
E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data
Transfer, IEEE Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

Reliable Blast UDP : Predictable High Performance
Bulk Data Transfer

Eric He, Jason Leigh, Oliver Yu,

Thomas A. DeFanti

Electronic Visualization Laboratory
University of Illinois at Chicago

cavern@evl.uic.edu
www.evl.uic.edu/cavern

Abstract

High speed bulk data transfer is an important part of
many data-intensive scientific applications. This paper
describes an aggressive bulk data transfer scheme, called
Reliable Blast UDP (RBUDP), intended for extremely
high bandwidth, dedicated- or Quality-of-Service-
enabled networks, such as optically switched networks.
This paper also provides an analytical model to predict
RBUDP’s performance and compares the results of our
model against our implementation of RBUDP. Our results
show that RBUDP performs extremely efficiently over
high speed dedicated networks and our model is able to
provide good estimates of its performance.

1 Introduction

Quanta (the Quality of Service Adaptive Networking
Toolkit) [10] is a toolkit based on our prior work on
CAVERNsoft, which provided a set of APIs for bridging
graphics and networking, to allow developers to more
easily build applications for collaborative, immersive
environments [5][6][9]. CAVERNsoft, and consequently
Quanta provide a rich set of tools and data distribution
mechanisms including: message passing, distributed
shared memory, remote procedure calls, remote file I/O,
forward error corrected UDP, parallel TCP for bulk data
transfer, and collaborative performance monitoring. Work
in Quanta is underway to develop mechanisms for
enabling dedicated light path reservations (often described
as “lambdas”) on optically switched networks; and new
protocols for maximizing data delivery over these
lambdas. Quanta’s experimental testbeds are two optically
switched networks Starlight and OMNInet. Starlight is a
project managed by the University of Illinois at Chicago,
to provide an IP-over-Dense Wave Division Multiplexing
(DWDM) peering point for national and international

optical networks. The goal is to develop a “petri dish” for
growing an experimental, optically connected Grid
whereby clusters of computing resources can directly
“dial-up” lambdas between them and use the extreme
quantities of bandwidth (on the order of 1-10 Gigabits/s)
as a long distance system bus [11]. OMNInet is a project
supported by Nortel Networks, SBC Communications Inc.
and Ameritech to assess and validate next-generation
optical technologies, architectures and applications in
metropolitan area networks [8].

In this paper we address one aspect of our work on
Quanta- the development of an aggressive bulk data
transfer scheme intended for high bandwidth, dedicated-
or Quality-of-Service- enabled networks, such as those on
StarLight and OMNInet. In the following sections we will
introduce the problem of bulk data transfer over long fat
networks; provide an algorithm for a transfer scheme,
called Reliable Blast UDP (RBUDP); propose an
analytical model to predict its performance; and compare
the results of our model against our implementation of
RBUDP.

2 The Problem of Bulk Data Transfers

Even if networked applications could make Gigabit
“lambda reservations,” it does not however guarantee that
they will be able to make full use of that bandwidth. This
problem is particularly evident when one attempts to
perform large bulk data transfers over long distance, high
speed networks (often referred to as “long fat networks”
or LFNs) [12].

LFNs such as those between the US and Europe or Asia
have extremely high round-trip latencies (at best 120ms).
This latency results in gross bandwidth under-utilization
when TCP is used for data delivery. This is because

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

TCP’s windowing mechanism imposes a limit on the
amount of data it will send before it waits for an
acknowledgement. The long delays that occur over
international networks means that TCP will spend an
inordinate amount of time waiting for acknowledgments,
which in turn means that the client’s data transmission
will never reach the peak available capacity of the
network. Traditionally this is “remedied” by adjusting
TCP’s window and buffer sizes to match the bandwidth *
delay product (or capacity) of the network. For example,
for a 1Gbps connection between Chicago and Amsterdam,
with an average round trip time of 110ms, the capacity is
1024*0.11/8 = 14.1 Mbytes. Adjusting TCP window size
is problematic for several reasons: firstly, on some
operating systems (such as IRIX for the SGI,) the window
size can only be modified by building a new version of
the kernel- hence this is not an operation a user-level
application can invoke. Secondly, one needs to know the
current capacity of the network in order to set the window
size correctly. The current capacity varies with the
amount of background traffic already on the network and
the path to the destination.

Several alternative solutions are possible. One solution is
to provide TCP with better estimates of the current
capacity of a link. This is the approach of the WEB100
Consortium [14]. The consortium is developing
techniques to modify router operating systems to report
available bandwidth over a network link. Furthermore
they are modifying operating systems kernels to allow
better monitoring of TCP performance. Another solution
is to use striped (or parallel) TCP [Park00, Leigh01,
Allcock01]. In parallel TCP, the payload is divided
into N partitions which are delivered over N TCP
connections. Both Leigh (in CAVERNsoft) and
Allcock (in GridFTP) have shown that parallel TCP
can provide throughput as high as 80% of a
network’s available bandwidth, however its
performance is unstable when excessive numbers of
sockets are used. Furthermore it is difficult to predict
the correct number of sockets to use.

In this paper we take a more aggressive approach by
using UDP augmented with aggregated
acknowledgments to provide a reliable bulk data
transmission scheme. We call this Reliable Blast
UDP (RBUDP). A similar scheme called NetBLT
was first proposed in 1985 (RFC969) by Clark et al [3].
We extend Clark’s work by providing both analytical and
experimental results to show that RBUDP can provide the
performance predictability that is lacking in parallel TCP.
Furthermore we will provide an equation similar to TCP’s
bandwidth*delay product to allow one to predict RBUDP
performance. This prediction will be useful in the future,
for network resource reservation on the Grid.

It is important to remember that we intend aggressive
protocols such as parallel TCP and Reliable Blast UDP
for high speed dedicated links or links over which quality
of service is available. We do not intend these protocols
for use over the broader Internet.

3 Reliable Blast UDP

Reliable Blast UDP has two goals. The first is to keep the
network pipe as full as possible during bulk data transfer.
The second goal is to avoid TCP’s per-packet interaction
so that acknowledgments are not sent per window of
transmitted data, but aggregated and delivered at the end
of a transmission phase. Figure 1 below illustrates the
RBUDP data delivery scheme. In the first data
transmission phase (A to B in the figure), RBUDP sends
the entire payload at a user-specified sending rate using
UDP datagrams. Since UDP is an unreliable protocol,
some datagrams may become lost due to congestion or an
inability of the receiving host from reading the packets
rapidly enough. The receiver therefore must keep a tally
of the packets that are received in order to determine
which packets must be retransmitted. At the end of the
bulk data transmission phase, the sender sends a DONE
signal via TCP (C in the figure) so that the receiver knows
that no more UDP packets will arrive. The receiver
responds by sending an Acknowledgment consisting of a
bitmap tally of the received packets (D in the figure). The
sender responds by resending the missing packets, and the
process repeats itself until no more packets need to be
retransmitted.

Figure 1. The time sequence diagram of RBUDP

In RBUDP, the most important input parameter is the
sending rate of the UDP blasts. To minimize loss, the
sending rate should not be larger than the bandwidth of
the bottleneck link (typically a router). Tools such as Iperf
[5] and netperf [8] are typically used to measure the
bottleneck bandwidth. In theory if one could send data

Sender Receiver

…

A

B C D

E F G

UDP data traffic

TCP signaling traffic

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

just below this rate, data loss should be near zero. In
practice however, other factors need to be considered. In
our first implementation of RBUDP, we chose a send rate
of 5% less than the available network bandwidth
predicted by Iperf. Surprisingly this resulted in
approximately 33% loss! After further investigation we
found that the problem was in the end host rather than the
network. Specifically, the receiver was not fast enough to
keep up with the network while moving data from the
kernel buffer to application buffers. When we used a
faster computer as the receiver, the loss rate decreased to
less than 2%. The details of this experiment are further
discussed in Section 5.

The chief problem with using Iperf as a measure of
possible throughput over a link is that it does not take into
account the fact that in a real application, data is not
simply streamed to a receiver and discarded. It has to be
moved into main memory for the application to use. This
has motivated us to produce app_perf (a modified version
of iperf) to take into account an extra memory copy that
most applications must perform. We can therefore use
app_perf as a more realistic bound for how well a
transmission scheme should be able to reasonably obtain.
In the experiments detailed in Section 5, we however
include both iperf and app_perf’s prediction of available
bandwidth.

Three versions of RBUDP were developed:

1. RBUDP without scatter/gather optimization – this is

a naïve implementation of RBUDP where each
incoming packet is examined (to determine where it
should go in the application’s memory buffer) and
then moved there.

2. RBUDP with scatter/gather optimization – this
implementation takes advantage of the fact that most
incoming packets are likely to arrive in order, and if
transmission rates are below the maximum
throughput of the network, packets are unlikely to be
lost. The algorithm works by using readv() to directly
move the data from kernel memory to its predicted
location in the application’s memory. After
performing this readv() the packet header is
examined to determine if it was placed in the correct
location. If it was not (either because it was an out-
of-order packet, or an intermediate packet was lost),
then the packet is moved to the correct location in the
user’s memory buffer.

3. “Fake” RBUDP – this implementation is the same as
the scheme without the scatter/gather optimization
except the incoming data is never moved to
application memory. This was used to examine the
overhead of the RBUDP protocol compared to raw
transmission of UDP packets via Iperf.

Experiments that compare these versions of the protocol,
and an analytical model of RBUDP, will be presented in
Section 5 and 4 respectively.

4 Analytical Model for RBUDP

The purpose of developing an analytical model for
RBUDP is two-fold. Firstly we wanted to develop an
equation similar to the “bandwidth * delay product”
equation for TCP, to allow us to predict RBUDP
performance over a given network. Secondly we wanted
to systematically identify the factors that influenced the
overall performance of RBUDP so that we can predict
how much benefit any potential enhancement in the
RBUDP algorithm might provide.

First of all, all variables are defined as follows:

 Bachievable = achievable bandwidth
 Bsend = chosen send rate

Stotal = total data size to send (ie payload)
Ttotal = total predicted send time
Tprop = propagation delay
TudpSend_i = time to send UDP blast on ith iteration.
SudpSend_i=size of UDP blast (initial size is
payload size)
Nresend = number of times to resend (depends on
loss%)
Tack = time to acknowledge a blast (at least 1
ACK is always needed)
Li = % packet loss on ith iteration

In our model we are attempting to predict the achievable
bandwidth (Bachievable)of RBUDP:

total

total
achievable

T
SB = (1)

Following the RBUDP algorithm, we estimate Ttotal as:

()

())(*)1(

)(
resend

0

N

1i

_

_

propackresend

udpSendprop

udpSendprop

TTN

TT

TTT

i

total

+++

++

+=

∑
=

 (2)

In (2), the first term is the time to send the main payload,
the second term is the time to transmit missing packets,
called Tresend, the last term is the time to send each
acknowledgement.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

Specifically:

send

total
udpSend

B
ST =0

send

udpSendi
iudpSend

B
SLT 1i −−

=
_1

_
*

send

ack
ack

B
ST =

8/

=

packet

total
ack

S
SS

 send
packet

total
ack B

S
ST /

*8

=

Spacket = 1.5Kbytes

Consequently:

 +++

++

 +=

∑
=

− −

prop
sendpacket

total
resend

send

udpSendi
propresend

send

total
prop

T
BS

SN

B
SLTN

B
STT

i

total

**8
*)1(

)(
resend

1
N

1i

_1 (3)

Given this equation, let us consider two possible
situations - one where no loss occurs, and one where loss
does occur. If no loss occurs, we can eliminate the middle
term so that the best achievable performance can be
computed using:

 ++

 += prop

sendpacket

total

send

total
propbest T

BS
S

B
STT

**8

prop
sendpacket

total

send

total

total
best

T
BS

S
B
S

SB
2

**8
++

= (4)

In the denominator,
sendpacket

total

BS
S

**8
 is very small

compared to other factors and can be omitted.

We can then derive the ratio of Bbest and Bsend as:

total

sendsend

best

S
BRTTB

B
*1

1

+
= (5)

where:
 2*Tprop is RTT (Round Trip Time).

This ratio shows that in order to maximize throughput, we

should strive to minimize
total

send

S
BRTT *

 by maximizing

the size of the data we wish to deliver. For example, given
Tprop for Chicago to Amsterdam is 55ms, and Bsend is 600
Mbps, and if we wish to achieve a throughput of 90% of
the sending rate, then the payload, Stotal needs to be at least
74.25 Megabytes.

In Section 5 (Figure 4) we will use equation 3 to compare
the theoretical best rate Bbest against experimental results,
over a variety of send rates (Bsend).

Furthermore we will compare Bbest against experimental
results with varying payload sizes (Stotal) (Section 5,
Figure 6).

Now let us turn to consider the situation where loss does
occur. We will take a simplifying assumption that a
constant loss rate of L occurs at every pass of the
algorithm. We realize that in a real network subsequent
losses in the retransmit phases should be smaller, rather
than constant, because we will be retransmitting a
significantly smaller payload at each iteration. However
to estimate that accurately would require us to develop a
model for the buffer in the intervening routers too. Hence
we can take our simplifying assumption as a worst-case
estimate.

So, given loss rate L, retransmits will occur until the
amount of data left is less than 1 packet. That is:

packet
Nresend SLStotal <*

Therefore:

totalpacketNresend SSL /=

)/(log totalpacketLresend SSN =⇒ (6)

The data size of all retransmits is therefore:

L
LLSS

StotalSpacketL

totalresend −
−

=
1

)1(*
)/(log

 (7)

We can now plug (6) and (7) back into equation (3) to
produce our new estimate of Bachievable given constant loss
rate L. In Section 5 (Figure 6) we will put this prediction
to use comparing an experimental situation where packet
loss was observed.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

5 Experimental Results

The testbed network consisted of an OC-12 link
(622Mbps) brought by SURFnet from Amsterdam to the
StarLight facility in Chicago. There was little-to-no
traffic on the link when the experiments were performed.
Linux PCs were placed at each end of the link. The
specifications of each PC are shown in Table 1 below.
Keenhond (in Amsterdam) was the faster PC, Prusin (in
Chicago) was the slower one.

Host Name CPU
Memory

Size
System

Bandwidth
keeshond.nikhef.nl

(Amsterdam)
Pentium

III
1.0GHz

2.0G
Bytes

258
MByte/s

prusin.sl.startap.net
(Chicago)

Pentium
III

650MHz

768M
Bytes

171
Mbytes/s

Table 1. Specification of host PCs in the

experimental testbed

In the first set of experiments, data was sent via RBUDP
from the faster PC to the slower PC (from Amsterdam to
Chicago). In the second set of experiments data was sent
in the opposite direction. This allowed us to examine the
performance of RBUDP when the bottleneck was either at
the processor or in the network. The three versions of
RBUDP described in Section 3 were compared against
predicted results from our analytical model. A third set of
experiments examined RBUDP throughput for different
payload sizes.

5.1 From the Fast PC to the Slow PC
(Amsterdam to Chicago) – when the Bottleneck is
in the Receiving Host Computer

In this experiment, Iperf measured maximum available
bandwidth at 576 Mbps, and app_perf measured
maximum possible throughput at 490 Mbps. In Figure 2
we plot these thresholds as lines across the top of the
graph. Plotting the achieved throughput at various sending
rates for the three RBUDP algorithms we notice that at
sending rates below the network capacity, RBUDP
performs well. I.e. RBUDP gives the application exactly
what the application asks for. We also notice that as the
sending rates approach the capacity of the network, Fake
RBUDP achieves almost the same throughput as Iperf,
and the lack of scatter/gather optimization begins to hurt
performance because the under-powered CPU is unable to
keep up with handling the incoming packets.

5.2 From the Slow PC to the Fast PC (Chicago to
Amsterdam) – when the Bottleneck is in the
Network

We repeated the experiment in the opposite direction.
This time the bottleneck is in the network rather than in
the receiving PC. Figures 4 and 5 show that when the host
computer is fast enough iperf and app_perf performances
match as do the different implementations of RBUDP.
Furthermore there is a close match between our
experimental results and our prediction from equation 4
(which estimated RBUDP performance when loss rate is
zero.)

5.3 Effect of Payload Size on Throughput

From the analysis in Section 4, we know that the
propagation time is the primary factor affecting RBUDP
overhead. For smaller payloads, the time spent in the
acknowledgement phase is almost constant while the time
spent blasting UDP packets decreases. In Figures 6 we
compare an experimental situation where we send data at
550Mbps (experiencing no loss) against our theoretical
prediction which assumes no loss (equation 3.)
Furthermore we compare an experimental situation
sending data at 610Mbps experiencing 7% loss, against
our theoretical prediction where we assume a constant 7%
loss per iteration.

Firstly, the results show that RBUDP performs best for
large payloads. Secondly the results show that a 7%
packet loss does not impact throughput greatly for large
payloads. Thirdly our analytical models for no loss and
7% loss provide good boundaries for our experimental
results.

6 Conclusions

RBUDP is a very aggressive protocol designed for
dedicated- or QoS-enabled high bandwidth networks
(such as our aforementioned DiffServ and IP-over-
DWDM testbeds). It eliminates TCP’s slow-start and
congestion control mechanisms, and aggregates
acknowledgments so that the full bandwidth of a link is
used for pure data delivery. For large bulk transfers,
RBUDP can provide delivery at precise, user-specified
sending rates. RBUDP performs at its best for large
payloads rather than smaller ones, because with smaller
payloads the time to deliver the payload approaches the
time to acknowledge the payload. The scatter-gather
algorithm to reduce memory copies, provides better
performance over the non-scatter-gather algorithm for
slower CPUs when the loss rate is not very high. This
benefit is expected to increase for faster networks.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

We have provided an analytical model that provides a
good prediction of RBUDP performance. This prediction
can be used as a rule of thumb in a manner similar to the
bandwidth * delay product for TCP. Furthermore this
prediction can be used to estimate how future ideas for
improving the algorithm might impact RBUDP
performance.

Work has begun to combine our work with similar work
at the Laboratory for Advanced Computing, at the
University of Illinois at Chicago to add rate and
congestion control to RBUDP to produce a complete data
transfer protocol called LambdaFTP, for parallelized data
distribution over optically switched networks.

7 Acknowledgments

We would like to thank Cees de Laat at University of
Amsterdam for providing the endpoint at SARA in
Amsterdam to perform these experiments.

The virtual reality and advanced networking research,
collaborations, and outreach programs at the Electronic
Visualization Laboratory (EVL) at the University of
Illinois at Chicago are made possible by major funding
from the National Science Foundation (NSF), awards
EIA-9802090, EIA-9871058, EIA-0115809, ANI-
9980480, ANI-9730202, ANI-0123399 and ANI-0129527,
as well as the NSF Partnerships for Advanced
Computational Infrastructure (PACI) cooperative
agreement ACI-9619019 to the National Computational
Science Alliance. EVL also receives funding from the US
Department of Energy (DOE) Science Grid program and
the DOE ASCI VIEWS program. In addition, EVL
receives funding from the State of Illinois, Microsoft
Research, General Motors Research, and Pacific Interface
on behalf of NTT Optical Network Systems Laboratory in
Japan.

StarLight is a service mark of the Board of Trustees of the
University of Illinois at Chicago and the Board of
Trustees of Northwestern University.

8 References

[1] W. Allcock, J. Bester, J. Bresnahan, et al., Data
Management and Transfer in High-Performance
Computational Grid Environments. Parallel Computing,
2001.

[2] B. St. Arnaud, R. Hatem, W. Hong, M. Blanchet, F.
Parent, Optical BGP Networks, http://www.canet3.net.

[3] D. D. Clark, M. L. Lambert, L., Zhang, NETBLT: A
High Throughput Transport Protocol : ACM pp. 353-359,
1988.

[4] http://dast.nlanr.net/Projects/Iperf/

[5] J. Leigh, O. Yu, D. Schonfeld, R. Ansari, et al.,
“Adaptive Networking for Tele-Immersion,” in Proc.
Immersive Projection Technology/Eurographics Virtual
Environments Workshop (IPT/EGVE), May 16-18,
Stuttgart, Germany, 2001.

[6] J. Leigh., A. Johnson, T. A., DeFanti, Issues in the
Design of a Flexible Distributed Architecture for
Supporting Persistence and Interoperability in
Collaborative Virtual Environments,. In the proceedings
of Supercomputing '97 San Jose, California, Nov 15-21,
1997.

[7] http://netperf.org/netperf/NetperfPage.html

[8]www.evl.uic.edu/activity/template_act_project.php3?i
ndi=147

[9] K. Park, Y. Cho, N. Krishnaprasad, C. Scharver, M.
Lewis, J. Leigh, A. Johnson, “CAVERNsoft G2: A
Toolkit for High Performance Tele-Immersive
Collaboration,” Proceedings of the ACM Symposium on
Virtual Reality Software and Technology 2000, October
22-25, 2000, Seoul, Korea, pp. 8-15

[10] www.evl.uic.edu/cavern/teranode/quanta

[11] www.startap.net/starlight

[12] W. R. Stevens, "TCP/IP Illustrated," vol. 1: Addison
Wesley, 1994, pp. 344-350.

[13] W. R. Stevens, “Unix Networking Programming,
Volume 1, Second Edition: Networking APIs: Sockets
and XTI,” Addison Wesley, 1998, pp.357.

[14] www.web100.org

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700
Sending rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP
NON-Scatter/Gather
Scatter/Gather
iperf throughput
appperf throughput

Figure 2. RBUDP throughput from Amsterdam to Chicago. Payload is 600MB. Bottleneck is in the

receiving host.

0

5

10

15

20

25

30

35

40

45

0 100 200 300 400 500 600 700
Sending rate (Mbps)

Lo
ss

 ra
te

 (%
)

Fake RBUDP

NON-Scatter/Gather

Scatter/Gather

Figure 3. Loss rate of the first UDP blast from Amsterdam to Chicago.

E. He, J. Leigh, O. Yu, T. A. DeFanti, Reliable Blast UDP : Predictable High Performance Bulk Data Transfer, IEEE
Cluster Computing 2002, Chicago, Illinois, Sept, 2002.

0

100

200

300

400

500

600

700

0 100 200 300 400 500 600 700
Sending rate (Mbps)

Th
ro

ug
ht

pu
t (

M
bp

s)

Fake RBUDP

NON-Scatter/Gather

Scatter/Gather

iperf throughput

appperf throughput

Best theoretical
throughput

Figure 4. RBUDP throughput from Chicago to Amsterdam . Payload is 600MB. Bottleneck is in the

network.

0
1
2
3
4
5
6
7

0 100 200 300 400 500 600 700
Sending rate (Mbps)

Lo
ss

 ra
te

 (%
)

Fake RBUDP

NON-
Scatter/Gather

Scatter/Gather

Figure 5. Loss rate of the first UDP blast from Chicago to Amsterdam.

0

100

200

300

400

500

600

0 200 400 600 800 1000 1200 1400 1600 1800 2000
Payload size (MB)

Th
ro

ug
hp

ut
 (M

B
/s

)

Theoretical BW when sending rate is 550 Mbps

Theoretical BW when sending rate is 610 Mbps

Actual BW when sending rate is 550 Mbps

Actual BW when sending rate is 610 Mbps

Figure 6. Throughput vs. Payload Size

