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Abstract 
 

High speed bulk data transfer is an important part of 
many data-intensive scientific applications. This paper 
describes an aggressive bulk data transfer scheme, called 
Reliable Blast UDP (RBUDP), intended for extremely 
high bandwidth, dedicated- or Quality-of-Service- 
enabled networks, such as optically switched networks. 
This paper also provides an analytical model to predict 
RBUDP’s performance and compares the results of our 
model against our implementation of RBUDP. Our results 
show that RBUDP performs extremely efficiently over 
high speed dedicated networks and our model is able to 
provide good estimates of its performance. 
 
1  Introduction 
 
Quanta (the Quality of Service Adaptive Networking 
Toolkit) [10] is a toolkit based on our prior work on 
CAVERNsoft, which provided a set of APIs for bridging 
graphics and networking, to allow developers to more 
easily build applications for collaborative, immersive 
environments [5][6][9]. CAVERNsoft, and consequently 
Quanta provide a rich set of tools and data distribution 
mechanisms including: message passing, distributed 
shared memory, remote procedure calls, remote file I/O, 
forward error corrected UDP, parallel TCP for bulk data 
transfer, and collaborative performance monitoring. Work 
in Quanta is underway to develop mechanisms for 
enabling dedicated light path reservations (often described 
as “lambdas”) on optically switched networks; and new 
protocols for maximizing data delivery over these 
lambdas. Quanta’s experimental testbeds are two optically 
switched networks Starlight and OMNInet. Starlight is a 
project managed by the University of Illinois at Chicago, 
to provide an IP-over-Dense Wave Division Multiplexing 
(DWDM) peering point for national and international 

optical networks. The goal is to develop a “petri dish” for 
growing an experimental, optically connected Grid 
whereby clusters of computing resources can directly 
“dial-up” lambdas between them and use the extreme 
quantities of bandwidth (on the order of 1-10 Gigabits/s) 
as a long distance system bus [11]. OMNInet is a project 
supported by Nortel Networks, SBC Communications Inc. 
and Ameritech to assess and validate next-generation 
optical technologies, architectures and applications in 
metropolitan area networks [8]. 
 
In this paper we address one aspect of our work on 
Quanta- the development of an aggressive bulk data 
transfer scheme intended for high bandwidth, dedicated- 
or Quality-of-Service- enabled networks, such as those on 
StarLight and OMNInet. In the following sections we will 
introduce the problem of bulk data transfer over long fat 
networks; provide an algorithm for a transfer scheme, 
called Reliable Blast UDP (RBUDP); propose an 
analytical model to predict its performance; and compare 
the results of our model against our implementation of 
RBUDP.  
 
2 The Problem of Bulk Data Transfers 
 
Even if networked applications could make Gigabit 
“lambda reservations,” it does not however guarantee that 
they will be able to make full use of that bandwidth. This 
problem is particularly evident when one attempts to 
perform large bulk data transfers over long distance, high 
speed networks (often referred to as “long fat networks” 
or LFNs) [12]. 
 
LFNs such as those between the US and Europe or Asia 
have extremely high round-trip latencies (at best 120ms). 
This latency results in gross bandwidth under-utilization 
when TCP is used for data delivery. This is because 
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TCP’s windowing mechanism imposes a limit on the 
amount of data it will send before it waits for an 
acknowledgement. The long delays that occur over 
international networks means that TCP will spend an 
inordinate amount of time waiting for acknowledgments, 
which in turn means that the client’s data transmission 
will never reach the peak available capacity of the 
network. Traditionally this is “remedied” by adjusting 
TCP’s window and buffer sizes to match the bandwidth * 
delay product (or capacity) of the network. For example, 
for a 1Gbps connection between Chicago and Amsterdam, 
with an average round trip time of 110ms, the capacity is 
1024*0.11/8 = 14.1 Mbytes. Adjusting TCP window size 
is problematic for several reasons: firstly, on some 
operating systems (such as IRIX for the SGI,) the window 
size can only be modified by building a new version of 
the kernel- hence this is not an operation a user-level 
application can invoke. Secondly, one needs to know the 
current capacity of the network in order to set the window 
size correctly. The current capacity varies with the 
amount of background traffic already on the network and 
the path to the destination. 
 
Several alternative solutions are possible. One solution is 
to provide TCP with better estimates of the current 
capacity of a link. This is the approach of the WEB100 
Consortium [14]. The consortium is developing 
techniques to modify router operating systems to report 
available bandwidth over a network link. Furthermore 
they are modifying operating systems kernels to allow 
better monitoring of TCP performance. Another solution 
is to use striped (or parallel) TCP [Park00, Leigh01, 
Allcock01]. In parallel TCP, the payload is divided 
into N partitions which are delivered over N TCP 
connections. Both Leigh (in CAVERNsoft) and 
Allcock (in GridFTP) have shown that parallel TCP 
can provide throughput as high as 80% of a 
network’s available bandwidth, however its 
performance is unstable when excessive numbers of 
sockets are used. Furthermore it is difficult to predict 
the correct number of sockets to use. 
 
In this paper we take a more aggressive approach by 
using UDP augmented with aggregated 
acknowledgments to provide a reliable bulk data 
transmission scheme. We call this Reliable Blast 
UDP (RBUDP). A similar scheme called NetBLT 
was first proposed in 1985 (RFC969) by Clark et al [3].  
We extend Clark’s work by providing both analytical and 
experimental results to show that RBUDP can provide the 
performance predictability that is lacking in parallel TCP. 
Furthermore we will provide an equation similar to TCP’s 
bandwidth*delay product to allow one to predict RBUDP 
performance. This prediction will be useful in the future, 
for network resource reservation on the Grid. 

It is important to remember that we intend aggressive 
protocols such as parallel TCP and Reliable Blast UDP 
for high speed dedicated links or links over which quality 
of service is available. We do not intend these protocols 
for use over the broader Internet. 
 
3  Reliable Blast UDP 
 
Reliable Blast UDP has two goals. The first is to keep the 
network pipe as full as possible during bulk data transfer. 
The second goal is to avoid TCP’s per-packet interaction 
so that acknowledgments are not sent per window of 
transmitted data, but aggregated and delivered at the end 
of a transmission phase. Figure 1 below illustrates the 
RBUDP data delivery scheme. In the first data 
transmission phase (A to B in the figure), RBUDP sends 
the entire payload at a user-specified sending rate using 
UDP datagrams. Since UDP is an unreliable protocol, 
some datagrams may become lost due to congestion or an 
inability of the receiving host from reading the packets 
rapidly enough. The receiver therefore must keep a tally 
of the packets that are received in order to determine 
which packets must be retransmitted. At the end of the 
bulk data transmission phase, the sender sends a DONE 
signal via TCP (C in the figure) so that the receiver knows 
that no more UDP packets will arrive. The receiver 
responds by sending an Acknowledgment consisting of a 
bitmap tally of the received packets (D in the figure). The 
sender responds by resending the missing packets, and the 
process repeats itself until no more packets need to be 
retransmitted. 

   
Figure 1. The time sequence diagram of RBUDP 
 
In RBUDP, the most important input parameter is the 
sending rate of the UDP blasts.  To minimize loss, the 
sending rate should not be larger than the bandwidth of 
the bottleneck link (typically a router). Tools such as Iperf 
[5] and netperf [8] are typically used to measure the 
bottleneck bandwidth.  In theory if one could send data 
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just below this rate, data loss should be near zero. In 
practice however, other factors need to be considered. In 
our first implementation of RBUDP, we chose a send rate 
of 5% less than the available network bandwidth 
predicted by Iperf.  Surprisingly this resulted in 
approximately 33% loss!  After further investigation we 
found that the problem was in the end host rather than the 
network.  Specifically, the receiver was not fast enough to 
keep up with the network while moving data from the 
kernel buffer to application buffers.  When we used a 
faster computer as the receiver, the loss rate decreased to 
less than 2%.  The details of this experiment are further 
discussed in Section 5.   
 
The chief problem with using Iperf as a measure of 
possible throughput over a link is that it does not take into 
account the fact that in a real application, data is not 
simply streamed to a receiver and discarded. It has to be 
moved into main memory for the application to use. This 
has motivated us to produce app_perf (a modified version 
of iperf) to take into account an extra memory copy that 
most applications must perform. We can therefore use 
app_perf as a more realistic bound for how well a 
transmission scheme should be able to reasonably obtain. 
In the experiments detailed in Section 5, we however 
include both iperf and app_perf’s prediction of available 
bandwidth. 
 
Three versions of RBUDP were developed: 
 
1. RBUDP without scatter/gather optimization – this is 

a naïve implementation of RBUDP where each 
incoming packet is examined (to determine where it 
should go in the application’s memory buffer) and 
then moved there. 

2. RBUDP with scatter/gather optimization – this 
implementation takes advantage of the fact that most 
incoming packets are likely to arrive in order, and if 
transmission rates are below the maximum 
throughput of the network, packets are unlikely to be 
lost. The algorithm works by using readv() to directly 
move the data from kernel memory to its predicted 
location in the application’s memory. After 
performing this readv() the packet header is 
examined to determine if it was placed in the correct 
location. If it was not (either because it was an out-
of-order packet, or an intermediate packet was lost), 
then the packet is moved to the correct location in the 
user’s memory buffer. 

3. “Fake” RBUDP – this implementation is the same as 
the scheme without the scatter/gather optimization 
except the incoming data is never moved to 
application memory. This was used to examine the 
overhead of the RBUDP protocol compared to raw 
transmission of UDP packets via Iperf. 

 

Experiments that compare these versions of the protocol, 
and an analytical model of RBUDP, will be presented in 
Section 5 and 4 respectively. 
 
4  Analytical Model for RBUDP 
 
The purpose of developing an analytical model for 
RBUDP is two-fold. Firstly we wanted to develop an 
equation similar to the “bandwidth * delay product” 
equation for TCP, to allow us to predict RBUDP 
performance over a given network. Secondly we wanted 
to systematically identify the factors that influenced the 
overall performance of RBUDP so that we can predict 
how much benefit any potential enhancement in the 
RBUDP algorithm might provide. 
 
First of all, all variables are defined as follows: 
 
 Bachievable = achievable bandwidth 
 Bsend  = chosen send rate 

Stotal = total data size to send (ie payload) 
Ttotal = total predicted send time 
Tprop = propagation delay 
TudpSend_i = time to send UDP blast on ith iteration. 
SudpSend_i=size of UDP blast (initial size is 
payload size) 
Nresend = number of times to resend (depends on 
loss%) 
Tack = time to acknowledge a blast (at least 1 
ACK is always needed) 
Li = % packet loss on ith iteration 

 
In our model we are attempting to predict the achievable 
bandwidth (Bachievable)of RBUDP: 

total
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In (2), the first term is the time to send the main payload, 
the second term is the time to transmit missing packets, 
called Tresend, the last term is the time to send each 
acknowledgement.  
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Specifically: 
 

send

total
udpSend

B
ST =0    

send

udpSendi
iudpSend

B
SLT 1i −−

=
_1

_
*  

send

ack
ack

B
ST =    

8/





=

packet

total
ack

S
SS

 send
packet

total
ack B

S
ST /

*8






=  

 
Spacket = 1.5Kbytes 

 
Consequently: 
















 +++











++







 +=

∑
=

− −

prop
sendpacket

total
resend

send

udpSendi
propresend

send

total
prop

T
BS

SN

B
SLTN

B
STT

i

total

**8
*)1(

*)*(
resend

1
N

1i

_1  (3) 

 
Given this equation, let us consider two possible 
situations - one where no loss occurs, and one where loss 
does occur. If no loss occurs, we can eliminate the middle 
term so that the best achievable performance can be 
computed using: 
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In the denominator, 
sendpacket

total

BS
S

**8
 is very small 

compared to other factors and can be omitted. 
 
We can then derive the ratio of Bbest and Bsend as: 
 

total
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where: 
 2*Tprop is RTT (Round Trip Time). 
 

This ratio shows that in order to maximize throughput, we 

should strive to minimize 
total

send

S
BRTT *

 by maximizing 

the size of the data we wish to deliver. For example, given 
Tprop for Chicago to Amsterdam is 55ms, and Bsend is 600 
Mbps, and if we wish to achieve a throughput of 90% of 
the sending rate, then the payload, Stotal needs to be at least 
74.25 Megabytes.   
 
In Section 5 (Figure 4) we will use equation 3 to compare 
the theoretical best rate Bbest against experimental results, 
over a variety of send rates (Bsend).  
 
Furthermore we will compare Bbest against experimental 
results with varying payload sizes (Stotal) (Section 5, 
Figure 6).  
 
Now let us turn to consider the situation where loss does 
occur. We will take a simplifying assumption that a 
constant loss rate of L occurs at every pass of the 
algorithm. We realize that in a real network subsequent 
losses in the retransmit phases should be smaller, rather 
than constant, because we will be retransmitting a 
significantly smaller payload at each iteration. However 
to estimate that accurately would require us to develop a 
model for the buffer in the intervening routers too. Hence 
we can take our simplifying assumption as a worst-case 
estimate. 
 
So, given loss rate L, retransmits will occur until the 
amount of data left is less than 1 packet. That is: 
 

packet
Nresend SLStotal <*  

 
Therefore: 
 

totalpacketNresend SSL /=  
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The data size of all retransmits is therefore: 
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We can now plug (6) and (7) back into equation (3) to 
produce our new estimate of Bachievable given constant loss 
rate L. In Section 5 (Figure 6) we will put this prediction 
to use comparing an experimental situation where packet 
loss was observed.  
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5  Experimental Results 
 
The testbed network consisted of an OC-12 link 
(622Mbps) brought by SURFnet from Amsterdam to the 
StarLight facility in Chicago.  There was little-to-no 
traffic on the link when the experiments were performed. 
Linux PCs were placed at each end of the link. The 
specifications of each PC are shown in Table 1 below.  
Keenhond (in Amsterdam) was the faster PC, Prusin (in 
Chicago) was the slower one. 
 

Host Name CPU 
Memory 

Size 
System 

Bandwidth 
keeshond.nikhef.nl 

(Amsterdam) 
Pentium 

III 
1.0GHz 

2.0G 
Bytes 

258 
MByte/s 

prusin.sl.startap.net 
(Chicago) 

Pentium 
III 

650MHz 

768M 
Bytes 

171 
Mbytes/s 

 
Table 1.  Specification of host PCs in the 

experimental testbed 
 

In the first set of experiments, data was sent via RBUDP 
from the faster PC to the slower PC (from Amsterdam to 
Chicago). In the second set of experiments data was sent 
in the opposite direction. This allowed us to examine the 
performance of RBUDP when the bottleneck was either at 
the processor or in the network. The three versions of 
RBUDP described in Section 3 were compared against 
predicted results from our analytical model. A third set of 
experiments examined RBUDP throughput for different 
payload sizes. 
 
5.1  From the Fast PC to the Slow PC 
(Amsterdam to Chicago) – when the Bottleneck is 
in the Receiving Host Computer 
 
In this experiment, Iperf measured maximum available 
bandwidth at 576 Mbps, and app_perf measured 
maximum possible throughput at 490 Mbps.  In Figure 2 
we plot these thresholds as lines across the top of the 
graph. Plotting the achieved throughput at various sending 
rates for the three RBUDP algorithms we notice that at 
sending rates below the network capacity, RBUDP 
performs well. I.e. RBUDP gives the application exactly 
what the application asks for. We also notice that as the 
sending rates approach the capacity of the network, Fake 
RBUDP achieves almost the same throughput as Iperf,  
and the lack of scatter/gather optimization begins to hurt 
performance because the under-powered CPU is unable to 
keep up with handling the incoming packets. 
 

5.2  From the Slow PC to the Fast PC (Chicago to 
Amsterdam) – when the Bottleneck is in the 
Network 
 
We repeated the experiment in the opposite direction. 
This time the bottleneck is in the network rather than in 
the receiving PC. Figures 4 and 5 show that when the host 
computer is fast enough iperf and app_perf performances 
match as do the different implementations of RBUDP. 
Furthermore there is a close match between our 
experimental results and our prediction from equation 4 
(which estimated RBUDP performance when loss rate is 
zero.)   
 
5.3  Effect of Payload Size on Throughput 
 
From the analysis in Section 4, we know that the 
propagation time is the primary factor affecting RBUDP 
overhead.  For smaller payloads, the time spent in the 
acknowledgement phase is almost constant while the time 
spent blasting UDP packets decreases.  In Figures 6 we 
compare an experimental situation where we send data at 
550Mbps (experiencing no loss) against our theoretical 
prediction which assumes no loss (equation 3.) 
Furthermore we compare an experimental situation 
sending data at 610Mbps experiencing 7% loss, against 
our theoretical prediction where we assume a constant 7% 
loss per iteration. 
 
Firstly, the results show that RBUDP performs best for 
large payloads. Secondly the results show that a 7% 
packet loss does not impact throughput greatly for large 
payloads. Thirdly our analytical models for no loss and 
7% loss provide good boundaries for our experimental 
results. 
 
6  Conclusions 
 
RBUDP is a very aggressive protocol designed for 
dedicated- or QoS-enabled high bandwidth networks 
(such as our aforementioned DiffServ and IP-over-
DWDM testbeds). It eliminates TCP’s slow-start and 
congestion control mechanisms, and aggregates 
acknowledgments so that the full bandwidth of a link is 
used for pure data delivery. For large bulk transfers, 
RBUDP can provide delivery at precise, user-specified 
sending rates. RBUDP performs at its best for large 
payloads rather than smaller ones, because with smaller 
payloads the time to deliver the payload approaches the 
time to acknowledge the payload. The scatter-gather 
algorithm to reduce memory copies, provides better 
performance over the non-scatter-gather algorithm for 
slower CPUs when the loss rate is not very high. This 
benefit is expected to increase for faster networks. 
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We have provided an analytical model that provides a 
good prediction of RBUDP performance. This prediction 
can be used as a rule of thumb in a manner similar to the 
bandwidth * delay product for TCP. Furthermore this 
prediction can be used to estimate how future ideas for 
improving the algorithm might impact RBUDP 
performance. 
 
Work has begun to combine our work with similar work 
at the Laboratory for Advanced Computing, at the 
University of Illinois at Chicago to add rate and 
congestion control to RBUDP to produce a complete data 
transfer protocol called LambdaFTP, for parallelized data 
distribution over optically switched networks. 
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Figure 2. RBUDP throughput from Amsterdam to Chicago. Payload is 600MB. Bottleneck is in the 

receiving host. 
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Figure 3. Loss rate of the first UDP blast from Amsterdam to Chicago. 
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Figure 4. RBUDP throughput from Chicago to Amsterdam . Payload is 600MB. Bottleneck is in the 

network. 
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Figure 5. Loss rate of the first UDP blast from Chicago to Amsterdam.  
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Figure 6. Throughput vs. Payload Size 


