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Abstract8

Quanta is a cross-platform adaptive networking toolkit for supporting the data delivery requirements of interactive and
bandwidth intensive applications, such as Amplified Collaboration Environments. One of the unique goals of Quanta is to
provide applications with the ability to provision optical pathways (commonly referred to as Lambdas) in dedicated photonic
networks. This paper will introduce Quanta’s architecture and capabilities, with particular attention given to its aggressive and
predictable high performance data transport scheme called Reliable Blast UDP (RBUDP). We provide an analytical model
to predict RBUDP’s performance and compare the results of our model against experimental results performed over a high
speed wide-area network.
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1. Introduction18

Amplified Collaboration Environments (ACE) are19

physical meeting spaces that enable distantly located20

groups to work in intensive collaboration campaigns21

that are augmented by advanced collaboration, com-22

putation, and visualization systems. One example of23

an ACE is theContinuum(Fig. 1) at the Electronic Vi-24

sualization Laboratory[4], at the University of Illinois25

at Chicago, and at the Technology Research, Educa-26

tion and Commercialization Center in DuPage County,27

Illinois [25]. ACEs are based on the concept of the28

“War Room” or “Project Room” which have been29

shown to increase the productivity of collocated work-30

∗ Corresponding author.
E-mail addresses:spiff@evl.uic.edu, cavern@evl.uic.edu
(J. Leigh).
URL : http://www.evl.uic.edu/cavern.

ing teams by a factor of 2[29]. The goal of the Con- 31

tinuum is to provide the same, if not greater, ben-32

efits for distributed teams. To this end, the Contin-33

uum integrates a broad range of technologies that in-34

clude: multi-party video conferencing (via the Ac-35

cessGrid[1]), electronic touch screens (for intuitive36

shared white-boarding), passive stereoscopic displays37

(such as the GeoWall, for displaying data sets in true38

3D [13]), high resolution tiled displays (for displaying39

large visualizations or mosaics of visualizations), and40

PDAs and laptops for wireless control of these sys-41

tems. Taken as a whole, each of these systems requires42

one or more computers to support. Hence a full Con-43

tinuum will require a compute cluster per site. Further-44

more this compute cluster must also be connected to45

other possibly distributed computing clusters, which46

might house massive data sets that are being shared in47

the collaborative environment. At EVL, we have de-48

veloped a computing paradigm called theOptiputer 49

1 0167-739X/03/$ – see front matter © 2003 Published by Elsevier Science B.V.
2 doi:10.1016/S0167-739X(03)00071-2
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Fig. 1. The continuum—an amplified collaboration environment.

as the primary means for supporting future genera-50

tion networked applications such as the Continuum.51

Quanta is the networking middleware for supporting52

applications modeled after the Optiputer.53

The Optiputer[18] is a National Science Founda-54

tion funded project to interconnect distributed storage,55

computing and visualization resources using photonic56

networks. The main goal of the project is to exploit57

the trend that network capacity is increasing at a rate58

far exceeding processor speed, while at the same time59

plummeting in cost. This allows one to experiment60

with a new paradigm in distributed computing—where61

the photonic networks serve as the computer’s system62

bus and compute clusters taken as a whole, serve as63

the peripherals in a potentially, planetary-scale com-64

puter. We differentiate photonic networks from optical65

networks as networks comprised of optical fibers and66

MEMS optical switching devices. There is no trans-67

lation of the photons to electrons and hence no rout-68

ing within photonic switches. Applications that con-69

trol these networks will direct photons directly from70

the start point to the end point of a series of photonic71

switches and hence will have full control of the avail-72

able bandwidth in these allocated light paths.73

In order to optimize data delivery in Optiputer ap-74

plications such as ACEs, advances need to be made75

at several of the OSI network layers. At the physi-76

cal layer, shared packet-switched Internet should be77

replaced by exclusive photonic switched networks78

to guarantee high bandwidth. We are currently de-79

veloping the Photonic Interdomain Negotiator (PIN)80

to support this capability. At the data link layer,81

Multiple Protocol Label Switching (MPLS) or Vir- 82

tual LAN (VLAN) replaces the slow and inefficient 83

layer 3 switching, while at the same time provid-84

ing Quality-of-Service. The Internet Protocol (IP) is85

still used at layer 3 in order to maintain compatibil-86

ity with the Internet. At the transport layer, there is87

already consensus among network researchers that88

the current TCP implementations are not suitable for89

long distance high performance data transfer. Either90

TCP needs to be modified radically or new transport91

protocols should be introduced. 92

We intend to address the data transport problem with93

Quanta, a cross-platform adaptive networking toolkit94

for supporting the diverse networking requirements of95

interactive and data intensive Optiputer applications.96

The goal is to provide an easy to use system that will97

allow programmers to specify the data transfer char-98

acteristics of their application at a high level, and let99

Quanta transparently translate these requirements into100

appropriate networking decisions. The decisions will101

include making necessary QoS reservations, and adap-102

tively utilizing the transport protocols to fulfill the103

user’s data transfer requirements. 104

Quanta currently uses an optical network (Starlight)105

and a photonic network (Omninet) as experimen-106

tal testbeds. Starlight[24] is a project managed by107



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

E. He et al. / Future Generation Computer Systems 1005 (2003) 1–15 3

the University of Illinois at Chicago, to provide an108

IP-over-Dense Wave Division Multiplexing (DWDM)109

peering point for national and international optical110

networks. Plans are underway to convert Starlight to111

a photonic network. OMNInet is a project supported112

by Nortel Networks, SBC Communications Inc. and113

Ameritech to assess and validate next-generation pho-114

tonic technologies, architectures and applications in115

metropolitan area networks[17].116

This paper begins with a description of Quanta’s117

architecture and capabilities, with particular attention118

given to the development of high performance data119

transport schemes. We describe an algorithm for an120

aggressive bulk data transfer scheme called Reliable121

Blast UDP (RBUDP), provide an analytical model to122

predict its performance, and compare the results of123

our model against our implementation of RBUDP. Fi-124

nally we extend the analytical model to support high125

throughput reliable data streaming, and compare it126

with the graphics streaming experiments performed127

during the IGrid 2002 conference in Amsterdam, The128

Netherlands.129

2. Related work130

In 1995, Gilder[7] predicted that network band-131

width would triple every year for the next 25 years.132

So far his prediction seems to be approximately cor-133

rect. Each fiber optical wavelength channel can run at134

10 Gbps. Wavelength division multiplexing gives 128135

or more channels per fiber, resulting in a combined136

bandwidth of 1 terabits per second (almost 20,000,000137

times faster than 56 Kbps modem connection). Con-138

sequently, this has led to a situation where straight-139

forward use of the BSD socket library cannot take140

advantage of the high bandwidth available, making141

commonly used networking protocols unsuitable for142

high-end applications. Even if networked applications143

could make Gigabit “lambda reservations”, it does not144

however guarantee that they will be able to make full145

use of that bandwidth. This problem is particularly ev-146

ident when one attempts to perform large bulk data147

transfers over long distance, high-speed networks (of-148

ten referred to as “long fat networks” or LFNs)[26].149

LFNs such as those between the US and Europe or150

Asia have extremely high round-trip latencies (at best151

120 ms). This latency results in gross bandwidth under152

utilization when TCP is used for data delivery. This is153

because TCP’s windowing mechanism imposes a limit154

on the amount of data it will send before it waits for an155

acknowledgement. International networks have long156

delays causing TCP to spend an inordinate amount of157

time waiting for acknowledgments. Consequently, the158

client’s data transmission will never reach the peak159

available capacity of the network. Traditionally this160

is “remedied” by adjusting TCP’s window and buffer161

sizes to match thebandwidth × delayproduct (or ca- 162

pacity) of the network. For example, for a 1 Gbps con-163

nection between Chicago and Amsterdam, with an av-164

erage Round Trip Time (RTT) of 110 ms, the capacity165

is 1024× 0.11/8 = 14.1 MB. Adjusting TCP win- 166

dow size is problematic for several reasons: firstly, on167

some operating systems (such as IRIX for the SGI)168

the window size can only be modified by building a169

new version of the kernel—hence this is not an op-170

eration a user-level application can invoke. Secondly,171

one needs to know the current capacity of the network172

in order to set the window size correctly. The current173

capacity varies with the amount of background traffic174

already on the network and the path to the destination.175

Several alternative solutions are possible. One so-176

lution is to provide TCP with better estimates of the177

current capacity of a link. The WEB100 Consortium178

[28], which takes this approach, is developing tech-179

niques to modify router operating systems to report180

available bandwidth over a network link. They are also181

modifying operating systems kernels to allow better182

monitoring of TCP performance. Another solution is183

to use parallel TCP. In parallel TCP, the payload being184

delivered is divided into N partitions, which are de-185

livered over N TCP connections. Leigh et al.[12,19] 186

and Allcock et al.[2] have shown that parallel TCP187

can provide throughput as high as 80% of a network’s188

available bandwidth, but its performance is unstable189

when excessive numbers of sockets are used. More-190

over, it is difficult to predict the correct number of191

sockets to use. However, there is a growing commu-192

nity of high bandwidth network users that are real-193

izing that there is no need for a congestion control194

mechanism if the application is able to reserve a ded-195

icated network path such as in the case of photonic196

networks. As a consequence, there is now great in-197

terest in developing UDP-based protocols to improve198

bandwidth use. Simple Available Bandwidth Utiliza-199

tion Library (SABUL) [8] and Tsunami[27] are two 200
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recent examples. Our Reliable Blast UDP (RBUDP)201

protocol which we developed in 2000 is another[12].202

The unique contribution of RBUDP is that we are able203

to provide an analytical model to predict its perfor-204

mance. This kind of predictability is important for data205

intensive, interactive applications.206

3. Overall design of quanta207

Quanta emerged from almost a decade’s experi-208

ence in connecting immersive CAVE systems[3]209

to each other and to supercomputers—this concept210

is called Tele-Immersion[14]. Quanta’s predeces-211

sor is CAVERNsoft [19], which has been widely212

used by the CAVE community to develop advanced213

tele-immersive applications. Consequently, Quanta214

inherits all of the data sharing abstractions that have215

been found to be useful for developing these ap-216

plications; and networked applications in general.217

Quanta aims to provide an Adaptive Network Con-218

troller (ANC) (Fig. 2) and three supporting services:219

a Resource Monitor, a Quality-of-Service provisioner220

and a collection of data transport mechanisms and221

data sharing abstractions. The ANC’s first role is to222

take application-specified data delivery requirements223

(e.g. bandwidth, latency, jitter, reliability, etc) and224

translate them into networking and computational225

resource allocations needed to meet the applications’226

demands. The ANC will monitor the current state227

Fig. 2. Quanta’s adaptive networking system.

of the network or QoS capability, select an optimal228

transmission protocol, and make QoS requests (if229

available.) If QoS is available, the ANC contacts the230

Admission Control system to determine if the desired231

bandwidth is available, and then makes a reservation232

using the Signaling Controller. Once the strategy has233

been activated, the ANC will monitor the progress234

of the data transmission and adjust networking and235

computational parameters to sustain the desired per-236

formance. To accommodate multiple simultaneous237

and heterogeneous network flows, the ANC may alter238

some of the low-level transport protocol parameters239

(such as buffer size) or may adjust QoS reserva-240

tions dynamically. The Signaling Controller main-241

tains device-independence via a plug-in architecture242

that dynamically loads-in service-provider-specific li-243

braries to signal for QoS. In the case of our photonic244

testbeds, the signaling controller interacts with PIN245

to make light path reservations. 246

3.1. Photonic interdomain negotiator: interdomain 247

light path provisioning for quanta 248

Work is currently underway to develop a software249

infrastructure for light path provisioning on photonic250

networks (Fig. 3). While Quanta can ensure that251

data is optimally delivered over these light paths, it252

presently does not have the ability to allocate these253

dedicated light paths. This is the role of PIN. An ap-254

plication wishing to allocate a light path between two
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Fig. 3. Architecture of the interdomain light path provisioner.

end points, contacts its local PIN which will dispatch255

generic light path signaling messages to neighboring256

PINs until the final destination is reached. Each PIN257

will translate the generic light path signaling message258

into the native photonic signaling message that is un-259

derstood by the local intradomain light path signaling260

facility. This facility then signals the photonic switch261

to make adjustments to its internal MEMS switches262

to establish the connection. At the present time a pro-263

totype of PIN is being developed, and TL1 command264

sets and APIs from multiple vendors such as Nortel,265

Glimmerglass, Calient and IMMI, are being examined266

to identify common commands that PIN will need to267

support. 268

3.2. Quanta’s data transport and data sharing 269

capabilities 270

Quanta’s data transport capabilities include271

C++ classes that simplify socket-level programming272
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of TCP, UDP and multicast communications (these are273

encapsulated in the C++ classes: QUANTAnettcp c,274

QUANTAnet udp c, QUANTAnet mcastc, respec-275

tively). The reader is encouraged to examine the276

Quanta API manual[20] for a detailed explana-277

tion of how one goes about using the individual278

C++ classes. The names of the C++ classes are279

provided here as a reference. All the data transport280

classes have performance monitoring built into them281

so that an application can easily determine how much282

bandwidth it is using and how much latency it is283

experiencing. As Quanta is a cross-platform toolkit,284

it provides a data packing API that allows applica-285

tions to ensure that their transmissions are correctly286

translated into the format of the target computer287

system (QUANTAnetdatapackc). Quanta also pro-288

vides a set of threading and mutual exclusion classes289

(QUANTAts mutexc, QUANTAts threadc, QUAN-290

TAts conditionc).291

Quanta provides a number of data sharing abstrac-292

tions. These are described below:293

QUANTAnettcpReflectorc and QUANTAnetudp-294

Reflectorc: Data reflection is a unicast method295

for emulating multicast. Clients send information296

to a central server rather than a single multicast297

address and the reflector repeats/reflects that same298

information to all other subscribing clients. From299

our experience we have found that this is one of300

the most heavily used capabilities for supporting301

data sharing in collaborative applications. The302

UDP reflector provides both unicast reflection and303

multicast bridging. This enables groups of clients304

to operate multicast within separated domains and305

share information across them using a bridge rather306

than having to set up a multicast tunnel, which307

often requires system administrator privileges. The308

TCP reflector is similar to the UDP reflector in that309

it places boundaries on TCP messages (making310

them discrete) instead of broadcasting them as a311

continuous stream.312

QUANTAdbc, QUANTAmiscobserverc and QUAN-313

TAmiscsubjectc: Quanta provides persistent dis-314

tributed shared memory emulation via the QUAN-315

TAdb (or database) class. This is essentially a316

client/server database with automatic data reflec-317

tion. Hence any updates to the database are prop-318

agated to all subscribers of the database. Clients319

are notified either via a traditional callback func-320

tion or via a subject/observer mechanism[6]. This 321

is essentially an object-oriented replacement for322

callbacks. The subject maintains a list of its ob-323

servers for specific events and each observer will324

be triggered whenever the specific event occurs.325

The database assumes a Unix-like directory hierar-326

chy with the leaf nodes containing the individual327

data values. These data values are intended to be328

small to expedite state information sharing rather329

than bulk data sharing. 330

QUANTAnetrpc c: To complement Quanta’s dis-331

tributed shared memory and message passing capa-332

bilities, remote procedure calling is also provided.333

This allows clients and servers to invoke each334

other’s functions and procedures. This is a widely335

used technique for distributed computing. 336

QUANTAnethttp c: This is a C++ class to access337

WEB servers. 338

QUANTAnetparallelTcpc: This class works like 339

Quanta’s regular TCP socket class except a data340

buffer is partitioned and transmitted over several341

sockets rather than just one. Parallel TCP has been342

shown to be able to overcome the LFN problem,343

however the performance becomes unstable when344

too many parallel sockets are used[19]. 345

QUANTAnetremoteFileIO32c, QUANTAnetremo- 346

teFileIO64c, QUANTAnetremoteParallelFileIO- 347

32 c and QUANTAnetremoteParallelFileIO64c 348

classes: The Remote File I/O classes provide the349

capability for uploading and downloading files350

from a remote server. The provision of both 32 and351

64 bit versions as well as parallel socket versions of352

the class allows for the efficient delivery of all file353

sizes, including those larger than 2 GB. The 64 bit354

version effectively allows one to deliver Terabyte355

files. 356

QUANTAnetfecClientc and QUANTAnetfecServer 357

c: For long distance networks such as international358

networks, latencies are high (on the order of hun-359

dreds of milliseconds). In advanced collaborative360

applications, we would ideally like state updates in361

the shared environment to occur with a minimum362

amount of latency and with a high degree of relia-363

bility. Data should be transmitted reliably over long364

distances without the acknowledgement typically365

used in protocols such as TCP. We have applied366

Forward Error Correction (FEC) to achieve this[5]. 367
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FEC collects between 1 andN (typically 2 or 3) data368

packets and performs a bit-wise operation on the369

packets (such as XOR), to produce a “redundant”370

packet. This packet is delivered along with the371

regular UDP traffic as a separate UDP stream. If372

any data packets are lost, FEC packets can be used373

to reconstruct the missing packet. By using such374

a scheme the latency and jitter can be reduced for375

reliable transmission over long distance networks.376

QUANTAnetrbudpSenderc and QUANTAnetrbu-377

dpReceiverc: When operating over dedicated net-378

works the probability of packet loss is low. To take379

advantage of this opportunity one can use UDP380

augmented with acknowledgements. The Reliable381

Blast UDP (RBUDP) scheme works by “blasting”382

the contents of a data file at just below the avail-383

able bandwidth without asking the remote site to384

acknowledge any of the packets[12]. Hence, all the385

available bandwidth is used for pure data transmis-386

sion. At the remote site, a tally is kept for all the387

packets that have arrived and, after some timeout388

period, a list of missing packets is sent back to the389

sending client. The sender reacts by resending all390

the missing packets and again waiting for another391

negative acknowledgement, and so on. The next392

section focuses deeply into RBUDP, as it has re-393

cently gained significant importance as a technique394

in overcoming TCP’s inability to fill high band-395

width networks.396

Fig. 4. Time sequence diagram of RBUDP.

4. Reliable Blast UDP 397

Reliable Blast UDP[9] has two main goals. The398

first is to keep the network pipe as full as possible399

during bulk data transfer. The second goal is to avoid400

TCP’s per-packet interaction so that acknowledgments401

are not sent per window of transmitted data, but aggre-402

gated and delivered at the end of a transmission phase.403

Fig. 4 illustrates the RBUDP data delivery scheme. In404

the first data transmission phase (A to B in the figure),405

RBUDP sends the entire payload at a user-specified406

sending rate using UDP datagrams. Since UDP is an407

unreliable protocol, some datagrams may become lost408

due to congestion or an inability of the receiving host409

from reading the packets rapidly enough. The receiver410

therefore must keep a tally of the packets that are re-411

ceived in order to determine which packets must be412

retransmitted. At the end of the bulk data transmis-413

sion phase, the sender sends a DONE signal via TCP414

(C in the figure) so that the receiver knows that no415

more UDP packets will arrive. The receiver responds416

by sending an acknowledgment consisting of a bitmap417

tally of the received packets (D in the figure). The418

sender responds by resending the missing packets, and419

the process repeats itself until no more packets need420

to be retransmitted. 421

In RBUDP, the most important input parameter is422

the sending rate of the UDP blasts. To minimize loss,423

the sending rate should not be larger than the band-
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width of the bottleneck link. Tools such as iperf[10]424

and netperf[16] are typically used to measure the bot-425

tleneck bandwidth. In theory if one could send data426

just below this rate, data loss should be near zero. In427

practice, however, other factors need to be considered.428

In our first implementation of RBUDP, we chose a429

send rate of 5% less than the available network band-430

width predicted by iperf. Surprisingly this resulted in431

approximately 33% loss! After further investigation432

we found that the problem was in the end host rather433

than the network. Specifically, the receiver was not434

fast enough to keep up with the network while mov-435

ing data from the kernel buffer to application buffers.436

When we used a faster computer as the receiver, the437

loss rate decreased to less than 2%. The details of this438

experiment are further discussed inSection 4.2.439

The chief problem with using iperf as a measure of440

possible throughput over a link is that it does not take441

into account the fact that, in a real application, data442

is not simply streamed to a receiver and discarded. It443

has to be moved into main memory for the application444

to use. This has motivated us to produce appperf (a445

modified version of iperf) to take into account an extra446

memory copy that most applications must perform. We447

can therefore use appperf as a more realistic bound448

for how well a transmission scheme should be able449

to reasonably obtain. In the experiments detailed in450

Section 4.2, we will include both iperf and appperf’s451

prediction of available bandwidth.452

Three versions of RBUDP were developed:453

• RBUDP without scatter/gather optimization: This454

is a näıve implementation of RBUDP where each455

incoming packet is examined (to determine where it456

should go in the application’s memory buffer) and457

then moved there.458

• RBUDP with scatter/gather optimization: This im-459

plementation takes advantage of the fact that most460

incoming packets are likely to arrive in order, and if461

transmission rates are below the maximum through-462

put of the network, packets are unlikely to be lost.463

The algorithm works by using readv() to directly464

move the data from kernel memory to its predicted465

location in the application’s memory. After per-466

forming this readv() the packet header is examined467

to determine if it was placed in the correct location.468

If it was not (either because it was an out-of-order469

packet, or an intermediate packet was lost), then470

the packet is moved to the correct location in the471

user’s memory buffer. This optimization can im-472

prove the throughput by 10% when the receiving473

host is slower than the network.[9] 474

• “Fake” RBUDP: This implementation is the same475

as the scheme without the scatter/gather optimiza-476

tion except the incoming data is never moved to477

application memory. This was used to examine the478

overhead of the RBUDP protocol compared to raw479

transmission of UDP packets via iperf. 480

Experiments that compare these versions of the pro-481

tocol, and an analytical model of RBUDP, will be pre-482

sented next. 483

4.1. Analytical model for RBUDP 484

The purpose of developing an analytical model for485

RBUDP is twofold. Firstly we wanted to develop an486

equation similar to the “bandwidth× delay product” 487

equation for TCP, to allow us to predict RBUDP per-488

formance over a given network. Secondly we wanted489

to systematically identify the factors that influenced490

the overall performance of RBUDP so that we can491

predict how much benefit any potential enhancement492

in the RBUDP algorithm might provide. 493

Firstly, all variables are defined as follows:494

Bachievableis the achievable bandwidth,Bsend the cho- 495

sen send rate,Stotal the total data size to send (i.e.,496

payload),Ttotal the total predicted send time,Tprop 497

the propagation delay,TudpSendi the time to send UDP498

blast onith iteration,Nresendthe number of times to499

resend (depends on loss%),Tack the time to acknowl- 500

edge a blast (at least 1 ACK is always needed),Li the 501

% packet loss onith iteration. 502

In our model we are attempting to predict the503

achievable bandwidth (Bachievable) of RBUDP: 504

Bavailable= Stotal

Ttotal
(1)

505

Following the RBUDP algorithm, we estimateTtotal as 506507

Ttotal = (Tprop + TudpSend0) 508

+
(

Nresend∑
i=1

(Tprop + TudpSendi )

)
509

+ (Nresend+ 1)(Tack + Tprop) (2) 510
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In (2), the first term is the time to send the main pay-511

load, the second term is the time to transmit missing512

packets, calledTresend, the last term is the time to send513

each acknowledgement.514

Specifically:515516

TudpSend0 = Stotal

Bsend
, TudpSendi = Li−1SudpSendi−1

Bsend
,

517

Tack = Sack

Bsend
, Sack = Stotal/Spacket

8
,

518

Tack = Stotal/8Spacket

Bsend
, Spacket= 1.5 KB

519

Consequently:520521

Ttotal =
(

Tprop + Stotal

Bsend

)
522

+
(

NresendTprop +
Nresend∑
i=1

Li−1SudpSendi−1

Bsend

)
523

+
(

(Nresend+ 1)

(
Stotal

8SpacketBsend
+ Tprop

))
524

(3)525

Given this equation, let us consider two possible526

situations—one where no loss occurs, and one where527

loss does occur. If no loss occurs, we can eliminate the528

middle term so that the best achievable performance529

can be computed using:530531

Tbest=
(

Tprop + Stotal

Bsend

)
+
(

Stotal

8SpacketBsend
+ Tprop

)
,

532

Bbest= Stotal

Stotal/Bsend+ Stotal/8SpacketBsend+ 2Tprop533

(4)534

In the denominator,Stotal/8SpacketBsend is very small535

compared to other factors and can be omitted.536

We can then derive the ratio ofBbest andBsendas537

Bbest

Bsend
= 1

1 + (RTTBsend/Stotal)
(5)

538

where 2Tprop is RTT.539

This ratio shows that in order to maximize through-540

put, we should strive to minimize RTTBsend/Stotal by541

maximizing the size of the data we wish to deliver.542

For example, givenTprop for Chicago to Amsterdam543

is 50 ms, andBsend is 600 Mbps, and if we wish to544

achieve a throughput of 90% of the sending rate, then545

the payload,Stotal needs to be at least 67.5 MB. 546

In Section 4.2(Fig. 5), we will useEq. (3)to com- 547

pare the theoretical best rateBbest against experimen-548

tal results, over a variety of send rates (Bsend). Fur- 549

thermore we will compareBbest against experimental550

results with varying payload sizes (Stotal) (Fig. 7). 551

Now let us turn to consider the situation where loss552

does occur. We will take a simplifying assumption that553

a constant loss rate ofL occurs at every pass of the al-554

gorithm. We realize that in a real network subsequent555

losses in the retransmit phases is likely to be smaller,556

rather than constant, because we will be retransmit-557

ting a significantly smaller payload at each iteration.558

However to estimate that accurately would require us559

to develop a model for the buffer in the intervening560

routers too. Hence we can take our simplifying as-561

sumption as a worst-case estimate. 562

So, given loss rateL, retransmits will occur until the563

amount of data left is less than one packet. Therefore564

the number of retransmits required can be estimated as565

Nresend=
⌊

logL

(
Spacket

Stotal

)⌋
(6)

566

The data size of all retransmits is therefore: 567

Sresend= Stotal
L(1 − L�logL(Spacket/Stotal)�)

1 − L
(7) 568

We can now plug (6) and (7) back intoEq. (3) to 569

produce our new estimate ofBachievablegiven constant 570

loss rateL. In Fig. 7, we will put this prediction to 571

use comparing an experimental situation where packet572

loss was observed. 573

4.2. Experimental results 574

The testbed network consisted of an OC-48 link575

(2.5 Gbps) brought by SURFnet from Amsterdam to576

the StarLight facility in Chicago. There was little-to-no577

traffic on the link when the experiments were per-578

formed. Linux PCs were placed at each end of the link.579

The specifications of each PC is shown inTable 1. 580

Wgsara (in Amsterdam) was the slower PC, Charyb-581

dis (in Chicago) was the faster one. The network bot-582

tleneck resides in the Gigabit Ethernet cards of host583

computers. 584

In the first set of experiments, data was sent via585

RBUDP from the faster PC to the slower PC (from586
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Fig. 5. RBUDP throughput from Chicago to Amsterdam. Payload is 450 MB. Bottleneck is in the receiving host. The lines indicating iperf
and appperf throughput show the maximum performance when the tools are sending at the network’s full data rate. appperf is a more
realistic indication of the rate at which an application can absorb incoming data packets as it takes into account the additional overhead
involved in most applications that need to take the data off the network and use it.

Chicago to Amsterdam). In the second set of experi-587

ments data was sent in the opposite direction. This al-588

lowed us to examine the performance of RBUDP when589

the bottleneck was either at the processor or in the590

network. The result was compared against predicted591

results from our analytical model. A third set of ex-592

periments examined RBUDP throughput for different593

payload sizes.594

4.2.1. From the fast PC to the slow PC (Chicago to595

Amsterdam)—when the bottleneck is in the receiving596

host computer597

In this experiment, iperf measured maximum avail-598

able bandwidth at 878 Mbps, and appperf measured599

maximum possible throughput at 643 Mbps. InFig. 5,600

Table 1
Specification of host PCs in the experimental testbed

Host name CPU Memory size System bandwidth

Wgsara2.phys.uu.nl (Amsterdam) Pentium III 800 MHz 512 MB 238 MB/s
Charybdis.sl.startap.net (Chicago) XEON 1.8 GHz 512 MB 844 MB/s

we plot these thresholds as lines across the top of601

the graph. Plotting the achieved throughput at various602

sending rates for the fake and real RBUDP algorithms,603

we notice that at sending rates below the network ca-604

pacity, RBUDP performs well, i.e., RBUDP gives the605

application exactly what the application asks for. We606

also notice that as the sending rates approach the ca-607

pacity of the network, Fake RBUDP achieves almost608

the same throughput as iperf, and the real RBUDP be-609

gins to hurt in performance because the underpowered610

CPU is unable to keep up with handling the incoming611

packets. However, as real RBUDP is able to match the612

maximum performance of appperf, this means that613

RBUDP is making as much use of the network for use-614

ful data transfer as the CPU will allow. Finally, notice
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that there is a close match between our experimental615

results and our prediction fromEq. (4) (which esti-616

mated RBUDP performance when loss rate is zero).617

4.2.2. From the slow PC to the fast PC (Amsterdam618

to Chicago)—when the bottleneck is in the sending619

host computer620

We repeated the experiment in the opposite direc-621

tion. This time the bottleneck was in the sending PC622

rather than in the receiving PC.Fig. 6 shows that623

when the host computer is fast enough, iperf and624

appperf performances match, as do the different im-625

plementations of RBUDP. Fake RBUDP is able to626

reach the maximum performance obtained by iperf;627

and Real RBUDP is able to reach the maximum628

performance obtained by appperf-again confirming629

RBUDP’s ability to maximize bandwidth utilization630

for useful data delivery.631

4.2.3. Effect of payload size on throughput632

From the analysis inSection 4.1, we know that633

the propagation time is the primary factor affecting634

RBUDP overhead. For smaller payloads, the time635

spent in the acknowledgement phase is almost con-636

Fig. 6. RBUDP throughput from Amsterdam to Chicago. Payload is 450 MB. Bottleneck is in the sending host. The maximum of the
sending rate is 725 Mbps. SeeFig. 5 for an explanation of the iperf and appperf lines in the graph.

stant while the time spent blasting UDP packets637

decreases. InFig. 7, we compare an experimental sit-638

uation where we send data at 611 Mbps (experiencing639

no loss) against our theoretical prediction, which as-640

sumes no loss (Eq. (3)). Furthermore we compare an641

experimental situation sending data at 682 Mbps ex-642

periencing 12% loss, against our theoretical prediction643

where we assume a constant 12% loss per iteration.644

Firstly, the results show that RBUDP performs best645

for large payloads. Secondly, the results show that a646

12% packet loss does not impact throughput greatly for647

large payloads. Finally, our analytical models provide648

good boundaries for our experimental results for 0 and649

12% loss. 650

4.3. Adapting RBUDP for high speed data 651

streaming 652

Even though the initial motivation of RBUDP is653

for bulk data transfer over long distance, some appli-654

cations require high performance reliable streaming655

transport. InSection 4.2.3, we showed that in order656

to achieve fairly high throughput, the payload needs657

to be large. In streaming applications, if the size of
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Fig. 7. Throughput vs. payload size. Larger payloads produce better network utilization.

objects to be streamed is small, we combine mul-658

tiple objects to form a large payload. However this659

will cause end-to-end latency to increase because660

of the buffering needed to form the large payloads.661

Based on our analytical model, we can determine the662

minimum sending rate needed to ensure a desired663

object throughput rate, given the maximum delay the664

application is able to tolerate.665

Let Sobj is the size of streamed objects,Nobj the666

number of objects per payload,Bobj the required667

throughput of objects (number of objects per second).668

For example, in the case of graphics streaming, object669

throughput rate is measured in frames per second,D is670

the maximum extra delay the application can tolerate.671

Then the size of a payload is672

Stotal = SobjNobj (8)673

where674

Nobj = BobjD (9)675

The required raw bandwidth is676

Bbest= BobjSobj (10)677

Assuming we are operating over an over-provisioned678

network, we plug (8), (9) and (10) back inEq. (5) to 679

compute the rate at which RBUDP needs to send data680

to achieve the application’s requested throughput: 681

BSend= SobjBobj

1 − RTT/D
(11)

682

Hence, using a graphics streaming application as an683

example: given that RTT is 100 ms,Sobj is 800×600× 684

3 (assuming image resolution of 800×600 and 3 bytes 685

color information for each pixel) if we want to achieve686

a frame rateBobj of 20 frames/s, the maximum extra687

delay introduced will be 0.5 s, the sending rate needs688

to be at least 288 Mbps and each payload must encap-689

sulate 10 image frames. During IGrid 2002, Luc Re-690

nambot applied Quanta’s RBUDP to a parallel graph-691

ics streaming application calledGriz. Using our ana- 692

lytical model and the parameters from the above exam-693

ple, we were able to predict the number of animation694

frames that Griz had to package into a single payload695

to achieve full utilization of the Amsterdam–Chicago696

Starlight link [21]. 697
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5. Conclusions698

We have described the overall architecture and ca-699

pabilities of Quanta, a cross-platform C++ toolkit for700

building high performance networking applications. In701

particular we described in detail, an aggressive bulk702

data transfer scheme, called RBUDP, which is in-703

tended for either dedicated, or QoS-enabled high band-704

width networks. RBUDP eliminates TCP’s slow-start705

and congestion control mechanisms, and aggregates706

acknowledgments so that the full bandwidth of a link707

is used for pure data delivery. For large bulk transfers,708

RBUDP can provide delivery at precise, user-specified709

sending rates. RBUDP performs at its best for large710

payloads, rather than smaller ones. This is because711

with smaller payloads, the time taken for completing712

the delivery approaches the time taken to acknowledge713

the payload.714

We have provided an analytical model that gives a715

good prediction of RBUDP’s performance. This pre-716

diction can be used as a rule of thumb in a manner717

similar to thebandwidth × delayproduct for TCP. In718

addition, this prediction can be used to estimate how719

future ideas for improving the algorithm might impact720

RBUDP performance. Even though the initial applica-721

tion of RBUDP is bulk data transfer over high-speed722

networks, this protocol can also be extended for use723

in streaming applications. Here an application must724

make a tradeoff between latency and throughput. To725

achieve higher throughput, latency will increase be-726

cause more data must be aggregated as a single trans-727

mission payload.728

Through the combined use of PIN and Quanta,729

bandwidth intensive Optiputer applications will soon730

be able to allocate light paths between multiple pho-731

tonic domains and make full use of the available732

bandwidth.733
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