerely thank Robert Kenyon for explaining CVEs, Jason Leigh and David Pape for

clarifying CVE implementation details, Andrew Johnson and Dan Sandin for discussing problems

that exist in CVEs, and all members of the Electronic Visualization Laboratory for providing

valuable comments on our work.

References

[1] E. Juan, J. P. Tsai, T. Murata, and Y. Zhou, “Reduction Methods for Real-Time Systems Using Delay

Time Petri Nets,” Technical report, EECS Dept., University of Illinois, Chicago, March, 1999.

[2] M. Roussos, A. Johnson, T. Moher, J. Leigh, C. Vasilakis, C. Barnes, “Learning and Building Together

in an Immersive Virtual World,” To appear in Presence vol. 8, no. 3, June, 1999.

[3] A. Johnson, M. Roussos, J. Leigh, C. Barnes, C. Vasilakis, T. Moher, “The NICE Project: Learning

Together in a Virtual World,” in the proceedings of VRAIS '98, Atlanta, Georgia, Mar 14-18, 1998, Pp

176-183.

[4] D. Pape, “CAVE user’s guide,” Electronic Visualization Laboratory, University of Illinois at Chicago,

Dec. 1996.

[5] P. Merlin, “A study of the Recoverability of Computer Systems,” Ph.D thesis, Computer Science Dept.,

University of California, Irvine, 1974.

[6] R. Mascarenhas, D. Karumuri, U. Buy, and R. Kenyon, " Modeling and analysis of a virtual reality

system with time Petri nets," Procs. 19th Int. Conf. on Software Engineering, pp. 33-42, April 1998,

Kyoto, Japan.

[7] T. Murata, "Temporal Uncertainty and Fuzzy-Timing High-Level Petri Nets," Invited paper at the 17th

International Conference on Application and Theory of Petri Nets, Osaka, Japan,, LNCS Vol. 1091, pp.

11-28, Springer-Verlag, New York, June 1996.

[8] T. Murata, "Petri Nets: Properties, Analysis and Applications," Proceedings of the IEEE, Vol. 77, No 4,

April, 1989, pp. 541-580.

34

[9] K. Park, and R. Kenyon, “Effects of Network Characteristics on Human Performance in a Collaborative

Virtual Environment,” Proceedings of IEEE VR `99 , Houston TX, March 13-17, 1999.

[10] T. Murata, T. Suzuki and S. Shatz, "Fuzzy-Timing High-Level Petri Nets (FTHNs) for Time-Critical

Systems," in J. Cardoso and H. Camargo (editors) "Fuzziness in Petri Nets" Vol. 22 in the series

"Studies in Fuzziness and Soft Computing" by Springer-Verlag, New York, pp. 88-114, 1999.

[11] Y. Zhou and T. Murata, “Petri Net Model with Fuzzy-Timing and Fuzzy-Metric Temporal Logic,” to

appear in the special issue on fuzzy Petri nets: concepts and intelligent system modeling, International

Journal of Intelligent Systems, 1998.

[12] Y. Zhou and T. Murata, “Fuzzy-Timing Petri Net Model for Distributed Multimedia Synchronization,”

in the Procs. of the 1998 IEEE International Conference on Systems, Man, and Cybernetics (SMC’98),

La Jolla, Calif., Oct. 12-14, 1998.

[13] Y. Zhou, T. Murata, and J. Tsai, “Reduction Methods for Real-Time Systems Using Fuzzy Timing

Petri Nets,” Technical report, EECS Dept., University of Illinois, Chicago, 1999.

[14] K. Jensen, and Design/CPN group, “Design/CPN Online,” Department of Computer Science,

University of Aarhus, Denmark . Online: http://www.daimi.au.dk/designCPN/.

[15] C. Cruz-Neira, D. J. Sandin, and T. A. DeFanti, “Virtual Reality: The Design and Implementation of

the CAVE,” in Proceedings of SIGGRAPH '93 Computer Graphics Conference, ACM SIGGRAPH,

August 1993, pp. 135-142.

[16] T. A. DeFanti, D. J. Sandin, and C. Cruz-Neira, “A `Room' with a `View',” IEEE Spectrum, October

1993, pp. 30-33.

35

Table of Contents

1 Introduction..1

2 Fuzzy-Timing Petri Nets and Extended Fuzzy-Timing Petri Nets...4

3 EFTN models for the CAVE..7

4 The Analysis of EFTN models for the CAVE ..8

5 EFTN models for the NICE ...9

6 Design/CPN implementation ... 15

6.1 Global Declaration Node and Fuzzy Time Function ... 15

6.2 Design/CPN implementation of EFTN models for the NICE.. 16

6.3 Design/CPN implementation of an EFTN model for TCP Protocol............................. 17

7 Simulation Results... 23

7.1 Remote Avatar’s Display Behavior on Local Screen .. 23

7.2 Test of TCP protocol ... 28

7.3 Response Time via TCP channel.. 30

8 Conclusion and Future Work ... 32

ACKNOWLEDGEMENTS .. 33

References .. 33

36

Table of Figures

Fig. 1. A picture of the Cave Automatic Virtual Environment (CAVE).....................................2

Fig. 2. (a) Jim (an avatar) is handing a flower to Eddie (another avatar); (b) A child is interacting
with an avatar in the CAVE. ..3

Fig. 3. Trapezoidal possibility distribution...5

Fig. 4 (a) latest{π1(τ), π2(τ)} shown by heavy line; (b) earliest{e1a(τ), e1b(τ)} is shown by the
heavy line..6

Fig. 5 (a) [E, F] = [E, +∞) ∩ (-∞, F] is trapezoidGHCD shown by the heavy line, and [E, F] ∩ πe is

also trapezoidGHCD shown by the shaded area. (b) The part of πe where τ ≤ f is shown by ,

the part of πe where τ ≥ f is shown by ...7

Fig. 6. Possibility of transition Swap_and_draw fires instead of Swap_Signal_passed9

Fig. 7. An EFTN model for the CAVE, where the timestamps of tokens arriving in Head, Wand,
Button_Input, TrackerMonitor and SwapMonitor at initial state are πHead(τ) = πWand(τ) =
πButton_Input(τ) = (0,0,0,0), πTrackerMonitor(τ) = (10.4,10.4,10.4,10.4), and πSwapMonitor(τ) =
(20.8,20.8,20.8,20.8). The delay for Head and Wand data arriving at the Tracker is
Dheadwand_to_tracker(τ) = (50,50,50,50) ms. The delay for converting and transferring tracker
data to the Unix workstation is Dconvert(τ) = (10,10,10,10) ms. Drender_front(τ), Drender_left(τ),
Drender_right(τ), and Drender_floor(τ) are the fuzzy delays of rendering images for front wall, left
wall, right wall, and the floor. Assume Drender_front(τ) = (25.0,37.4,50.0,62.4) ms, and
Drender_left(τ) = Drender_right(τ) = Drender_floor(τ) = (10,20,30,35) ms, since the image on the front
wall is usually more complicated than the ones on other walls. The delay for drawing images
on each wall is Ddraw_front(τ) = Ddraw_left(τ) = Ddraw_right(τ) = Ddraw_floor(τ) = (2,2,2,2) ms, and ε3
= ε4 = 0.2 ms (a short time period that a monitor signal lasts). ... 12

Fig. 8 (a) Post-fusion (post-fuse transition ta with tb1, …, tbn); (b) Parallel fusion of places...... 13

Fig. 9. The reduced EFTN model, where latest(Drender_front(τ), Drender_left(τ) , Drender_right(τ),
Drender_floor(τ)) = latest((25.0,37.4,50.0,62.4), (10,20,30,35), (10,20,30,35), (10,20,30,35)) =
(25.0,37.4,50.0,62.4) ms, and latest(Ddraw_front(τ), Ddraw_left(τ), Ddraw_right(τ), Ddraw_floor(τ)) =
(2,2,2,2) ms. .. 13

Fig. 10. An EFTN model for 2 existing NICE clients communicating with each other, the repeater
and the server, where the delay of UDP channel is DUDP(τ) = (50,100,150,200) ms, the
world evolves in the interval DEV(τ) = (10,60,180,300) sec. .. 14

Fig. 11. The EFTN model for a CAVE in NICE as a distributed component 15

Fig. 12 Design/CPN implementation of EFTN model for a Nice client 19

Fig. 13 Design/CPN implementation of EFTN model for the garden server, avatar repeater and
communication interface ... 20

Fig. 14 Design/CPN implementation of EFTN model for TCP protocol.................................. 21

Fig. 15 Global Declaration node in Design/CPN implementation... 22

Fig. 16 The remote avatar data receiving without using the filter ... 23

37

Fig. 17 The simulated display behavior of a remote avatar on the local screen without using the
filter .. 24

Fig. 18 The simulated display behavior of a remote avatar on the local screen with using the
filter .. 25

Fig. 19 The distribution of the delay from the time that a remote user has a movement to the
time that movement is displayed on the local screen in simulation. 25

Fig. 20 The distribution of the time that remote avatar’s display lags behind local avatar in
simulation ... 26

Fig. 21 Improved strategy: use a buffer for remote avatar state information 26

Fig. 22 Definition of functions used in improved strategy for remote avatar state information..27

Fig. 23 The simulated display behavior of a remote avatar on the local screen with using buffer
... 27

Fig. 24(a) Delay distribution for data unit coming every 50 ms.. 28

Fig. 24 (b) History chart for each data unit (for data unit coming every 50 ms) 28

Fig. 25 (a) Delay distribution for data unit coming every 100 ms ... 29

Fig. 25 (b) History chart for each data unit (for data unit coming every 100 ms) 29

Fig. 26 History chart of the response time (from time that a message is sent out by client1 (or
client2) to time that client1 get the broadcasted response from server via TCP channel) in
simulation. .. 30

Fig. 27 History chart of the response time for the NICE with 5 clients 32

