Hypercomplex Iterations, Distance
Estimation and Higher Dimensional Fractals

Yumei Dang, Louis H. Kauffman and Dan Sandin

To Yumei’s father, Ge Dang, and to the memory of
Lou’s mother, Alice Fisher Kauffman

i

Contents

Acknowledgements

Preface

I Introduction
1 Hypercomplex Iterations in a Nutshell

2 Deterministic Fractals and Distance Estimation
2.1 Fractals and Visualization
2.2 Deterministic Fractals, Julia Sets and Mandelbrot Sets
2.3 Distance Estimationo

IT Classical Analysis: Complex and Quaternionic

3 Distance Estimation in Complex Space
3.1 Complex Dynamical Systems
3.2 The Quadratic Family, Julia Sets and the Mandelbrot Set
3.3 The Distance Estimation Formula
3.4 Schwarz’s Lemma and an Upper Bound of the Distance Estimate
3.5 The Koebe 1/4 Theorem and a Lower Bound for the Distance Estimate . . .
3.6 An Approximation of the Distance Estimation Formula

4 Quaternion Analysis
4.1 The Quaternions
4.2 Rotations of 3-Space
4.3 Quaternion Polynomials L.
4.4 Quaternion Julia Sets and Mandelbrot Sets
4.5 Differential Forms
4.6 Regular Functionso
4.7 Cauchy’s Theorem and the Integral Formula
4.8 Linear and Quadratic Regular Functions
4.9 Difficulties of the Quaternion Analytic Proof of Distance Estimation

il

vii

ix

x1i

—

00 -~ =

11

13
13
14
17
18
22
27

v

5

Quaternions and the Dirac String Trick

IIT Hypercomplex Iterations

6

Quaternion Mandelbrot Sets
6.1 Quaternion Mandelbrot Sets
6.2 The Distance Estimate for Quaternion Mandelbrot Sets

Distance Estimation in Higher Dimensional Spaces

7.1 Higher Dimensional Deterministic Fractals
7.2 The Cayley Numbers
7.3 Distance Estimation in Higher Dimensional Spaces
7.4 Calculating the Derivative in Higher Dimensional Space
7.5 Another Version of the Distance Estimation Formula

IV Inverse Iteration, Ray Tracing and Virtual Reality

8

Inverse Iteration: An Interactive Visualization

8.1 Classical Inverse Iteration
8.2 Mappings in the Quaternions
8.3 The Quaternion Square Root
8.4 The n-th Roots in Higher Dimensions
8.5 Quaternion Julia Sets via Inverse Iteration
8.6 Functions Used in the Inverse Iteration Method
8.7 An Algorithm for the Inverse Iteration Method
8.8 Tree Pruning L
8.9 Displaying Julia Sets

Ray Tracing Methods by Distance Estimation
9.1 Distance Estimation via Ray Tracing,
9.2 A Classical Ray Tracing Algorithm
9.3 A Ray Tracing Algorithm Using Distance Estimation
9.4 Quaternion Multiplication in the Algorithm
9.5 Calculating the Derivative in the Algorithm
9.6 Some Important Parameters in the Algorithm
9.7 The n-th power Family of Quaternion Mandelbrot Sets
9.8 The Quadratic Family of Julia Sets
9.9 Generalized Quaternion Julia Sets L.
9.10 Disconnected Quaternion Julia Sets
9.11 Displaying and Rendering L.
9.11.1 Light Models
9.11.2 Surface Normal
9.11.3 Clarity e
9.11.4 Other Rendering Considerations

43

47

49
49
49

53
53
o4
25
o7
61

67

69
69
71
72
73
74
74
76
7
79

10 Quaternion Deterministic Fractals in Virtual Reality
10.1 Introduction to Virtual Reality
10.2 Parallel Computation
10.3 Data Communication
10.4 An Improved Display Algorithm
10.5 Display of Quaternion Deterministic Fractalsin VR

10.6 Conclusion
Appendix A

Appendix B

99

99
100
100
101
102
102

105

107

vi

Acknowledgements

We particularly thank Joe Insley and John Hart for many discussions and common work to-
gether. We thank Aushra Abouzeid and Beth Cerny for infinite amounts of work in preparing
the manuscript and designing the accompanying CD-ROM. We thank Floyd Hanson for help
in obtaining support that made this project possible, and we thank the NCSA and the PSC
for the use of their computer facilities. The second author thanks the National Science
Foundation for support under grant DMS-2528707.

Vil

viil

Preface

This book is an exploration of methods to visualize fractals in spaces of dimension two, three,
and higher. Our basic method involves estimating the distance to a fractal that is generated
through the iteration of a complex or hypercomplex function of many variables. The book
is based on Yumei Dang’s doctoral dissertation and on previous work in fractal geometry,
including the work of John Hart, Louis Kauffman, and Dan Sandin.

Julia sets of quadratic functions, as well as many other deterministic fractals, exist
in spaces of higher dimension than the complex plane. Visualization of hypercomplex Julia
sets is much more difficult than visualization in the complex plane, and the efficiency of
the algorithms becomes a significant issue. Several algorithms have been used to view these
structures that either required a large amount of storage space or used a low resolution ren-
dering method. One ray-tracing algorithm using distance estimation was given in which the
estimation for quaternion space works well, but the algorithm was not justified mathemati-
cally. During our study and research, a mathematical justification of this algorithm in both
the original complex case and its higher dimensional analogues was discovered.

The distance estimation formula provides an approximation of the distance from a
point outside of a Julia set to the Julia set itself. Since Julia sets are fractals, it is extremely
difficult to get an exact evaluation of the distance from a point to a Julia set. Therefore,
the lower bounds and upper bounds become very important for the purpose of visualization.
The distance estimate is a delicate matter to establish even in the case of Julia sets over the
complex numbers. It depends on the Riemann Mapping Theorem and a number of special
results in complex analysis. It has been verified empirically that in most cases the exact
analogue of this distance estimate works very well for quaternionic Julia and Mandelbrot
sets in three and four dimensions. The justification of this experimental work demands both
new theoretical work and a more fine-grained approach to the experimentation.

On the theoretical side, we pursued a program to analyze the distance estimate us-
ing theorems in analysis over the quaternions. Then, we found a mathematical justification
and description for the distance estimate in higher dimensional spaces by using a geometric
method. This new method provides a fundamental theoretical background for the visualiza-
tion of deterministic fractals.

To complement this theoretical base, we pursue optimization techniques to improve
the distance estimation algorithm and corresponding rendering methods on powerful com-
puter systems. Since images of hypercomplex fractals are time consuming to create, the

X

flexibility of the experiments is limited. This is the primary mathematical reason for want-
ing the best supercomputers to help in this problem. In more than two years of experiments
on the Alpha-Cluster at PSC, the SGI Power Challenge at NCSA and the virtual reality
environment CAVE at EVL, finer and more flexible results have been obtained.

We expect that a high-quality and flexible source of images of higher dimensional Julia
sets, Mandelbrot sets and other deterministic fractals will raise many new mathematical
questions.

The book is organized in four parts. In Part I, Chapter 1 gives an introduction to
hypercomplex iterations and Chapter 2 discusses deterministic fractals and distance estima-
tion.

Part II, covered by Chapters 3 through 5, provides mathematical background on the
classical method for estimating the distance to complex fractals. Chapter 4 provides the
reader with a wealth of interesting lore about quaternionic analysis, though its eventual
conclusion is pessimistic about the application of these techniques to hypercomplex distance
estimation. Chapter 5 is an interlude about the relationships among quaternions, topology,
and quantum mechanics.

Part TII begins the serious analysis of hypercomplex distance estimation. In Chapter
6, we show how to estimate the distance to quaternion Mandelbrot sets by reducing the
problem to the complex case. In Chapter 7 we give our new methods for distance estimation,
outlined in Chapter 1, and apply them to specific cases of higher dimensional iterations.

Part TV discusses in detail issues involved in generating, modelling and rendering
hypercomplex fractals. Chapters 8 and 9 present two different algorithms for modelling
deterministic fractals: inverse iteration and ray-tracing by distance estimation. A brief
description of other visualization methods (including animation) on platforms such as the
CAVE and ImmersaDesk, supercomputing techniques, and new data structures are described
in Chapter 10.

This book was written using the KIEXdocument processing system. The 2D illustra-
tions were created with Silicon Graphics IRIS-4D workstations. The 3D illustrations were
created on SGI Power-Challenge and IRIS-4D workstations.

Part 1

Introduction

X1

Chapter 1

Hypercomplex Iterations in a Nutshell

This book is an exposition of research related to the rendering of images of fractals in
dimensions three and higher. We concentrate on fractals that are generated by iterating
functions analogous to those used to make the well-known Mandelbrot and Julia sets in the
complex plane. Thus we study quaternionic and hypercomplex iterations (defined below)
and we use a technique of distance estimation that generalizes a method well-known in the
case of the complex plane.

Our key result is a precise formulation and justification of that distance estimation
algorithm. Our justification of the algorithm solves a question that has been open for some
time, since it was empirical knowledge among some of us that the method did produce striking
visual results, and it was conjectured that it was mathematically correct. In this introduction
we will outline our approach to the distance estimation. In the body of the book we give the
analytic background for the classical approach to this method and a concise introduction to
quaternionic analysis in the hope that this work will be of use for other problems in this
field. As the reader will see, our eventually successful approach to distance estimation is
quite elementary and easily understood with a minimum of background.

After a general introduction, we recommend that the reader browse through the book
and find those sections that are most relevant to his or her interest. In particular, it is quite
possible to go directly to Part III of the book dealing with Hypercomplex Iterations, skipping
the intricate background of complex and quaternionic analysis.

The rest of this introduction will be a quick tour of the themes and ideas of the book.
To begin, let us recall the form of the quaternionic number system. Just as the complex
numbers a + bi (with a and b real) are generated by the real unit 1 and the imaginary unit
i, the quaternions t + ai + bj + ck (with t, a, b, ¢ real) are generated by the real unit 1 and
the imaginary units 4, 7, k. These units satisfy the following equations

ij = —ji = k.
jk = —kj =i,
ki = —ik = j,

iP=3 =k =1,

Figure 1.1: A= —-0.25,B=10.75,0 =0

Note that it follows that ijk = —1. William Rowan Hamilton, who discovered the quater-
nions, was so taken by them that he inscribed the equations

==k =ijk=—1

on the side of a bridge on the day of the discovery. The multiplication of quaternions is
associative, a kind of miracle that cannot be repeated for analogous systems such as the
vector cross product, or generalizations such as the Cayley numbers (see Section 7.2).

The quaternions have many remarkable properties. First there are formal properties
of the multiplication. If w =t + ai + bj + ck with a, b, ¢, t real numbers, then we define the
conjugate of w to be the quaternion W =t — at — bj — ck. It is easy to check that

ww = t? + a® + b + 2.

Hence, non-zero quaternions have multiplicative inverses. In this sense, the quaternions
generalize all the properties of complex numbers except for commutativity.

We call a quaternion with ¢ = 0 a pure or purely imaginary quaternion. Letting
u = at+ bj + ck,
it is easy to compute that
u? = —(a® + b* +).
Thus if u is a pure quaternion with length one (i.e., a® + b* + ¢* = 1) then u*® = —1.
Among the pure quaternions, there is an entire two-dimensional sphere’s worth of square

roots of negative unity. There is one square root of minus one for each direction in the three
dimensional space of pure quaternions.

Figure 1.2: A= —0.25, B =0.75,0 = 45

It is worth noting that if v and v are two pure quaternions then
UV =—u-v+uxv

where u - v denotes the dot product of vectors in three-space and u x v denotes the cross
product of vectors in three-space. In this notation, points in three-space are pure quaternions
and the addition of a scalar connotes a coordinate in the fourth dimension.

It is convenient to write a quaternion in the form A + Bu where A and B are real
numbers and u is a unit length pure quaternion. Then u? = —1 and powers of A + Bu take
the same form as powers of complex numbers (since u taken alone is indistinguishable from
any other square root of minus one). Thus if 2 = A+ Bu = Rcos(f) + Rsin(f)u, then

2" = R" cos(nf) + R" sin(nb)u

by DeMoivre’s formula for powers of complex numbers. This means that we can define power
mappings and also n-th roots in the quaternions.

This method allows us to define a partial multiplication on points in a space of N + 1
dimensions by representing points in NV + 1 - space in the form A+ Bu where A is a scalar, B
is a real number, and u is a unit vector in Euclidean N-space, R". The vector u belongs to
the unit sphere SV=1 about the origin in R" and is taken to have square equal to minus one:

u? = —1 for all vectors in S¥ 1. While uv is not in general defined in the higher dimensional
cases, we can still study power maps of the form 2" + k where k is a vector in RV*! and
2z = A+ Bu with u? = —1 for all w in S™~!. In this way we can study classes of hypercomplex

iterations in arbitrary dimensions.

We are interested in the properties of iterations of functions of the form f(z) = 2"+ k&
where z is a hypercomplex variable of the form z = A + Bu as described above, and k

DgF™) =1F"P)-F"(Q|/d
IF"®P)| /1 1DgEM | ~ d

Figure 1.3: Geometry of the distance estimation for a compact fractal.

is a hypercomplex constant. In particular, we are concerned with the Julia sets and the
Mandelbrot sets associated with these functions. See Section 4.4 for a more general
definition of these sets than the one we are about to state. Let f"(z) denote the n-th
iterate of f applied to z for n a natural number. Thus f3(z) = f(f(f(2))). The Julia set of
f(2) = 2™+ k is the set of those points z, such that f"(z) does not tend to infinity as n goes
to positive infinity (n=1,2,3,4,...). Let fx(2) = 2" + k. The Mandelbrot set of z" is the set
of points k such that f;*(0) does not go to infinity as n goes to infinity.

The simplest way to obtain a first look at the Julia and Mandelbrot sets is to use an
inverse iteration algorithm. We will illustrate this here by explaining inverse iteration for the
Julia set for f(z) = 2? + k. The inverse function of f(2) is g(z) = £v/z — k in the sense
that f(g(z)) = 2. By starting with a point that is not in the Julia set and iterating g(z), we
produce backward orbits that converge to the Julia set itself. There are some subtleties in
applying this method, and we refer the reader to Chapter 8 for a discussion of some of them.
Nevertheless, the inverse iteration algorithm itself is very simple. It is based on the formula

Vartu ==+ (I + a2+ sign®)u/1= 0)/2)

valid when a? + b*> = 1 and u is a unit pure hypercomplex number so that u? = —1. The
indication sign(b) denotes the sign of the number b: that is, sign(b) is +1 if b is positive and
—1if b is negative. This square root formula can be applied immediately to the hypercomplex

iteration g(z) = +v/22 — k by writing 2% — k in the form p(a + bu) where p is a real number
greater than or equal to zero, a and b are real numbers such that a® +b? = 1, and u is a pure
hypercomplex unit. In the case of z in Euclidean three-space, we have that u lies on a unit
circle in the plane and hence is determined by a choice of angle 6. As a result, the constant
k for the iteration has the form A + Bu where A and B are arbitrary real numbers and u
is determined by an angle 6. The triple (A, B,) then determines the choice of a particular
three dimensional “quaternionic” Julia set. Figures 1.1 and 1.2 provide examples of images
produced by this inverse iteration method.

In Appendix B we include a copy of a BASIC program that can be used to compute
three dimensional quaternionic Julia sets by inverse iteration. The parameters (A, B, 0) in
the program are as described above.

The CD-ROM that accompanies this book exhibits many families of quaternionic Julia
sets in three dimensional space. Appendix A gives the equations and parameterizations for
these families. The images are produced by choosing a specific value of 6 for each family,
and then varying a complex constant ¢ = R + [i. Thus, a given family depends upon a
2-dimensional array of parameters (R,). The function that is iterated for a fixed 6 (and
fixed ¢ = R+ i) is

fo=e""2"+€",

where z is a quaternionic variable.

The reader should note that our images come in two flavors, (A, B,0) and (R, I,0).
The first parameterization corresponds to the point-cloud program given in Appendix B.
The second parameterization is used on the CD-ROM to illustrate three-dimensional slices
of four-dimensional sets, where the angle 0 effects a rotation in 4-space.

Now we turn to the main topic of this book — the distance estimation algorithm. This
is our new approach to distance estimation. The approach is surprisingly elementary, but it
was not so easy to find!

Assume that we are given a function F': RY — R" and let J denote the Julia set
of this function. We shall say that a point 2’ is outside J (not necessarily the same as the set
theoretic complement of J) if F'"(z') goes to infinity as n goes to infinity. We shall assume
that J is a closed and bounded subset of RY.

Given a point z outside J, we wish to estimate the distance from z to the Julia set
J. Since ¢ is the distance from z to J, there is a point 2y in the Julia set and a unit vector u
in RY such that zp = z + du. For n sufficiently large, |F™(z)| will be arbitrarily large, while
|F™(29)| is bounded by the maximal distance from the origin to points in the compact set
J. See Figure 1.3. Therefore, for sufficiently large n, we have the estimate

[E"(2)|/|F"(20) = F™(2)] =~ L.

Letting
Dsu(G) = (G(z + bu) — G(2))/9,

Figure 1.4: A ray-traced quaternionic fractal with parameters § = 90, R = 0.25, and I =
—0.05.

we conclude that
[F™(2)|/| Dsu(F"(2))| = 6.

This is our basic distance estimation formula. It expresses the distance estimate in terms of
the value of a discrete directional derivative. In applying this formula, we make estimates to
ensure that the discrete derivative can be approximated by the exact or formal derivatives
of the associated functions. See Section 7.3 for the details of this work. Our approach
to distance estimation by this technique enables us to use it for hypercomplex fractals of
the sort described in this introduction. Our results on distance estimation generalize and
simplify the known results for iterations in the complex plane. See Chapter 3 for a review
of this subtle complex analysis.

Distance estimation allows high level rendering of hypercomplex fractals such as the
image shown in Figure 1.4. That is the subject of this book!

Chapter 2

Deterministic Fractals and Distance
Estimation

2.1 Fractals and Visualization

Mandelbrot’s fractal geometry provides both a description and a mathematical model for
many of the complex forms found in nature. Shapes such as coastlines, mountains and clouds
are not easily described by traditional Euclidean geometry. Nevertheless, they often possess
a remarkable invariance under changes of magnification. This statistical self-similarity is an
essential feature of fractals in nature. While fractals are not strictly defined by the property
of statistical self-similarity [27], this concept is a useful rule-of-thumb for the presence of
fractal phenomena. The simplest fractals often exhibit strict self-similarity with respect to
a given scaling law. The fractals that we study in this book are more irregular in texture.

Fractals have helped reconnect research in pure mathematics with both the natural
sciences and computer graphics. Within the past twenty years, fractal geometry and its
concepts have become central tools in most of the natural sciences: physics, chemistry,
biology, geology, meteorology and materials science, to name a few. At the same time,
fractals are important to graphic designers and film makers in the creation of artificial but
realistic worlds.

As fractal models become better understood through visualization, they become easier
to control and study. Conversely, fractal geometry and mathematical models play a central
role in the realistic rendering and modelling of natural phenomena in computer visualization.

2.2 Deterministic Fractals, Julia Sets and Mandelbrot
Sets

Fractal models may be separated into two families, random and deterministic, based on their
construction. The generation of both kinds of fractals may depend on streams of random
numbers; the distinction is based on the influence that these random numbers have on the

shape of the fractal. Altering the stream of random numbers will change the shape of a
random fractal, but it will not affect the shape of a deterministic fractal.

Random fractals are used to simulate natural phenomena. The basic random fractal
model is a generalization of Brownian motion called “fractal Brownian motion” [27]. More
advanced methods have been developed since then in [38], [6], [34].

Historically, the first illustrations of 3D deterministic fractals were generated at coarse
resolutions, conveying the basic form of the fractal. More refined techniques are costly in
one way or another (memory or time). In fact, for a person just beginning to study Julia
sets and Mandelbrot sets, it is a good idea to use simple coarse algorithms for a first look.
It is then possible to exercise one’s imagination in seeing the form of the final limit set.

The Julia and Mandelbrot sets are deterministic fractals generated by polynomial
functions. There are polynomial functions whose iteration determines these fractals in point-
by-point decisions. The decisions consist in testing whether a given point does or does not
escape to infinity under the iteration. Inverse iteration (see Chapter 8) produces robust
coarse images of deterministic fractals.

In 1982, A. Norton produced one of the first treatments of the special problems
of rendering fractals. His method of generating deterministic fractals, called “boundary
tracking,” was an early implementation of volume visualization. Boundary tracking generates
a fixed-resolution voxel approximation of a fractal set. It runs in object space, precisely O(n?)
space, where d is the box-counting dimension of the object. A z-buffer was used for hidden
surface removal. The gradient of the z-buffer was used to simulate tangent planes along the
surface, whose normal vector was used to diffusely shade the set [29], [30].

J. Holbrook studied deterministic fractals using a brute force O(n®) computation. He
also used an O(n) point enumeration technique to create a point cloud approximation. The
points were so sparse that he characterized them as “starfields” [18], [19].

The point enumeration technique was developed further by J. Hart, .. Kauffman, and
D. Sandin. Shading and other depth cues were added to give the point cloud the appearance
of a 3D surface. Unfortunately, the point clouds had large gaps that were difficult to fill in
with this method [16].

Later, a ray-tracing method using distance estimation [15] was developed to efficiently
render deterministic fractals. But neither a mathematical explanation nor a proof was given
of the distance estimation formula beyond the complex plane.

2.3 Distance Estimation

The distance estimate is an inequality that gives a lower bound and an upper bound for the
distance from an external point to the deterministic fractal itself.

Distance estimation in the complex plane was proved by [13] and has been in use

for some time. An algorithm using distance estimation, called the “continuous potential
method” given in [33], is an efficient algorithm for generating 2D deterministic fractals to
an arbitrary level of detail. Since the exact distance from a point to a deterministic fractal
is difficult to deduce, the distance estimation formula becomes essential in this algorithm.

Unlike the complex case, distance estimation in hypercomplex space appears difficult
to prove by analytic means. For example, the lack of commutativity of the quaternions is
problematic. As mentioned in the previous section, an efficient rendering algorithm using
distance estimation was studied by Hart, Kauffman, and Sandin. These authors did not give
mathematical justification for their algorithm.

It is the objective of this book to prove that these distance estimation formulas are
indeed valid in hypercomplex space. In the next section we will review the analytic methods
that apply to the complex plane. However, our proof of hypercomplex distance estimation,
given in Chapter 7, will ultimately rely on a geometric reformulation of the problem. Our
novel geometric approach to distance estimation will prove valid for both the complex plane
and higher dimensions.

10

Part 11

Classical Analysis: Complex and
Quaternionic

11

Chapter 3

Distance Estimation in Complex
Space

3.1 Complex Dynamical Systems

The dynamics of a function can be obtained by repeated application of that function to an
initial starting value. For example, let f be a function and z, be an initial value, then the
orbit of 2y is z1, 29, ..., 2, defined by

21 = f(Z()),
2o = f(zl)a

Zn = f(znfl)-

A simple function with interesting properties is the quadratic
f(z) =2+, (3.1)
where z is the iterated variable and c is a fixed constant.

In most cases, for a certain initial value zy, there exists a cycle such that, for a least
n, zo and the points zq, 29, ..., 2,_1 are distinct, while z, = 2zy. The points 2,21, 22, ..., 2, are
a cycle of period n. For example, the function

flz)=22—1 (3.2)

has a cycle of period 2, since f2(0) = 0. All points contained in a cycle are called periodic
points. A periodic point with period one is called a fixed point. Points whose orbits
become cycles are called preperiodic. Points not in a cycle but which eventually map into
a cycle are termed strictly preperiodic.

Cycles are classified by the eigenvalue A\ of each point in the cycle. The eigenvalue
of a periodic point is defined to be the derivative of the n-th iteration of that point, where
n is the period of the point. It is easy to see that A is the same for every point in a cycle.
Once A is determined, the cycle may then be described as

13

14

A = 0, superattractive
A < 1, attractive
A = 1, indifferent

A > 1, repelling.

The basin of attraction is defined as the set of all points which approach a given
attracting periodic orbit. The basin of attraction A.(z) of an attractive periodic point z
includes the set of points 2y such that

fH(z0) = 2 (3.3)

for some k > 0 and where f(z) = 22 + ¢. An attractive cycle v has a basin of attraction
Aq(7). Note that for any polynomial mapping, infinity is always an attractive fixed point,
and so A.(co) always exists [5], and

A(00) = {2z € C | f¥(29) — 00 as k — oo}.

A.(00) depends on ¢, where ¢ is the constant in the function f(z) = 22 + c.

3.2 The Quadratic Family, Julia Sets and the Mandel-
brot Set

Consider the mapping f.:C — C, f.(2) = 2> + ¢, ¢ € C. A.(c0) has a natural boundary;
that is, there are always points 2y, which generate orbits that do not approach co. Thus the
orbits stay bounded. For example, f. always has two fixed points, the solutions of 22 +¢ = z.
The boundary of A.(c0) is denoted by 0A.(co) and is called the Julia Set of f.. We use
the symbol J. for this boundary:

J. = 0A.(00).

The set of points
K.=C\ A.(00) = {2 € C| f¥(2) stays bounded for all k }
is called a filled-in Julia set. Obviously,
0K, = J. = 0A.(0).

That is, J,. is a frontier between orbits attracted to oo and orbits remaining bounded as
k — oo. We will often refer to K. and J. as Julia sets, with the understanding that the
former is a filled-in Julia set and the latter is the boundary of the set of points that approach
infinity under the iteration.

15

Figure 3.1: Complex Julia sets.

For most values of ¢, the Julia set J, is a fractal. Moreover, the J.’s change dramati-
cally as ¢ changes. Figure 3.1 shows J.’s for different values of c.

Julia sets are also characterized as the closure of the set of repelling periodic points
of the function being iterated:

J. = closure{all repelling periodic points of f.}.

The Mandelbrot set was discovered by B. B. Mandelbrot in 1980 [25]. One direct
definition of the Mandelbrot set is as follows: To each point ¢ in the complex plane, we
associate the function f,(z) = 22 + ¢, and consider the iteration of f.(z) applied to zero. If
this iteration does not go to infinity, then c is a member of the Mandelbrot set:

M={ceC| f}0) 4 coasn— oo}

It turns out that a point c is in the Mandelbrot set exactly when the corresponding
Julia set K. is connected. Thus, a classification of Julia sets in terms of connectivity can
help one to understand the Mandelbrot set, and the shape of the Mandelbrot set helps one
to understand the Julia sets.

It has been proved that each filled-in Julia set K. is
e ceither connected

e or a Cantor set (a dust of infinitely many points).

16

Figure 3.2: The complex Mandelbrot set.

Theorem 1 The Mandelbrot set (as defined above) is equal to the set
M'={ce C| K, is connected}.
In other words, M serves as a set of control parameters for K..

Proof: As above, Julia sets K. can be classified into two distinct classes, connected sets or
Cantor sets.

Suppose c is fixed. If we choose a very large disk of radius R, centered at the origin
with boundary Sg, then K. is inside Sg.

We now use Sgp = Sj as a starting set to describe an inverse iteration algorithm for
computing the Julia set J.. By examining this algorithm, we can determine whether a Julia
set is a connected set or a Cantor set.

For k£ =1,2,3, ..., if we compute the pre-image of Sy_; under f,., i.e., with Sy = Sk,

Sy =1z | fe(z) € Sk-1}, (3.4)

then S; is a closed curve that can be thought of as a deformed circle. This is certainly true if
R is very large, because f. acts likes fo(z) = 2? near z = oo, and f, is slightly perturbed by
c. Since the pre-image of Sy, under f; is a concentric circle with radius v/R, we may conclude
that S7 is indeed a connected curve. For k£ > 1, the following is a tautology

e cither all Si’s are circle-like,

e or thereis k* > 1, so that S;’s are circle-like for 0 < k£ < k* and they are not circle-like
for k£ > k*.

17

In the first case, the nested sequence of circle-like Si’s approximates K. better and
better as k — oo, and therefore, K. must be connected and ¢ € K,.. In the second case,
there are only two kinds of shapes of Si«, either two disconnected circle-like curves or two
distinct self-intersecting curves. Thus it can be shown K, is not connected and ¢ ¢ K.. In
other words,

M={c|lceK,}={c|0eK.}={c|0¢g A.(c0)}.
See [33]. This completes the proof. O

3.3 The Distance Estimation Formula

Let ¢ € M so that K, is connected. In that case, it can be proved [13] that there is a
one-to-one and onto biholomorphic mapping, with D denoting a disk of unit radius about
the origin in the complex plane,

$.:C\ K, — C\ D
for which ¢.(z) — z when z — oo, and which makes the following diagram commute:

Pe
C\D «— C\K.
fOl lfc
C\D « C\K.
e

In other words, fo(2) = ¢c(fo(¢-1(2))). That is, the iteration of fy outside of D is equivalent
to the iteration of f. outside of K.. A potential function for K, is defined as

G(z) = In(|c(2)]); (3.5)

and the escape time function is

e(z) = —In(Ge(2)). (3.6)

It is essential that K. be connected, because otherwise ¢, does not exist. If, however, K, is
a Cantor set, that is, ¢ ¢ C, then ¢, exists at least outside Sy (see Equation 3.4), and the
relation fo(z) = ¢e(fo(d71(c))) is still true. Later we will see that we can still use distance
estimation to obtain the contours of K., ¢ ¢ M.

In the complex plane, the distance estimation formulas for Julia and Mandelbrot sets
are essentially the same. Here we only consider Julia sets.

Theorem 2 Let d(z, K.) be defined as the distance from z € C to the Julia set K.. Then
the distance d(z, K.) between a point z lying outside of K. and K. itself satisfies
sinh G(z) 2sinh G(2)

secma oy < A6 KD < SE (3.7)

where G(z) is the potential at the point z.

18
An approximation of Inequality 3.7 is

2] 2]
In|z,| <d(z, K. < z—’hl |20]. (3.8)

22|72 | |21
n n

In next few sections, we will prove the above distance estimation formula and this approx-
imation. It is the approximation that has the most practical value for making images of
Julia sets, and it is the approximation that generalizes to quaternion and higher dimensional
fractals, as we will see in Section 7.3.

3.4 Schwarz’s Lemma and an Upper Bound of the Dis-
tance Estimate

We will use some results from complex analysis, such as Schwarz’s Lemma, to prove the
upper bound for the distance estimate in the complex numbers. First we have the following
lemmas.

Lemma 3 (Parseval’s Identity) Assume that f has the Taylor expansion

Z Z—ZO
valid in N(zp; R) = {z | |z — 20| < R}. If 0 <r < R, then

2 . o0
i/|ﬂ%ﬂwwwzzmﬁw.

2m Jo n=0

Proof: Since

A%ﬂ%ﬁ%|w—/ﬁ

/27r oo

and because for any integers m and n,

o0 (e}

do

n(2o + 1€ — 2)

2 27
"dez/
0

2

do,

> ay(r(cos(nd) + isin(nd)))"

n=0

27
/ cos(m —n)df = 0,
0

where m # n, we have,

2 | @ 2 or | o©) 2
/ > a,(r(cos(nd) + isin(nd)))"| df = / > a,rcos(nb) +i Y a,r"sin(nd)| do
0 n=0 0 n=0 n=0

— Z |CL27”2n| _ Z |an|2r2”.

n=0

19

Hence, we have proved

1 /271’ . o
— | f (20 + 7€) ?d0 = > Ja,|*r*™,
2m Jo "0
(I
Lemma 4 If M(r) is the mazimum of |f| on the circle |z — zo| = r, then
> lan]Pr® < MP(r).
n=0
Proof: Since
Lo 02 Lo o 2
—/ [(20 +) |2d0 < — M (7")/ 6 = M2(r),
2m Jo 2m 0
by Parseval’s Identity,
> Jan)?r® < MP(r).
n=0
(I

Lemma 5 (Maximum-Modulus Theorem) Assume that f is analytic on an open region
S in C, and suppose f is not a constant. Let T be a rectifiable Jordan curve such that both
T and its inner region lie within S. If |f(z)] < M on T, then

F@ <M
at all points inside T.
Proof: Suppose to the contrary that f is a constant and zq is an inner point such that
f(z0) = M,

then

f(z0) = i an(z — 20)" = ayp.

n=0
By the previous lemma,
o0
> lanr® < MP(r) = | f(20)* = ag,
n=0
so we have a, = 0 for n = 1,2, Then f(z) is constant, a contradiction! O

Now we can prove Schwarz’s Lemma.

Lemma 6 (Schwarz’s Lemma) Let f be analytic on the neighborhood N(0;1). Suppose
that f(0) =0 and f(2) < 1. If |z| < 1, then |f'(0)] < 1 and |f(2)] < |z|.

20

Proof: For any z, such that |zp| < 1, we can define a disk |z| < 1 —¢, for certain 0 < e < 1,
such that zy is inside the disk. Let g(z) = @ and g(0) = f(0). For |z|] = 1 — ¢ we have
l9(2)| < 1=, and by the Maximum-Modulus Theorem |g(z)| < 7. We can choose any &
smaller than the given e, and therefore |g(zp)| < 1 for any zo, |20] < 1. That is, |f(20)] < |20]-
So, [f(2)] < |z, for |z[< 1, and |f'(0)] = |g(0)] < 1. 0

The following lemma, which we will use in the proof of the upper bound of the distance
estimate, is an extension of Schwarz’s Lemma. Since it can be obtained directly from the
previous lemma, we omit the proof.

Lemma 7 Let f be analytic on neighborhood N(a;r) with r > 0. Suppose that f(a) =0 and
f(2) <1 If |z —a| <7, then |f(2)| < E and | f'(a)] < L.

r

Theorem 8 The distance from a point z, z € C, z & K, to the Julia set K. is strictly less

than jSéfl(f)(‘z), where G(z) is the potential of the point z. That is,
2sinh G(2)
d(z, K,) < —————
|G'(2)]

Proof: Let ¢. be the one-to-one and onto biholomorphic mapping
¢ C\ K., — C\ D

as defined in the previous section, where D = {z | |z| < 1}. Let

and

G(p) = —In[W(u)|.
Clearly, we can see G(p) = In |¢p.(p)]. We define F'(w) as follows,

w — Wy
P =y

where wy = W (o), 1o is in the complement of K., i.e. p € C\ K..

First, we are going to prove

F’ = >0
(w0> 1— WoWq
It is not difficult to see that .
F’ =
(wO) 1— WoWo
and .
(W (po)| =

21

By the definition of ¢(z) and p & K.,

Hence,

and

1— WoWo

where wy = W (o).
Second, we prove: F' o W maps the disk of radius r about py to the unit disk with
F(W (o)) =0, where r > 0 such that the open disk N(uo;7r) & K..

In order to prove this statement, we need to verify first that F'(w) is the fractional
linear transformation of the unit disk which takes wq to 0.

We can show, if [w| < 1, then |F(w)| < 1. Also if |w| <1, then [F(w)] < 1.

Let w = 2 + iy, wy = a + bi. Then

?+yt <1
and
|(w —wo)|* = |(z +iy) — (a +1d)|?
= (2° + y*) + (a® + b*) — 2az — 2by,
11— wwo|* = |1 — (z +iy)(a + ib)|?
=1+ (2* + v*)(a® + b*) — 2az — 2by.
Since
(2 + v (1 —a® = b*) < (1 —a® —b?),
we have
[(w — wo)|* < |1 — wiwp|?.
That is,
|(w —wp)| < |1 —wwy.
S0
|F(w)| < 1.
If jw| = 1, then we can show |F(w)| = 1. Since if |w| = 1, then w™' = w, and we
have —
F(w)] = |w — w| _ |w||1 — w_qwo| _ |1 — wwy| _1
|1—U)@0| |1—wE0| |1—wE0| ’

We also need to show that W (u) =
to the unit disk D.

ﬁ maps the disk N(uo;r) of radius r about pg

22

Actually, ¢. maps C\ K, to C\ D, and h(z) = £ maps C\ D to unit disk D. Hence,
W(p) maps C\ K, to unit disk D, that is,

¢ C\ K, — C\ D,

1
h(z):;:C\D—>D,
W:C\D— D.

So, W maps the disk N (uo;7) of radius r to unit disk D, and F' o W maps the disk of radius
r about f to the unit disk with F'(W (1)) = 0.

Now we can prove the upper bound for the distance estimate. Let r be the distance
from g to the Julia set K.. For any u such that | — po| < r, we have |F(W(u))| < 1, and
F(W (o)) =0. By Schwarz’s Lemma,

/(W (10)) W ()] < T

That is,
1 |1 — w0w0|
r< ! / = / :
|F (W(#o))W (H0)| |W (#0)|
Since
|wo| = Jw(po)| = e FWo),
and

1 —wemy = 1 — |we|> =1 = (e7FW0)2 =] — ¢726W0) — =G0 ginh G(pp),

and

(W ()] = [(e CW))| = e G0 |G (o),
we have

- e GWo)2sinh G(pg) 2sinh G'(uo)
T =
e Gwo)| G (o) |G (o)

So for any point z, z € C, z € K., the distance from z to the Julia set K, is strictly less
than 2sinh G(z) . 0

1G"(2)]

3.5 The Koebe 1/4 Theorem and a Lower Bound for
the Distance Estimate

We will now prove a theorem in complex analysis called the Koebe 1/4 theorem, which allows
us to obtain a lower bound for the distance estimate. To prove this theorem, we first need
some definitions and some lemmas.

Definition 1 (univalent) If an analytic function is one-to-one, then it is univalent.

23

Definition 2 (class Y,) An analytic function f is in class Y, if and only if f is univalent
in D ={z||z| <1}, and f can be normalized so that the Taylor expansion at 0 has the
form

f(z)=z+ i a,z". (3.9)

n=2

Definition 3 (class }_.) An analytic function f is in class Y, if and only if f is univalent
in D° = {z | |z| > 1}, and fcan be normalized so that the Taylor expansion at 0 has the
form

f(z) =2+ i b_pz". (3.10)

Lemma 9 If f € ¥, and w is in the complement of f(D), then the function

f(2)

hz) = — 2\
B =)

1510 Y .

Proof: Since f(z) # w for z € D, h(z) is an analytic function. Since the Mdobius transfor-

mation u

M{u) = 1 —wlu

is a one-to-one function, h(z) is univalent. It is obvious that h(z) has the form
o
hz)=z+) a,2"
n=2

So h(z) € X2. O

Lemma 10 For any function g(z) € Y. given by Equation 3.10,

ad nlb_,* <1 (3.11)

n=1

Proof: For p > 1, let 7, denote the curve w = g(pe'™), 0 < 7 < 2. Because g is univalent,
7, is a positively oriented Jordan curve. Then

1 1
a(p):%/ wdw:i/ vdu — udv
Tp Tp

is an area enclosed by 7,. Hence a(p) > 0. On the other hand, explicit calculation yields

1 2 . >©) 00 . .
Oé(p) = 5/ (IOe—ZT + Z b_np—ne—zn’r> (1 . Z nb_np—n—le—z(n+1)7> pe”dT.
0

n=0 n=1

24

All cross terms can be cancelled, so we have

alp) =7 <p2 -y nlb—n|2p2") :

n=1

Let p — 1, then

> nfboa)? < 1. (3.12)
n=1

Note, from Equation 3.11,

1
b n| <—, forn=1,2,3,...
n

vn

Especially for n = 1, we have
|b_1] < 1. (3.13)

Lemma 11 If f € >, then the function
1

9(z) = —F—~ +tw
o
is in Y., for any wy.

Proof: Clearly, g is analytic in D°. If g(z) = g(22), then f(27') = f(252), 21 = 2. So
g(z) is univalent, and it is easy to see g(z) can be normalized such that it has the form of
Equation 3.10. That is, g(2) € > . 0

Lemma 12 If f € 3, then the function
is in Yo, where s(z) = [z f(2)]z.
Proof: Clearly, h is analytic in D°. If h(z;) = h(z), then s(2?) = s(z2), and since h(z) =
28(2?), it follows that z; = z9. So h(2) is univalent, and h(z) € 3. O
Lemma 13 Let f € 3 be given by Equation 3.9. Then |as| < 2.

Proof: By Lemma 12, the function

25

Theorem 14 (Koebe : Theorem) Let f € Y. Then f(D) contains the disk |w| < 3.

Proof: Let w € C\ f(D). By Lemma 9, the function

_ f(®)
hz) = 1 —wif(2)

is in }°,. The Taylor series of h at 0 is

h(z) = (z+a222+...) <1+£z+--->

1 2
:z+<a2+—)z +oeee
w

By Lemma 13,

But also |as| < 2. Therefore,
lw™ <4 or |w| >

o | =

If f: D — C is an analytic function from the open disk D = {z | |2| < 1} into
the complex plane, and if f is one-to-one with f(0) = 0 and |f'(0)] = 1, then f(z) € >,
and f(D) D D (i,()). If F: D — C is an analytic function from the open disk D =
{z] |2| < 1} into the complex plane, and if F' is one-to-one with F'(0) = a and |F’(0)| = b,
then F'(z) can be normalized to f(z) such that f(z) € >,. Therefore, f(D) D D (i, 0) and
F(D)> D (%.a). O

Theorem 15 The distance from a point z, z € C, z &€ K, to the Julia set K. is strictly

greater than Q:G%% That is,

sinh G(2)

dlz, K.) > —————.
(= Ke) > 5 ami0s)

Proof: Let ¢. be the one-to-one and onto biholomorphic mapping

¢ C\ K, — C\D

as defined in the previous section, where D = {z | |2] < 1}.
Notation: For the rest of this proof, we let ¢ denote ¢..
Let

Then
ro¢:C\ K.— D\ {0}

26

and
(rog)™:D\ {0} — C\ K..

For any ¢y € C\ K., let

1
d= T(¢(Co)) - ¢(CO) €D \ {0}
Let the Mobius Transformation be mg(2),
z—d
malz) = 1—dz

Then mgy(z) transforms unit disk to unit disk and it maps d to 0 and 0 to —d. Define ¢ as

b= (mgoro@)(|d?2).
So 1 is a univalent function. Since

Myorog:C\ K, — D\ {—d},

we have
v:D— C\ K.,
and ¥ maps 0 to ¢y, that is
¥(0) = co. (3.14)
We can prove:
R G IR
O = o
Since . p
mgoro@(z)= W__l = L= d¢(i),
1- d@ o(z)—d
we have .
mgorodd(z)) ! = 1_d¢(2)>_
maoroola)™ = (LAY
and
dimaorod(z)) _ —dd/(2)(d(z) —d) — ¢ (2)(1 — do(2))
dz (¢(2) — d)?
_ P2 (=do(2) £ |df — 1+ do(2))
(¢(z) — d)?
_ P -1)
(¢(z) —d)?
Hence,

dimaoro¢(z)| _ ¢(c)(ldf —1)
dz (¢(co) — d)?

co

27

¢'(co)(d]* = 1) ¢'(co)d?

G-dF JP-T
%0 d d -1 1
||2—1
AP =1 Je(e)—1
¢/ (co)lld] [¢'(co)llo(co)|’
that is,

vl o 03 =1
WO = R = o

Then by Equation 3.14, Equation 3.15 and the Koebe i Theorem,

(3.15)

D (%%) C (D).

So the distance from ¢y to K. is at least R/4. By the definition of G(cy) = In(|¢(co)|), and
letting z = ¢,
R sinhG(z)

K _—=
A Ke) > T = 2610 @)

3.6 An Approximation of the Distance Estimation For-
mula

We will use distance estimation as a technique for generating images of Julia and Mandelbrot
sets. In order to implement this technique, it is best to have an easily computable distance
estimation formula. To this end, we now give an approximation to the distance estimate we
proved using the potential function. The approximation uses only derivatives of the function
being iterated. It is this approximation formula that will be generalized to hypercomplex
fractal iterations in Section 7.3.

Theorem 16 The distance estimation formula:

sinh G(z) 2sinh G(z)

— 7 (2, K, 1
o <R < Ta) (310
can be approximated as
2] 1n|zn|<d(z,Kc)<|Z7|1n|zn|. (3.17)
2]20|7" |23 20l

28

Proof: The theorem is true in greater generality (see Section 7.3), but here we give the full
proof for the case where z,,1 = 22 + ¢ over the complex numbers. Let

|2,

_=——"—1n|z,]|
2|z | |2
and
d, = [zl In |z,].
|27,
Then we only need to prove that
~ sinhG(2)
T 200G (2)]
and
_ 2sinh G(2)
TG

when z — oo. Let ¢. be the one-to-one and onto biholomorphic mapping
6. C\K.— C\ D

as defined in Section 3.3:

Pc
C\D «— C\K.
Jol L fe
C\D «— C\K..
Gc
Let
Jo(z) = 2+ ¢,
and
fo(z) = 2

When z — oo,
fo(z) = do(fe(677(2))).
Thus,
(0e(2))? = de(fel2))-

As defined in Equation 3.5, G(2) = In|¢.(2)|, so when z — oo,

G(f(2)) = In|c(fe(2))| & In(|6c(2)[*) = 2In|¢e(2)],

and

G(2) = 5G([e(2))-

DN —

29

So
G(2) ~ g GUEE) = gy 6l ()

When n — oo, we have f7(z) — oo and ¢.(f(2)) = ¢e(2n) — 2n, where z, = f7(z). So

In|z,|
Then ,
G'(z) = o
2n|zn|’
and o o B
"V =eTm = |z, |77,

. 1
Note when z — 0, we have sinh(z) ~ 3, and when n — oo, we have G(z) = % — 0. So

2sinh G(2) - |G(2)] _ In |z,|2"
|G (2)] G'() 21zl /2nl)

= @ In|z,| =ds
E4

and
|sinh G (2)] |G(2)] 2l In|z, _ 4

GO ~ G =)Ao F]

30

Chapter 4

Quaternion Analysis

We can use the tools of hypercomplex analysis to discuss hypercomplex deterministic frac-
tals. The first hypercomplex space is the quaternion space. Quaternions were discovered in
1843 by Irish physicist and mathematician William R. Hamilton [14]. Attempting to define
a three-dimensional multiplication, he found it is necessary instead to extend to four dimen-
sions. After this discovery, Hamilton and his contemporaries devoted considerable effort to
advocating the application of quaternions to physics and other disciplines.

We can describe quaternions as an extension of the complex plane, comparable to
the view of complex numbers as an extension of the real line. Complex numbers provide
an extension of the concept of “number,” which permits us to consider numbers as two-
dimensional quantities. In other words, complex numbers are a set of rules for multiplying
and adding points in two dimensions. Similarly, quaternions may be regarded as a way of
extending the notion of number to four dimensions: the rules for quaternion multiplication
and addition provide a way to do arithmetic with four-dimensional quantities.

In this chapter, we give an introduction to quaternion analysis and a discussion of
regular functions. We show that the mathematical procedures used to study complex Julia
and Mandelbrot sets are not adaptable to the quaternionic case, due to the lack of commuta-
tivity of the quaternions. We then discuss the difficulties involved in proving the analogous
distance estimation formula in quaternions by analytic methods. While this is a negative
result, we do believe that these basics of quaternion analysis will eventually prove useful in
the subject of quaternion iterations. In fact, it was this negative result that propelled us to
find the more geometric approach to distance estimation described in Chapter 7.

4.1 The Quaternions

We denote the four-dimensional real associative algebra of the quaternions by H. The
quaternions can be seen as a direct sum H = R @ P, where R is the real number space,
which is embedded in H by identifying 1 € R with the identity 1 € H, and P is an oriented
three-dimensional Euclidean vector space. A typical quaternion value,

g=t+1ix+ jy+ kz,

31

32

is a four-tuple of independent real values (¢, z,y,z) assigned to one real axis and three
imaginary axes t, j, k such that

it =% =k*=—1, (4.1)

1] =k; jk=1; ki=j, (4.2)

Ji = —k; kj = —1; ik = —}. (4.3)

We note that the multiplication rule for quaternions is noncommutative. For example,
1j = —7ji. The result of multiplying two quaternions depends on their order.

There are several properties and notations of quaternion Julia sets that are used in
this discussion. We state them as follows,

g=1—1ix —jy— kz, (4.4)

gl = V@@= /(2 +a22+y2+22) €R (4.5)

Re(q) = 5(q +7) =1 (16)

Pu(q) = %(q —-q)=ir+jy+kz €P (4.7)
-4

Un(q) = il €S, (4.8)

where S is the unit sphere in H. The inverse of ¢ is defined as

1 q
¢ =5
lql?
The inner product is
< q1,q2 >= Re(q1@2) = tita + 2122 + Y192 + 2120. (4.9)
Note that if u; and usy are unit quaternions, that is, |u;| = |ug| = 1, the map ¢ — ujqus is

orthogonal with respect to the inner product as defined in Equation 4.9 and has determinant
one. Conversely, any rotation of H is of the form ¢ — u1qus for some uy, us € H.

4.2 Rotations of 3-Space

One of the most intriguing properties of Hamilton’s quaternions is their ability to represent
rotations of three-dimensional space. In order to explain this, we represent 3-space, R?, as
the set of pure quaternions of the form 7 = ai+ bj + ck where a, b and c are real numbers. If
g is a unit quaternion as described in the previous section, then the mapping p : R?> — R3
defined by the equation p(Z) = gZg ! describes a rotation of 3-space by angle around the
axis u when

g = cos(0/2) + sin(0/2)u.

Here, u is a unit length pure quaternion, hence a vector direction in 3-space. Any unit
b b)
quaternion can be represented in this form.

33

We leave the proof of this result as an exercise for the reader, with the admonition to
try it out with a specific axis, such as k. For example, if g = k, then g = cos(mw/2)+sin(n/2)k,
and it is easy to see that conjugation by k& induces a 180 degree rotation around the k-axis.

This method of representing rotations using quaternions is actually quite useful in
computer graphics for performing rotations without using matrices.

A useful consequence of this result about rotations is the fact that, given any quater-
nion ¢, there is a unit quaternion p such that p~igp is of the form a + bi, for some real
numbers a and b. In other words, any quaternion can be rotated into a complex number by
conjugation with the appropriate unit quaternion.

Another useful consequence is the fact that one can determine the axis of a com-
position of rotations from the individual rotations just by multiplying the corresponding
quaternions. Once again, we leave this as an exploration for the reader, and suggest that
she think about the result of rotating a cube by 90 degrees around one axis, followed by a
rotation of 90 degrees around a different axis.

4.3 Quaternion Polynomials

Note that if we identify the quaternion ¢ with the complex number i, the complex numbers
can be regarded as a subset of the quaternions, and complex polynomials can be regarded
as polynomials over quaternions as well. An expression like

ar® + b + ¢

with a, b, c € C is a quaternion polynomial as well. However, the noncommutativity of the
quaternions implies that many polynomials cannot be so simply described. For example,
unless the coefficients a and b are real, the above polynomial is not equal to

a4+ br + ¢
nor

x?a+xb+c
nor

zax + bx + c,
etc.

A quaternion polynomial can be defined as

I m
p(z) = Z Zpiozpilz---zpik; (4.10)
k=0 i=0

where [and m are integers, [is the degree of the polynomial, and p;; € H are quaternions.
1=0,1,2,....m, 7=0,1,..., k.

34

For the purpose of this discussion, we consider only a subset of such polynomials of
degree 2, for instance,

p(z) = P2ziqa + przgr + gs.

We shall see that even these polynomials introduce a wealth of structure not seen in the
complex mappings.

4.4 Quaternion Julia Sets and Mandelbrot Sets

A Julia set is generated by a quaternion polynomial. We know that a quaternion polynomial
can be used to define a dynamical system on the quaternions: If p(z) is a quaternion poly-
nomial, then for any quaternion ¢, p(q) is another quaternion. With the aid of computers,
quaternions can easily be iterated to evaluate long-term behavior. We can still speak of at-
tractive and repulsive cycles, basins of attraction and the like, where the notion of complex
numbers is replaced by quaternions.

We can generalize the definition of Julia sets for arbitrary polynomials: The Julia set
of a polynomial p(z) is the boundary of the set of quaternions ¢ such that |p"(q)| converges
to infinity as n becomes large.

Let us denote by A,(co) the basin of attraction of the Julia set generated by the
polynomial p(z). Then the Julia set of p(z) is defined as

Jp = 3Ap(oo),

and
K, =C\ Ay(c0) = {2 € H| p*(2) stays bounded for all k}

is called a filled-in Julia set.
A Mandelbrot set is defined as

M={qgeH|0ec K, for p(z) = 2* + ¢},
where the polynomial p(z) is given by
p(z) = 2" +4q,
and n is an integer.

Quaternion Julia sets extend beyond the complex plane. Consider a complex polyno-
mial p(z). It will have a Julia set J in the complex plane, and J will necessarily be contained
in the quaternion Julia set of p(z). But J could in fact be the entire Julia set in the quater-
nions as well. In other words, extending to the quaternions could provide us with nothing
new. Fortunately, some Julia sets can clearly be seen to extend beyond the complex plane,
forming truly four-dimensional objects. When K, for p(z) = 22 + ¢ is examined for ¢ outside
the Mandelbrot set M, it turns out that K, is an infinite disjoint union of sets that we find
difficult to fully describe. Thus we do not yet have a full analog to the classification theorem
for Julia sets in terms of the Mandelbrot set, as in the complex case.

35

4.5 Differential Forms
Let Fi be the set of R-linear maps from H to H.

Fy ={a:H — H | a is a linear map}.
We can define maps I',: F; — H and I';: Fi — H as follows:

[(a) =a(l)+ia() + jaj) + ka(k)

and
() =a(l) + ali)i +a(j)j + a(k)k.

A function f: H — H is called real-differentiable if it is differentiable in the usual
sense. Its differential at a point ¢ € H is an R-linear map df,; H — H. By identifying
the tangent space at each point of H with H itself, we can regard the differential as a
quaternion-valued 1-form

af of of of

The differential of the identity function (f(¢) = ¢ =t + iz + jy + kz) is
dg = dt + idx + jdy + kdz, (4.12)

which is regarded as an R-linear transformation of H. The exterior product of dg with itself
is

dg N dg = e;jpeidx; N\ dzy = 2(idy A dz + jdz A\ dx + kdx A dy), (4.13)
where
0 if any two indices are equal
Eijk = 1 for (1, 2, 3) = (i,j, k?)

Sign(p) for (Pl,PQ,P?,) = (1’ 2, 3)

In the above equation, p = (p1, p2, p3) is a permutation of (1,2, 3), and we denote the
basic quaternions (i, j, k) by e;, and the coordinates z,y, z by x;, i = 1,2, 3. For the constant
real 4-form we use the abbreviation

v=dt Ndx Ndy A dz. (4.14)

An oriented k-parallelepiped in H is a map C: I* — H, where I* C RF is the closed
unit k-cube, of the form

C(ty, -, ty) = qo +tihy + -+ - + tghg.

Here gy € H is called the original vertex of the parallelepiped, and hy,---,hi € H are
called its edge-vectors. An oriented k-parallelepiped is non-degenerate if its edge-vectors
are linearly independent (over R). A non-degenerate 4-parallelepiped is positively oriented

36

if v(hy,---,hy) > 0 and negatively oriented if v(h,---,hy) < 0, where v is the volume
form defined in Equation 4.14.
The 3-form Dgq (distinct from dg) is defined by the pairing
< hy, D(hg, hs, hy) > = v(hy, ha, hs, hy).
Thus, Dq(i,7,k) =1, Dq(1,e;,ej) = —¢;jrex and the coordinate expression for Dgq is

Dg=dxNdyNdz—idt Ndy Ndz — jdt ANdz A dx — kdt A\ dz A dy. (4.15)

Geometrically, Dq(a, b, c) is a quaternion which is perpendicular to a,b and ¢ and has
magnitude equal to the volume of the 3D parallelepiped whose edges are a,b and c.

Since the differential of a quaternion-valued function on H is an element of Fi, the
map I', can be applied to it:

U (df) = df (1) +4df (i) + jdf (j) + kdf (k).
The result is

(df)—g+ g—f+ %Mgﬁ (4.16)

We introduce the following notation for the differential operator occurring in the
previous equation, and for other related differential operators:

Ouf = 3T(df) = 35 + i)
of =505 — eigh)
0rf = 3Tw(df) = 3(3 + Fed) (4.17)

8rf = %(ﬂ - ﬂel)

2f | 9%f
Af78t2+8m2+8y +
Note that 8, 9;,0,, and O, are all commutative, and that

A = 40,9, = 49,0, (4.18)

4.6 Regular Functions

Definition 4 A function f:H — H is quaternion-differentiable on the left at g if
the limit
df

= lm (3 Uta+) - £a)

37

exists. A function f: H — H is quaternion-differentiable on the right at q if the limait

o =t (e) = sy

exists.

The above definition of the quaternionic derivative is too strong to have interesting
consequences. In fact, one can prove the following result.

Theorem 17 Suppose the function f is defined and quaternion-differentiable on the left
throughout a connected open set U. Then on U, f has the form

f(q) = a+bq
for some a,b € H.
See [37] for a detailed proof.

We now introduce the definition of regular quaternionic functions, which leads to a
development similar to the theory of regular functions of a complex variable.

Definition 5 A function f: H — H is left-regular at ¢ € H if it is real-differentiable at
q and there exists a quaternion f/(q) such that

d(dg Ndqf) = Dqfi(q). (4.19)

It is right-regular if there ezists a quaternion fl(q) such that
d(fdg A dg) = f;(q)Dg. (4.20)

Clearly, the theory of left-regular functions will be equivalent to the theory of right-regular
functions. For simplicity, we will only consider left-regular functions, which we will call
simply regular. We write f/(q) = f'(¢) and call it the derivative of f at q.

An application of Stokes’s theorem gives the following characterization of the deriva-
tive of a regular function as the limit of a difference quotient:

Proposition 18 Suppose that f is reqular at qy and continuously differentiable in a neigh-

borhood of qy. Then given € > 0, there exists & > 0 such that if C' is a non-degenerate
oriented 3-parallelepiped with qo € C(I?) and g € C(I?) = |q — qo| < 3 , then

| (ﬁ) </ac da 1 dqf) — (%)

The following proposition is another property of regular functions.

< e

38

Proposition 19 (the Cauchy-Riemann-Fueter equations) A real-differentiable func-
tion [is reqular at q if and only if af = 0. That s,

—L =0, (4.21)

From Theorem 17, it follows that if f is regular and twice differentiable, then
Af =0, (4.22)

that is, f is harmonic. We will see that a regular function is necessarily infinitely differen-
tiable, so all regular functions are harmonic.

4.7 Cauchy’s Theorem and the Integral Formula

The integral theorems for regular quaternionic functions have as wide a range of validity as
those for regular complex functions — considerably wider than integral theorems for harmonic
functions. Cauchy’s theorem holds for any rectifiable contour of integration; the integral
formula is similar to Poisson’s formula in that both give the values of a function in the
interior of a region in terms of its values on the boundary. The integral formula holds for a
general rectifiable boundary and thus constitutes an explicit solution to the general Dirichlet
problem.

The algebraic basis of these theorems is the equation

d(gDqf) = dg A Dqf — gDq A df

=1{(0:9)f + g(f)}v. (4.23)
Note,
dg A Dq = 0,g
and
Dq AN Df = glf

Proposition 20 A differentiable function f is reqular at q if and only if
Dq N df, = 0.

From the above proposition, together with Stokes’s theorem, it follows that if f is
regular and continuously differentiable in a domain D with a differentiable boundary, then

/8Dqu:O.

As in complex analysis, however, the conditions on f can be weakened by using
Goursat’s dissection argument. Applying this to a parallelepiped, we obtain the following
lemma.

39

Lemma 21 If f is reqular at every point of the 4-parallelepiped C,
Dqf = 0. (4.24)
oC

The dissection argument can also be used to prove the Cauchy-Fueter integral formula for a
parallelepiped:

Lemma 22 [If f is reqular at every point of the positively oriented 4-parallelepiped C, and
Qo s a point in the interior of C,
1

fla) = 55 [L= pgsg). (4.25)

22 Joc g — qol?

The following theorem makes it valid to apply Stokes’s theorem and so obtain Cauchy’s
theorem for the boundary of any differentiable 4-chain.

Theorem 23 A function which is regular in an open set U is real-analytic in U.

We also need some definitions and notation.

Definition 6 Let C: 13 — H be a continuous map of the unit 3-cube into H, and let
P:0=sy<s1<---<5,=1,0Q: 0=t <t <---<ty=land R:0=uyy<uy <---<
u, = 1 be three partitions of the unit interval I. Define

q—1 r—1

> DaVimm

m=0n=0

p—1
o(C;P.Q,R) =Y
1=0

where
Vi = (C(S141. by un) = C (815t Un), C(815 g1, Un) —C (81t U), C (51, by Uy 1) = C (81, T,y Un)).

C' is a rectifiable 3-cell. Suppose there is a real number M such that o(C; P,Q,R) < M
for all partitions P,Q, R. If this is the case, then the least upper bound of the numbers
o(C; P,Q, R) is called the content of C' and is denoted by o(C').

Definition 7 Let f and g be quaternion-valued functions defined on C(I*). Let

p—1g-1r-1

S=>3"3"5" [(CG1 T, Tn)DgVimng(C (51, . Ty),

=0 m=0n=0

where
w,m,n - (O(Sl—H; tma Un)—O(Sl, tm; Un), C(Sla tm—Ha Un)—C(Sl, tm’ un)a C(Slu tm’ un+1)_0(8l7 tma un))

and s; <5 < Spq1y by <ty < tppg1, and u, < U, < Upy1. We say that fDqg is integrable
over C if the sum S has a limit in the sense of Riemann-Stieltjes integration as |P|,|Q|, |R| —
0, where

|P| = o ThaxX |s141 — s

measures the coarseness of the partition P. If this limit exists, we denote it by [~ fDqg.

40

We extend these definitions to define rectifiable 3-chains and integrals over rectifiable
3-chains in the usual way.

Definition 8 Let C be a 3-chain in H. C' is a rectifiable 3-chain if there is a dissection of C
such that, C' =%, C,, and C,, are 3-cells. We denote the content of C by o(C) =3, 0(Cy).

Definition 9 Let f and g be quaternion-valued functions defined on a 3-chain C. We say
that f Dqg is integrable over C if f Dqg is integrable over C,,, where C' =", C,, is a dissection
of C, and the C, are 3-cells. We denote 32, [o. fDqg by |o fDqg.

Just as for rectifiable curves, we can show that fDqg is integrable over 3-chains C' if
and ¢ are continuous and C' is rectifiable, and
g

‘/CfDqg‘ < <mé1x|f|> <mcax|g|> o(0).

Furthermore, we have the following weak form of Stokes’s theorem:

Theorem 24 (Stokes’s Theorem For a Rectifiable Contour) Let C be a rectifiable
3-chain in H with 0C = 0, and suppose f and g are continuous functions defined in a
neighborhood U of the image of C, and that fDqg = dw where w is a 2-form on U. Then

/CfDqg = 0.

We can now give the most general forms of Cauchy’s theorem and the integral formula.

Theorem 25 Suppose [is reqular in an open set U, and let C be a rectifiable 3-chain which
s homologous to 0 in the singular homology of U. Then

/Cqu:O.

For a general form of the integral formula, we need an analogue of the notion of the
winding number of a curve around a point in the plane. Let ¢ be any quaternion, and let C
be a 3-cycle in H — {¢}. Then C' is homologous to ndCy, where Cy is a positively oriented
4-parallelepiped in H — {¢}, and n is an integer (independent of the choice of Cy), which we
will call the wrapping number of C' about q.

Theorem 26 (The integral formula for a rectifiable contour) Suppose f is regular in
an open set U. Let qy be a point in U, and let C' be a rectifiable 3-chain which is homologous,
in the singular homology of U —{qo}, to a differentiable 3-chain whose image is OB for some
ball B € U, then
1 (0—q)”"
— | ————D =n ,
— /. o D@ =S (@)

where n is the wrapping number of C' about qq.

41

Many of the standard theorems of complex analysis depend only on Cauchy’s integral
formula, and so they also hold for quaternionic regular functions. An obvious example is the
Maximum-Modulus Theorem.

Theorem 27 (Maximum-Modulus Theorem) Suppose f is reqular on an open region
D in H and f is not constant. Let D' C D be an open region, 0D' = C. If |f'(q)] < M on
C, then |f(q)] < M at all points in D'.

4.8 Linear and Quadratic Regular Functions

The properties of the regular functions are certainly desirable, but it is somewhat disap-
pointing that this class does not even contain the identity function f(z) = z, or any other
polynomial in z. What do the regular functions look like?

First, let us see why a left quaternion linear function f(z) = az is not a regular
function, where a is a constant quaternion. Note 0f(z) = —2a is zero if and only if a = 0.
Thus, if we wish to consider non-trivial regular linear functions, we must drop the quaternion
linearity condition and instead impose the requirement of real-homogeneity.

The most general left-regular function that is real-homogeneous of degree 1 is
f(z) = (iz+ zt)a+ (jz + zj)b + (kz + zk)c, (4.26)

where a, b, ¢ are constant quaternions. Is f"(z) regular for all n = 1,2,3,...7 By Briggs [7],
a sufficient condition for f™(z) to be regular is that b and ¢ are both real multiples of a.
Then Equation 4.26 can be represented as a map on R*. In an appropriate basis, the map
is equivalent to a map in the complex plane. As such, it loses much of its interest from a
quaternion point of view.

Second, let us see whether anything more interesting is possible with quadratic quater-
nion functions. Sudbery [37] shows that a basis for such functions is { P11, Pag, P33, P12, P13, Pas},
where

Pri(2) = (qoi — ¢1)?

Py(2) = (g0 — @)’

Ps3(2) = (q07 — 43)°
Pia(2) = q1¢2 — qo(igz + jq1)

Pio(2) = q1q3 — qo(igs + kq1)
Pis(2) = g2g3 — qo(ig3 + kgg). (4.27)

Thus, the most general left-regular map that is real-homogeneous of degree 2 is

f(2) = Pii(2)a + Pao(2)b + Pss(z)c + Pia(2)d + Pig(z)e + Pas(2) f, (4.28)

42

where a,b, ¢, d, e, f are constant quaternions. By [7], the dynamics of most of these functions
can be understood with the known theory of complex analytic dynamics. So the requirement
of regular iterability (all iterates of a function are regular) is too strong to allow the existence
of functions other than those equivalent to complex quadratic functions.

4.9 Difficulties of the Quaternion Analytic Proof of
Distance Estimation

An initial attempt to prove distance estimation for quaternion Julia sets and Mandelbrot sets
might use regular functions and the theorems stated in the previous sections. However, as
shown in the last section, the set of regular functions is much smaller than the set of analytic
functions in complex space. Many good functions, for example the polynomial f(z) = 22, are
not regular. And the functions we might need in the proof may not be the regular functions
at all. All these facts make the analogous proof very difficult, if not impossible. Let us look
at the idea in detail.

As we know, even though the Mobius transformation defined by
M(z) = (az +b)(cz +d)~" (4.29)

preserves regularity by [37] under certain conditions, a composite function or a product
function of two regular quaternion functions may not be a regular function. This means
the quaternionic analogues to Schwarz’s Lemma and Koebe’s i Theorem may not hold for
quaternion regular functions. But these were the keys to the proof of the distance estimation
formula. And the regularity of a composite or a product function of two regular functions
was used in many places in the proofs of those theorems.

For example, to prove Schwarz’s Lemma, we might need the function g(z) = 271 f(2)
to be a regular function. In the complex case, if f(z) is analytic on a disk D, then g(z) =
271 f(2) is analytic on D — {0}. However, in the quaternion case g(z) may not be a regular
function at all, even if f(z) is a regular function.

Based on the above discussion, an analogous proof of distance estimation by quater-
nion analysis is quite difficult. For this reason, we set aside quaternion analysis and take
another look at the problem from the perspective of high-dimensional geometry. This geo-
metric approach is the subject of Chapter 7.

Chapter 5

Quaternions and the Dirac String
Trick

The purpose of this small chapter is to form an interlude between the complexities of quater-
nionic analysis and the geometry of iteration in the quaternions. Sir William Rowan Hamil-
ton discovered /invented the quaternions with the intent of finding an algebra related to three
dimensional space that would be as informative as the complex numbers had been for two
dimensional space. It turns out that the quaternions are a good algebra for understanding
rotations in three and four dimensional space. They also have a remarkable topological in-
terpretation that is related to three dimensional space and to the properties of a twisted
band in 3-space. This topological interpretation is also related to certain aspects of quan-
tum physics. We give a short introduction to these ideas here. For more a more detailed
discussion see [21] Part 2, Section 10.

Recall that the quaternions are an algebraic system with generating elements i, j, k
such that

==k =ijk=—1

and that it follows from these equations and the associativity of the multiplication of the
quaternions that

1=k, jk=1i, ki=j

while

ji=—k, kj = —i and ik = —j.

Not only are i, 7 and k square roots of minus one, but in fact so is any linear com-
bination ai + bj + ck where a®> + b*> + ¢ = 1 and a, b, c are real numbers. Because of this,
it is convenient to think of the quaternions i, j and k as the three basic directions in three
dimensional space and the scalars of the form d (d a real number) as directions in a fourth
dimension. Thus a general quaternion is of the form ai+ bj + ck + d for real numbers a, b, c,
d and describes a point in four dimensional space (a, b, ¢, d). Any unit direction ai + bj + ck
in 3-space yields a square root of minus one.

43

44

Figure 5.1: Twisted Ribbon

It is the purpose of this section to point out that there is a topological interpretation of
this phenomenon of square roots of minus one in every spatial direction, and to show that the
rules for the quaternion multiplications 12 = j2 = k? = ijk = —1 are a description of the way
ribbons can twist in three dimensional space! Thus the basics of quaternion multiplication
actually have a clear three dimensional interpretation if we allow a little topology to enter
into the discussion.

Let’s begin with a ribbon attached to a wall and to a ball hanging in midair as shown
in Figure 5.1, where the wall is represented by a rectangle at the top of the figure, and the
ball is represented by a rectangle at the bottom of the figure.

By turning the ball we can put a twist in the ribbon. In Figure 5.1 we show a twist
by 360 degrees. We shall call a 180 degree twist a half twist of the ribbon and the 360 degree
twist a (right handed) full twist of the ribbon. Now view Figure 5.2. Here we show the result
of moving the ribbon around the ball, keeping its endpoints fixed to both the ball and the
wall. The ball does not rotate in this deformation. We start with a right-handed full twist
in the ribbon. After the deformation, we have a full left handed twist in the ribbon. Moving
the ribbon around the ball converts a full right handed twist to a full left handed twist.

Now, we draw the consequence of this conversion of right handed twist to left handed
twist. We start with a 720 degree twist in the ribbon and regard it as two full 360 degree
twists. We then move the ribbon around the ball, converting one of the right full twists to
a left full twist. The band now has one right full twist followed by a left full twist upon it,
and these cancel one another. As a result, all the twist on the band is gone! A 720 degree
twist in the band is reduced to no twist at all by a movement of the band around the ball.
This is the belt trick or Dirac string trick.

45

Figure 5.2: Converting a Right Twist to a Left Twist

The belt trick tells us that the operation of a single (180 degree) twist has order four
from the point of view of the topology of a band attached to a wall and a ball. Four 180
degree turns result in no turn at all. In this way we can interpret a single 180 degree turn
as an instance of i = /—1 with i? representing a 360 twist (either left or right since they
are topologically equivalent). Then we have * is a non-trivial twist, but i* = 1 in the sense
that its band has no twist at all. Via this train of thought, we identify the 360 twist on the
band as “ — 17 since the square of this twist is 720 degrees, which is equivalent to no twist
at all.

Now think of the band and its ball as representing a spatial direction. We twist
around this given spatial direction, and we find that there is a square root of minus one
hidden in the topology of a 180 degree twist around that axis. This phenomenon occurs for
every spatial direction. There was nothing special about the particular direction that we
chose. So we have arrived at a topological interpretation of the quaternionic phenomenon of
one square root of minus one for every direction in three dimensional space.

The belt trick provides a topological/mechanical construction for the operations
among the quaternions 7, j and k. Attach a belt to a fixed wall and replace the ball by
a movable card. Let 7, 7 and k£ denote turns of the card by 180 degrees about perpendicular
axes in three space. After such turns, let the state of the belt be reduced (if this is possible)
by the use of the belt trick with the ends of the belt fixed to the wall and to the card. The
belt may be moved around the card without twisting the card. There are other hand move-
ments that are related to the cancellation of 720 degrees of twist. One well-known version
is the so-called plate trick where one can hold a plate flat on the palm of the hand and turn
the hand by 360 degrees while moving it downward and by another 360 degrees in the same
turning direction while moving upward. In the end, one’s arm is in exactly the same position

46

as before, even though the hand has turned fully through 720 degrees.

The belt trick and its relation to the quaternions is part of a deeper connection
between the quaternions and quantum physics. It turns out that an observer and an electron
are linked physically in a way that is similar in structure to the ball and the wall connected
by a ribbon. If an observer were to move around an electron by 360 degrees, she would
return to the same place in space, but her physical state relative to the electron would not
be the same. Two full turns of the observer however, do return her to the original physical
state. In the mathematics of quantum mechanics, this phenomenon is modelled in terms of
properties of the symmetry group of the system, which is the group SU(2) rather than the
group of rotations of three space. The group SU(2), so important for quantum physics, is
isomorphic with the quaternions of unit length in four dimensional space!

Part 111

Hypercomplex Iterations

47

Chapter 6

Quaternion Mandelbrot Sets

6.1 Quaternion Mandelbrot Sets

Recall that the Mandelbrot set is defined as follows: To each point ¢ in the quaternions, we
associate the function f,(z) = 2% + ¢ and consider the iteration of f,(z) applied to zero. If
this iteration does not go to infinity, then ¢ is a member of the Mandelbrot set:

M ={q € H| f/(0) remains bounded as n — oo}.

The lack of commutativity of the quaternions makes a proof of distance estimation
using quaternion analysis more difficult than in the complex case. However, the distance
estimation formula for the Mandelbrot set can be proved more easily than the analogous
formula for Julia sets. In the next section, a proof of distance estimation for quaternion
Mandelbrot sets is given. Here, we use f(z) = 2% + q as the iterated function. A parallel
discussion and proof can be obtained directly for f(z) = 2" + q.

6.2 The Distance Estimate for Quaternion Mandelbrot
Sets

Let M, denote the quaternion Mandelbrot set generated by the function f(z) = 22+ ¢ in H,
and M, is the complex Mandelbrot set in C. Let ¢ € H. According to Hamilton [14] (or,
see Section 4.2), there is a quaternion value p € H, |p| = 1 such that p~'¢gp = c and ¢ € C.
Let us call ¢ the corresponding complex value for q.

Note that capital Z will denote a quaternion variable, while lower case z will denote
a complex variable in this chapter.

Lemma 28 For any quaternion value ¢ € H and its corresponding complex value ¢ € C,
the quaternion q € My if and only if c € M.

Proof: Let p € H, |p| = 1 such that p~'gp = ¢. Let 20 = Zy = 0 be the initial value for
fo2) =2 +c¢ (6.1)

49

50

and
JdZ) = 77+ q. (6.2)

Let 21,22, ..., 2, and Zy, Zs, ..., Z, be the orbits of zy and Z, under f. and f,, respectively.
So

z1=c¢
and
Zy=q=ppt =pup
zm=c+c=fz)
and
Zy=q"+q=p(c+)p ' =pup

2y = fe(2zn-1)

Z = pzap L.
Therefore,

| Zn| = |2nl-

This means g € M, if and only if ¢ € M. O

Lemma 29 For any quaternion value ¢ € H and any quaternion value p € H with |p| = 1,
the quaternion q € My if and only if pgp~! € Mj.

Proof: Let zg = Zy = 0 be the initial value for
fo(z) =22 +4q (6.3)
and
Joa—1(Z) = Z* +pgp~. (6.4)

Let z1, 22, ..., 2, and Z1, Zs, . .., Z,, be the orbits of z5 and Zy under f, and f,.,—1 respectively.
So,

21=dq
and
Zy=pgp~t = pup

2 =¢ +q

and
Zy = (pgp™)* + pgp~" = p(¢° + @)p~" = p2p™;
Zy = pzap .

Therefore,

| Zn| = |2nl-

This means g € M, if and only if pgp~! € M,. O

o1

Lemma 30 For any quaternion value p € H with |p| = 1,

Re(pip™') = 0. (6.5)

Proof: Let

p=a-+bi+cj+ dk.
Since [p| = 1,

pt=a—bi—cj—dk

pip~' = (a +bi +cj + dk)i(a — bi — cj — dk)
=(at —b—ck+dj)(a—bi—cj—dk).
So,
Re(pip™) = —ab — abi* + cdk® — cdj* = 0

and

Pu(pip™') = (a* + b* — & — d®)i + 2(bc + ad)j + 2(bd — ac)k.

Lemma 31 For any c € C, the distance from c to My is equal to the distance from ¢ to Mo,
that is
d(c, My) = d(c, Ms). (6.6)

Proof: Suppose
d(C, Mg) > d(C, M4) (67)

Let ¢ = a + bi. Let ¢g € C be a point in My such that d(c,co) = d(c, Ma). Let ¢o € H
be a point in My with g9 ¢ C such that d(c,qy) = d(c, My). Set gy = x¢ + you, where
u = Uy + ugj + usk, ui +u3 + u3 = 1. We can assume that |u;| < 1, namely one of uy and
ug is not 0. Then

d*(c,q0) = (a — x0)® + (b — wyyo)* + (uayo)? + (usyo)?

= (a —x0)* + b* + y§ — 2busyo.

Let ¢, € C be the corresponding complex value of ¢;. That is, there is a quaternion
p € H, |p| =1 such that ¢j = p *qop. By Lemma 28, ¢, € My. Set ¢, = = + yi, then

o + You = o = peop” = p(x +yi)p~H = +ypip~,
so by Lemma 6.2, zo = x, and yy = y. Therefore,
d*(c,c)) = (a — z0)? + (b —1y0)* = (a — o) + b* + v — 2byp.
So by the fact that |u| <1
d(e,co) > d(c,q0) > d(c, cp).

This contradicts our assumption that d(c, cy) = d(c, Ms). O

52

Lemma 32 For any quaternion value g € H and its corresponding complex value ¢ € C,
d(q, Ms) = d(c, M>). (6.8)

Proof: Suppose
d(q7 M4) 7& d(C, M2) (69)

Let p € H, |p| = 1, be the quaternion such that ¢ = p~igp. Let qo € My such that
d(q,q0) = d(q, My), but p~1gep &€ C. Let ¢y € My such that d(c, co) = d(c, My) = d(c, My).

Since gy € My and ¢y € Mo, by Lemma 6.2, we have p~tqop € My and pcop~! € M,.
So,

d(q,90) = |qg — a0l = [p™"qp — p""qop| = ¢ — p™"qop| > d(c, My) = |c — col,

but
¢ — col = [pep™ — peop™ | = g — peop™*| = d(q, peop™).
Therefore,
d(q,q0) > d(gq, pcop™).
This contradicts the assumption that d(q, q) = d(c, My). O

Theorem 33 The distance from a point q outside the quaternion Mandelbrot set My to My
18 bounded by

14
202,72,

Zn
In|Z,| < d(qg, My) < dy = :Z,:1n|zn\, (6.10)

n

where Z,, = F"(Zy), Zo =0 and F is defined as F(Z) = Z* + q, where Z,q € H.

Proof: Let f(z) = 2%+c, where c is the corresponding complex value of ¢, and let zg = Zy = 0
be the initial value for f(z) and for F'(Z). By the proof of Lemma 6.2,

20| = |Zal, (6.11)

where n =0,1,2,... So, by Theorem 2,

20| _ 2|
; In |z, | < d(c, Ma) = d(q, My) < 77 In|z,].
2| 2,7 | 2. |2
Therefore,
Zy Zn
d_=|7l|ln|Zn| <d(q,M4) <d+: | /|1n|Zn‘

2| Z,|7"| 2t |73

Chapter 7

Distance Estimation in Higher
Dimensional Spaces

7.1 Higher Dimensional Deterministic Fractals

In this section we point out a natural generalization of the quaternionic iteration that leads
to an interesting class of higher dimensional fractals. The generalization also provides a
way to look at the structure of the three and four dimensional quaternion fractals. (In this
section lower case z will refer to a point in R¥*1, as explained below.)

Let
RY™ = {a+bu|abeRanduc SV}

where SVt = {u e R | u? + w3 + ... + u% = 1}. That is, we take
RN = {.T | T = (331,332, ...,.TN), T € R}*
and we write a + bu = (a, buy, bus, ..., buy) for a point in RN,

Now define u? = —1 for each u € SN ~1. This gives us a rule for taking powers (a+bu)*
via the formula
(a+ bu)(c+ du) = (ac — bd) + (be + ad)u.

Thus,
(a+bu)? = (a® — b*) + (2ab)u.

Note that in this generalization we do not have a formula for multiplying (a + bu)(c+
dv) when u # v, though such formulas exist in the complex numbers and quaternions.
For example in the quaternions, u and v are vectors in the two-dimensional sphere S? in
three-dimensional space and, as vectors in three-dimensional space,

UV = —u-v+u X .

Note that in this well-known formula for the multiplication of two 3-space quaternions, the
component in the fourth direction is indicated by the addition of a scalar (—u-v) to a vector

93

o4

(u x v). Thus our general formula for points in R¥*! and their powers is a generalization of
the quaternion formalism.

With this picture of RV *!, define
Fk . RN+1 N RN+1

by the formula
Fi(a+bu) = (a + bu)* + (c + dv)

where ¢ + dv = ¢ is a chosen vector. (Here v # u is possible.) Hence,
Fi(z) =2"+q. (7.1)

This function is the analog for R¥*! of the corresponding function in the quaternions and
in the complex numbers.

The corresponding iterations, Julia sets, and Mandelbrot sets can be defined, com-
puted and studied just as in the complex and quaternionic cases. In particular, we can write
k-th root functions just as in the complex numbers and use inverse iteration to produce point
cloud images of the sets. The generalized distance estimation techniques of the next section
apply, and they will allow us to compute and render the images.

It is worth noting that in the case of R® = {a+bu | u € S'}, this formulation gives a
direct three-dimensional picture of the restricted quaternion mappings that produce our 3D
quaternionic fractal images.

Note that the quaternions are represented as R* = {a+bu | a,b € R, u € S?}, where
uw = ai+ (5 + vk with o, 3,7 € R and o? + 8% ++? = 1. In this case, if u,v € S?, we

can define uv = —u - v + u x v where u - v is the standard dot product in R? and u x v is
the vector cross product. This gives quaternion multiplication. Note that v? = —1 for all
u e S2

7.2 The Cayley Numbers

The Cayley numbers are a generalization of the quaternions to an algebraic structure on
eight dimensional space. Just as complex numbers can be regarded as pairs of real numbers
and quaternions can be regarded as pairs of complex numbers, Cayley numbers can be
regarded as pairs of quaternions. We write a Cayley number in the form a + Jb where a
and b are quaternions and J is a new square root of minus one. (The basic generators of
the quaternions are 4, j and k.) Recall that we have the operation z — Z that conjugates a
quaternion. The conjugate of ¢t + ip + jq + kr is t — ip — jq — kr. With this operation in
mind, we can define Cayley multiplication by the following formula:

(a+ Jb)(c+ Jd) = (ac — db) + J(cb + ad).

This definition is constructed very carefully so that we have

25

(a+ Jb)(@ — Jb) = (aa + bb).

This means that non-zero Cayley numbers have inverses. However, the Cayley num-
bers are not associative. For example (Jb)c = J(cb) is not equal to J(bc). It turns out that
there is no way to extend the quaternions to an eight dimensional algebra that has inverses
without encountering non-associativity, and matters degenerate even further after that.

Nevertheless, the Cayley numbers are a direct analogue of the quaternions and they
still have the property that every Cayley number can be written in the form a + bu, where a
and b are real numbers and u is a unit Cayley number in 7-space such that u?> = —1. Thus
the Cayley numbers provide a useful ground for generating higher dimensional hypercomplex
fractals.

7.3 Distance Estimation in Higher Dimensional Spaces

The lack of commutativity of the quaternions seems to make the proof of quaternionic or
higher dimensional distance estimation much more difficult than in the complex case. We
would have much difficulty trying to mimic the method that uses the Riemann Mapping
Theorem and other theorems of complex analysis. We now present our new approach to
distance estimation.

Assume we are given a function
F:RY — R,

Let J denote the Julia set of F'. That is J is the frontier of the set of points that escape to
infinity under the iteration of F'. We shall say that a point 2’ is outside J (not to be confused
with the set-theoretic complement of J) if F™(z) — oo as n — oo. We shall assume that J
is a compact subset of R (and hence closed and bounded).

Given a point z outside J, we wish to estimate the distance ¢ from z to the set J.
Since § = Dist(z,J), there is a point 2o € J and a unit vector u € RY such that zy = z+ du.
We know that for n sufficiently large, |F™(z)| will be arbitrarily large. On the other hand,
|F™(20)| is bounded by the maximal distance of points in the compact set J to the origin in
RY. Therefore, for sufficiently large n, we have

[E"(2)]

Foz) — Fo()]

In fact, we can write the equation

N 1.6
% P (zg) — F(2)

The degree of the approximation to 1 can be made arbitrarily small for sufficiently
large n. See Figure 1.3 in Chapter 1.

o6

Therefore,

: |7 (2)]
nh—>nc>10 | F”(2+6%)—F”(Z) |

:57

for 6 > 0. Let
G(z + ou) — G(z)

J

For any G : RY — RY, D5, (G) is the discrete directional derivative of G for the
direction u and step-size d. We have proved the formula:

DJ,U(G) =

O
R AN TS (7-2)

In the case of the hypercomplex fractals generated by Equation 7.1, we will show
that Ds,(F"(2)) can be approximated by the formal derivative D = - of the polynomial
equation, defined iteratively. Thus,

FrH(z) = (F™(2) + ¢
and
DF" ! = E(F™)D(F™)

so that
DF"™ ™ = E"F™(2)F" 1 (2)...F(2) 2.
We then get the estimate
£ (2)]
| D(F(2))]

and hence by choosing an appropriate constant K,

~ 0,

1 [F(2)
R < 0. (7.3)

Furthermore, for the Julia sets generated by any polynomial

I m
p(z) = Z Zpiozpilz---zpikv
k=0 i=0

(see Section 4.3, Equation 4.10), we still have

L |p"(2)]

KD = o

where the polynomial p(z) is defined by p(z) in following way,
I m

plz) = Z Z |piopit---pik| 2"

k=01=0

57

For example,
p(2) = aap22*qa + a1przq1 + qo,
where aj, as are real positive numbers and qq, g1, g2, p1, p2 are quaternions such that |g;| =
lg2| = |p1| = |p2| = 1. Then
p(z) = a2z’ + a1z + qo.

The discrete derivative Ds,(p™(z)) can be approximated by the formal derivative of
P(z) as follows:

lim |Ds.o(p"(2))| = lim laopa (2, + 0u)? — 22)qo + a1p1(6u)q|

n—oo 5

< 2laz||zy| + |a1| = D(B(zn)).

Thus Inequality 7.4 is correct.

In this next section, we will discuss more generally the efficacy of the replacement of
Ds,, by the formal derivative D.

It is useful to compare this distance estimate with the distance estimates obtained in
Chapter 3 (Equation 3.16) in the complex case. In that case, one writes

G(z) =In(|F(2)| + 1)
and uses the sequence of functions G,, = In(|F"™(z)| + 1). This gives rise to

~ Gl . | 20| I | 2,

~ / / ’
Gl |2

o

where z, = F"(z). This is precisely the classical distance estimate for the complex case.
Inequality 3.8 is the practical distance estimate that we use in our work. The derivation of
this last estimate is sketched in the next section.

7.4 Calculating the Derivative in Higher Dimensional
Space
We assume that the set
J(F)={z€ R | F"(2) £ c0o asn — oo} (7.5)

is a compact (closed and bounded) subset of RY. Call J(F') the filled Julia set of F' as
before, as opposed to its boundary

J(F)=1{z € J(F)| every neighborhood of z contains points 2’ & J(F)}. (7.6)

Now recall our set-up: We have a point z that is outside J(F') so that |[F"(z)| — oo
as n — o0o. We wish to estimate the distance § > 0 of z from the Julia set J(F'). Given

o8

that ¢ is the distance from z to J(F'), we know there exists a unit vector v € R" such that
z* =z 4+ 6u € J(F). We then estimate via the quotient

[£7(2)]
Fn(z46u)—F"(z)
5

~ 0 (7.7)

for n large. See Figure 1.3 in Chapter 1.

Now consider the special case F'(z) = 2* + ¢ where 2* is the k-th power map on RY
with N < 8. In this case we can consider the power map as part of the general multiplication
structure on R® that is given by Cayley multiplication:

(a+ Jb)(c+ Jd) = (ac — db) + J(cb + ad).

Here a, b, c,d € R* are quaternions and a + Jb denotes an arbitrary point in R* x R* = R&,
It is not hard to see that the k-th power mapping in the Cayley numbers is equivalent to our
general power mapping restricted to these dimensions. The advantage of working “under
the wing” of Cayley multiplication is that we can multiply any two elements of R® and get
an element of R® as a result. A key property of the Cayley numbers is that |zw| = |z||w|
where |z| denotes the length of the vector z in Euclidean space.

Lemma 34 For z,q € RY with N € {1,2,4,8} and F(z) = 2 + q, the difference quotient

(2 4 ou)k — 2*
)

18 closely approximated by
[l

and D(|F"|) can be approximated by
Kl D F T (2)]).

Proof: We first give the details of the proof for £ = 2, and then use this as the base for an
inductive proof for arbitrary k. Therefore, we first take

F(z)=2"+q.

Consider G = F(z) and D5, (|F™(2)|). Set z, = F™(2y), 2z = F"(z*). Then we have

S

Daa|F"(z0)]) = 2

We can write

) N o et I L 0| I o i

(7.8)

6 ezl lemee — s T 20—)

29

og—23l
For each #, j=1,2,3,...,n, we can evaluate,
J— 1

z
s-sl 12 P
|2j—1 — 24| |zj—1 — 24|
< |ZJ2'*1 - ijlz;lﬂ |zj_1z;’-‘,1 - (2;71)2‘
7R Y |2j-1 — 21|

= [zl + 127l

So

*

|Zn—Zn| * * *
—5 = (2l + o) (a2l + 25 2) - (2] + [25])-

If n is large enough, then |z,| > |z}| and hence
(20l + [z D202l + [z5-2]) - - (I20] + |26]) < (2fzn-a])(2]zn2]) - - (2]20])

= D(|F"(2)]) = 2lzu-1| D(IF" 7 (2)]).

So, we have proved for the quadratic function f(z) = 2% + ¢ that

B

Dyl (z0)]) = 2=

< D([F"(2)]), (7.9)
and the distance estimate for a point outside the Julia set to the Julia set is

|20

d(z,K,) =48 > , (7.10)
! D(|zal)
where
D(|zal) = kl(za-1)" " [D(|2n-1])- (7.11)
Here k = 2.
Now we give a proof for arbitrary k. As long as we can prove
21— (z5-1)"] k—1
~ ~ < kl[(zp— 7.12
LIl < () (7.12)

where n is large enough so that |z,-1| > |z_,|, the rest of the proof is the same as the case
k = 2. To prove Equation 7.12, we use induction on k.

First, we already know that Equation 7.12 holds for £ = 2. We now prove that
Equation 7.12 holds for k if it holds for £ — 1. We have

|Zfz—1 - (Z:L—l)k| <
|Zn71 - Z’;’kL—1|
[(zn)* = ()" | H(2a) 2y = (25 0)"]

201 — 25,_1| 201 — 25_4|

60

|(zn-)" ™ — (2 4)*

k-1
Zn_ +
(zn-1) " [2n-1— 25 14]

|21l

By the induction assumption

|(zn-)" ™ — (27 1)

201 — 24|

< (k= 1)(z0-1)"2.

e) = ()]
k-1 Zn—1)" = ()"
Zn— + Zp— S
|(1) | |Zn—1 _ Z:L—1| | 1|
|Gznmt) ¥+ (k= Dl(20-1)" |25 0] <
kl(z0-1)".
This proves Equation 7.12, and hence the result holds for any k. O

In practical computation, for the function F(z) = 2% + ¢, we can use

= Tonal + M) (2] + M)~ (0] + M)’ (7.13)

where M is the radius of the smallest sphere that contains the Julia set. For other functions
defined via Equation 7.1, the corresponding version of the above inequality can be formulated.

We can approximate M as follows.
Let z be a point on the Julia set such that |z| = M. Then,
M? =12 = |F(z) — 2| < |[F(2)| + la] < M +q|
M2 - M- |q| < 07
1+4/1+4|q
< _| | M. (7.14)

2 p—
Thus we can replace M by M’ in Equation 7.13.

SO

Note that letting G(2) = In(|F(2)| 4+ 1), we can obtain an analogous distance estima-
tion formula. That is,
[2n] n(}2])
§> c———"7+
D(|zn])

where c is a positive real constant. To see this, let

|23
n

Sp = <1+ &) <1+ |z"‘1|>...<1+ |ZO|).
|20 |2n—1] |20]

Then it is not difficult to prove that s, and In(|z,|)/2™ are bounded by certain constants.
We will verify this in the next section. Hence,

In(|z.] +1) = In(]z;[+ 1) D(|24])
; < Clvu

61

where ¢; is a positive constant, and

[2n| In(2n])

= D(z)

1
c1’

with ¢ =

While we can obtain these estimates in terms of the natural logarithm, in practice

more direct estimates of the form ¢ > D‘(z‘gl) and Equation 7.13 are just as useful.

We can now summarize this discussion by stating two theorems. The proofs of these
theorems are the content of the discussion above.

Theorem 35 The distance d(zy, K,) between a point zy lying outside K, and K, itself sat-
isfies the following inequality
|20

D(|zn])’

where zp € RN, N € {1,2,4,8} and D(|z,|) is defined in Equation 7.11. K, is the Julia set
defined by function f(z) = 2™ + q with z, ¢ € RN, and c is a positive constant.

d(z0, K;) > ¢

(7.15)

Remark: Our methods obtain a lower bound, and it is this lower bound that is used in the
applications. A similar statement can be made involving the logarithm, as discussed earlier.

Theorem 36 The distance d(zg, K,) between a point 2y lying outside K, and K, itself sat-
isfies the following inequality

|20

| D(P(2n—1))]’

where zg € RN, N € {1,2,4,8} and D(f(z,_1)) is a sum of derivatives of the sort given in
Equation 7.11. K, is the Julia set defined by the function p(z) = Z%:o Yoo PioZDi1 % Pik—12Dik
p(z) = o " Ipiopir---pir| 2%, 2, pir € RN, and c is a positive constant.

d(z0, K;) > ¢ (7.16)

7.5 Another Version of the Distance Estimation For-
mula

By letting G(2) = In(|F'(2)| + 1) by analogy to the formula in the complex case, we obtain
a hypercomplex distance estimation formula.

Theorem 37 The distance d(zg, K,) between a point 2y lying outside K, and K, itself sat-
isfies the following inequality:
|2n| In(2n])

0>c ,
D([zn])

(7.17)

where ¢ 1s a positive real constant.

62

To see this, let

sn—<1+@><1+w>...<1+@). (7.18)
|2n |2n-1 |20l

In the following paragraph, we will prove that s, and In(|z,|)/2" are bounded by certain
constants. Theorem 37 will follow from this.

Lemma 38 If s, is defined as in Equation 7.18, then
Sn < C1, (719)
where ¢, 1S a positive constant.

Proof: Without loss of generality, let M > 1. Thus there exists a k € Z* such that when
n >k,

and

First we assume by induction that there exists a ¢ € R, ¢ > 0 such that

M
sn§c<1—) .
| Zng1

M
Sn+1 <c (1 -))
|Zn+2]

then it will follow by induction that s,, is bounded by a constant ¢;. The following calculation

proves the point.
Sn+1 = 1+ Sn
|Zn41]

M M
<c|l+—— 1l——
| Zng1 | Zn41]
M2
=c|l-—
< |2n+1|2>
2
2041+ €| |Znt1]?
M
<c|l-— IS I
|Zn+1 +C|

:c<1— M)
Zn4-2

Hence s,, is bounded by a positive constant ¢;. (In fact, we can take ¢; = ¢.) O

If we can show that

63

Lemma 39 The quantity In |z,|/2™ is bounded by a positive constant.

Proof: First we find a positive decreasing sequence t,, such that ¢, — 0 when n — 0 and

1—1t, In |22 (7.20)
L=t~ Infzaf® + g
Let 0,, = t,, — t,,+1. Note that
1—t, 1 1
< = .
1— tn+1 1+ tn - tn+1 1+ 571,
Note also that the inequality
1 In |22
L+, = Infz,* + |q]
is equivalent to the following inequality
In (Izn|2+2\q\)
5, > [zn| 7.21
— Inlz,|? (7.21)

If we can find t,, such that the latter inequality is true, then Inequality 7.20 will hold.

We set

|Zn|2+‘Q‘
P i)
" In |2,|
Then,
Zn 2 Zn+1 2
ln(| |Z|n|+2|q|) ln(| I;rnl:l;‘q‘)
by — tn+1 =3 -3
In|z,| In |241]
znl? zn|?
.y ln(| |ln7-2|q|) B ln(‘ ‘lj';\ql)
- In |z,| In |21

2
2P) \Infza]]

2
(=) (1
|20 |z, 1In|z,|2

Here we assume n is large such that

In|z,41| = In |Z72L + ¢/ >1In |Zn|%

Therefore the sequence t, satisfies

2”4 g (2> 1
tp, —ther > 3In | ——— 1—-
1 t (|2 |2 3/ \Un|z,|
o (1P £l 1
|2 |2 In|z,|

64

2a|® + g 1
>1 .
- n(EME In |z,|?

It is not difficult to see that ¢, is also decreasing.
Second, we can prove In |z,|/2" is bounded by a positive constant co. Since

1—t, In | 22|
1 - tn+1 ~ In |Zn|2 + ‘Q|,

we have
(1= ta)(In |2, |* + lgl) < (1 = tng) In|2].
and hence -
(nfznf? + Jal) < =24 1n 23]
So if we assume for n sufficiently large that
In |z,]
< 1- tn ’
o < el)
then
In 2 _ (|22 +)
2n+1 — 2n+1
(1 —tpy1) In |z,]2
- (1 —=t,)2ntt
< (1 —tn+1> In |z,|
“\1-t, 2m
1 —tpa
—0(1—1t,
S oy, el i)
= co(1 —tpy1)-
Therefore,
In |z,|
on =

for n sufficiently large.
Finally, we conclude that In |z,|/2™ is bounded by a positive constant.

Now we can prove Theorem 37.
Proof of Theorem 37:

Let’s consider
In(|z,| +1) = In(]z;| + 1)
1)

65

~ In(za +1) —In(lz5| +1) 20 — 2 |21 — 27|
B PR R
In(|zn| + 1) — In(]2%] + 1) . .

:mWA+D—mWﬁ+U<HJ%UU<LH%UVL~%|
Z0

‘Zn - :L| |Zn|
DS () 1) () LT 06
|20 — 23, |20 |20 n

;gm%%1g4>”<ujm>wmm
2n | 2] 20l) [2n]
< Il (1 + ﬁ) (1 + %> D)
2 |2n] 20l) [2n]
Here M is the radius of the smallest sphere that contains the Julia set, as defined in the

previous section. By Lemma 38 and Lemma 39, we have

il +) (2] + 1) _ D)
Y - |2n|

9

where ¢; and ¢y are positive constants. Therefore,

n(|2n| + 1) 2| (I |25])
6~ In(lzn[+1)_In(z5HT) = ¢ |D(z,)]

66

Part 1V

Inverse Iteration, Ray Tracing and
Virtual Reality

67

Chapter 8

Inverse Iteration: An Interactive
Visualization

Inverse iteration was first used to produce Julia sets by Mandelbrot [26]. The method was
further developed by Peitgen and Richter [32] and then by Peitgen and Saupe [33], who took
advantage of certain properties of Julia sets to make the algorithm more efficient.

The inverse iteration method relies on the fact that a Julia set is the closure of the
set of repelling periodic points [4]. If we apply the inverse mapping, the Julia set becomes
attractive rather than repulsive. Since the Julia set is attractive under the inverse mapping,
application of the inverse function to any point near the Julia set produces another point
even closer to the Julia set.

8.1 Classical Inverse Iteration

The inverse iteration algorithm has been used extensively to visualize fractals in the complex
plane. The basic algorithm given below utilizes the attractivity of the Julia set under the
inverse equation. We assume that the function f(z) (possibly f(z) = 2%+c¢) is being iterated.
The algorithm can be described as:

Algorithm 1
1. Select an arbitrary initial point z;.
2. Forie{1,2,3,..,N}

(a) Let z; be chosen at random from the possible values of f~'(z;_1).

(b) If i > M, then plot z; and —z;.

3. End for.

69

70

The parameter N, the number of points generated, should be chosen so that the
routine finishes in a reasonable amount of time and enough points are plotted to adequately
define the set.

If the initial point is chosen at random, then several iterations of the inverse function
will bring the point very close to the set. The value M may be set to zero if the initial point
is chosen sufficiently close to the Julia set.

For f(z) = 2% + ¢, the simplest version of the inverse iteration method is to randomly
choose the positive or the negative square root at each stage, plotting both roots, but using
only one of them to take the next square root. The result corresponds to taking a random
path through the tree of all possible square roots. This method results in a simple program
but leaves out many fine details in the actual set. These details correspond directly to non-
random paths through the tree. By searching the entire tree structure, one can eliminate
this difficulty.

Searching the tree can be accomplished without great cost to computer memory.
Only a linear amount of information is necessary to search the tree down to a given depth.
Algorithm 2 provides an example of a prefix traversal of the tree using a recursive function
call. In the algorithm we define g(z) = \/z — ¢ to be the positive square root in the following
sense:

Rla+bu) = +VR ((1+a)/2 + sign(b)uy/(1 — a)/2)> ,

valid when a? +b® = 1, R is a non-negative real number, and u is a unit pure hypercomplex
number so that u? = —1. Note that z — ¢ can be uniquely written in the form R(a + bu).
The variable maxdepth is the predetermined depth to which the tree will be searched. Note
also that return means exit the function and return to the calling environment.

Algorithm 2

1. Set depth = maxdepth—1.
Choose initial value z = zy.

Call plotroot(depth, z).

o

Definition of function plotroot(depth, z):

(a) If depth= 0, return.

(b) Plot the point g(z).

(¢) Plot the point —g(z).

(d) Setr = g(z).

(e) Call plotroot(depth—1, r).
(f) Call plotroot(depth—1, —r).
(g9) Return.

71

The inverse iteration method still has its pitfalls. Some points on the Julia set are
more repulsive (inverse attractive) than others, creating regions that may be too dense or
too sparse in the point-cloud image of the Julia set. However, a more refined tree search
allows the inverse iteration algorithm to generate good images of complex Julia sets in real
time. Methods to prune the tree structure of inverse iterates, described in Section 8.8, can
even out the distribution of points in the image. Such programs are easily written on a small
computer.

In the following section we will see how inverse iteration can be used to generate
higher dimensional Julia sets.

8.2 Mappings in the Quaternions

In order to apply the inverse iteration algorithm, we need to know how to raise quaternions
to a real fractional power.

For integer powers, such as squaring, it suffices to self-multiply a value using the
quaternion multiplication rule. Note that non-commutativity does not apply to this type of
multiplication since both sides of the multiplication are equal.

For the set of non-zero pure quaternions, squaring is a many-to-one mapping rather
than the two-to-one mapping that would be expected. This fact was originally observed by
Hamilton in [14]. It is easily demonstrated by the following calculation:

i* = (=i)? = j" = (=j)* = k" = (=k)* = -1,

which illustrates the squaring mapping to be at least six-to-one. In fact, the mapping is
infinity-to-one. Let
S?={z|z€H,|z| =1,Re(z) =0}

be a unit two-sphere of pure imaginary quaternions. Then
2287 — —1.

In general, any such sphere of radius r € R, (the positive real axis), when squared, “col-
lapses” to a single point in R_, specifically —+/7.

Lemma 40 Let f(z) = 2% be the quaternion squaring function. Forr >0, let
U-, = {q € H| Re(q) = 0,]q| = v7}.
Then f(U_,) = —r.

This lemma follows from the discussion above. It can also be shown that similar results
obtain for any integer exponent greater than one.

72

8.3 The Quaternion Square Root

We can raise quaternions to fractional powers. Without loss of generality, we will only discuss
fractional exponents less than one—usually called rooting. With certain exceptions, rooting
is a 1-to-d mapping where d is the degree of the root. The exception, as noted above, is
roots of numbers on the negative real axis, which are one-to-infinity mappings. The following
lemma is equivalent to Lemma 40.

Lemma 41 The multi-valued quaternion square root function
7 2) =z
maps a single negative real value —r to a set of points U_, = \/rS>.

The root of a quaternion number may be computed in much the same way that the complex
square root is calculated.

Lemma 42 The square roots of a quaternion q = a+ bi + cj + dk, where at least one of b, ¢
and d is not zero and a,b,c,d € R, is

g% = Iy/r cos (g) +1y/Fsin (g) (L + gt ik) : (8.1)

T r r

where | = +1, and 0 = arccos (%), r=va2+b+c+d? r=Vb+c?+d%
Proof: We can write ¢ as
q = A+ Bu,
where A=a,B=ri = Vb +c2+d?andu = (%i+ﬁj+%k). Sor=vVa2+b2+2+d?=
VA2 + B2,

Letting 0 = arccos (%), we can rewrite g as:

A B
g=r <? + —u) = r(cos @ + sin fu).

-
Therefore,
1 0 [0
q% = I/ (cos 2 + [sin 7 s l==+1.
Since u? = —1, it is not difficult to see that

o=

2
(q)2 . <l oS <g) + [sin (g) u> = r(cosf + sinu) = q.

Later we will discuss how to choose efficient initial values for the inverse iteration.

O

One important property of the rooting function as suggested above is that null imag-
inaries remain null, as stated below.

73

Lemma 43 If f~1(z) = /2 is the inverse of the squaring map in the quaternions, then for
r real and > 0, f1(r) is a set of real numbers {++/7, —/T}, where \/7 denotes the real
square 1oot.

This lemma is useful for choosing initial values for the inverse iteration algorithm.

8.4 The n-th Roots in Higher Dimensions

In this section we point out a natural generalization of the n-th root of a quaternion, which
leads to an interesting method for visualizing higher dimensional Julia sets using inverse
iteration.

As in Section 7.1, we can define a value in RV*! as
X =a+ bu,

or
X = r(cosf + sin Ou),

where 7 is a real number, u = (uy, ug, ..., u,), and 0 < 6 < 360.

Then we can simply deduce the n-th roots of X to be

0+ 21 0+ 2l
X, = r (cos e + wsin i 7r> , (8.2)
n
where [=0,1,...,n — 1.
We can compute X" just as in the complex numbers:
" 0+ 2lm . 0+ 20m\"
X" =r|cos + u sin .
n n
Since u? = —1, we can treat u as the i in the complex plane when we simplify the above

equation. Then we can have X" in the form
X" = R(cos ¢ + usin ¢).

Equation 8.2 can be used in the inverse iteration algorithm for higher dimensional
Julia sets.

We can also easily deduce a “collapsing (N — 2)-sphere” property for N-dimensional
variables.

Lemma 44 The inverse of the squaring function, the square root function,
f(X)=vX

maps a single negative real value r to a set of points U, = /—r C SN2,

74

8.5 Quaternion Julia Sets via Inverse Iteration

The Julia set is repulsive with respect to the polynomial f = 2% + ¢, which means that the
orbits of points near the set move farther away from it. Conversely, the Julia set is attractive
with respect to the inverse function

f1(2)=vz—q, (8.3)
because the orbits of points far away from the Julia set come closer to it under f=* [32].

This means that Julia sets are a specific form of strange attractor. These shapes commonly
arise from physical differential equations such as the well known Lorenz attractor.

The function used to generate the Julia sets can be any quaternion polynomial. But
not all such Julia sets can be generated using the inverse iteration method. Consequently,
we must first solve the quaternion polynomial f(z) = z before we think about the inverse
iteration. For example, it would be difficult to solve a polynomial such as:

p(2) = pr2p22ps + Pazps + Do,
where p; e H, 1 =1, ..., 6.

However, some quaternion polynomials are good candidates for generating Julia sets
by inverse iteration. For example,
f(z)=2"+p (8.4)
and
f(2) = pi2*q + po, (8.5)
where p1, q1, po € H etc. In both of these equations, one can solve for z in terms of f and
the constants.

Another problem we had mentioned earlier is the choice of initial points for a solvable
polynomial function. Some points on the Julia set are more inversely attractive than others,
so that some parts of the point-cloud image may appear more dense than others. We do not
know a general method for choosing “good” initial values, since we are using a countable set
of points to describe a Julia set that consists of uncountably many points. This is one of the
disadvantages of the inverse iteration method. However, one method for producing better
images is to use a multiplicity of initial points. The tree search algorithm described above and
methods for tree pruning (see Section 8.8) can also improve image quality. Implementing the
tree search is computationally practical for two-dimensional Julia sets but requires a great
deal of computational power for higher dimensions, and one must pay particular attention
to the places where the roots have infinite multiplicity.

8.6 Functions Used in the Inverse Iteration Method

Not all Julia sets generated by quaternion polynomials can be visualized by the inverse
iteration method. Functions of the form

F(2) = c12® + ¢y, (8.6)

75

with ¢q, co, € C, are amenable to inverse iteration. We will see later that

f(z) =2 +q, (8.7)

with ¢ a quaternion, has the same dynamics as f(z) = 22 + ¢ for an appropriate ¢ in the
complex numbers. This will be proved in Theorem 48 Section 9.8. We will describe the
Julia set J, defined by Equation 8.7 using the inverse iteration method that we used for
Equation 8.6.

Since we can only observe a 4D Julia set in 3D space, we need to find some method
to represent a 4D object in 3D space. The following theorem suggests how the entire Julia
set defined by Equation 8.6 can be visualized using the inverse iteration method.

Theorem 45 The dynamics of Equation 8.6 is independent of the angle ¢ in
z =z + €927,

where z1, 2 € C. In particular, letting gs(z1+227) = 21+€%297, then go(F(g_4(2))) = F(2).
We can view the function g4(2) as a rotation of 4-space that fizes the complex plane (z, = 0).
Thus, we see that the 4D Julia set is obtained by rotating the 3D Julia set about the complex
plane.

Remark: We call this property of the 4D Julia set “j-k equivalence.”
Proof: Let ¢; = a; + b14, cog = ag + bet and
9s(2) = Re(z) + Im;(2)i + € (Im;(2) + Tmy(2)k)
be the rotation of quaternion z about the complex plane that leaves points in C fixed. Note
that any arbitrary z € H can be expressed as
z =21+ 227,
where 21,z € C. We can choose ¢ to be the angle such that e = 23 /|2|.

Notice that

1

g-s(2) =21 + € z) = 21+ |20|j

takes z from H into H%, where H? denotes the quaternions with zero k component. Then,

F(g-4(2)) = c1(g-4(2))* + 2
=c1(z1 + 6_i¢22j)2 +cy=ci(z1 + |22|J)2 +c2
= c1(2 + z1lzlj + |2lj2 — |2) + e
= a1(2] + |2l21) + |22|75) — |22f?) + o
= ¢1(22 — |2|?) + ¢z + 2Re(21)c1| 224

So
96(F(9-4(2))) = c1(2] — |22]”) + c2 + 2Re(z1)ect | 20|

76

= c1(2] — |22]?) + 2 + 2Re(21) 22017,

which is the same result as
F(z) = ci(z1+ 205)* + ca

= c1(2] + 212 + 22§21 + 2 22]) + 2

=c1(2} + 2120 + Zize] + 20725°) + ¢

= c1(2 — |22|%) + ca + 2Re(21) 2901 5.
So

O

Notice that the hypothesis of this theorem requires that ¢ € C. We will prove in
the next chapter that the quaternionic Julia set defined by f(z) = 22 + ¢ is equivalent by
rotations to the complex Julia set defined by f(z) = 2% + ¢ for some ¢ € C.

8.7 An Algorithm for the Inverse Iteration Method

The algorithm presented in this section is an extension of the classical inverse iteration
algorithm given in Section 8.1. Without loss of generality, by the discussion of last section,
Equation 8.6 is used to describe the algorithm. The inverse of Equation 8.6 is

f(2) =er'tz —ciles. (8.8)

When we write the square root sign, we mean that one randomly chooses either the positive
or the negative square root. Improvement of the algorithm involves more than just changing
the square root function. Some properties of quaternions can be used to make the algorithm
more efficient.

Algorithm 3

1. Compute the set of initial points I = {zo}.
2. For each point zy € I,

(a) forle{1,2,..,N}
o Ifci'(z1o1 —) €R_={r e R |7 <0}, choose 2 from the circle

Sy ={z||z| = /T (2121 —), Re(z) = Imy(2) = 0}.

e Flse compute z; by equation 8.8.
(b) Plot 2z, —z, 1 — 2Im;(2;), —z + 2Imj(z).
(¢) End for.

7

3. End for.

The property that 2-spheres are collapsed by the power mapping is used to define the
initial values of the backward orbits. Since the only way to forward iterate from H to C is
to apply the mapping to a quaternion whose square or higher power is a complex number,
the best way to start a quaternion backward orbit is at such a point.

To choose the initial values, we can compute

p=min{y | yi € the Julia set}
y>0

by extending a ray from the origin up to the i axis to find the least positive 7 value not in
the filled Julia set. Then by the “j-k equivalence” property, we can choose the set of initial
values to be

I'={z| 2z = p(cosbi+ psindj),0 € [0,2m)}.

Since the initial values of the process are taken from a circle, this algorithm can be understood
as the inverse iteration of loops. These loops, however, become quite convoluted in the deeper
branches of the inverse iteration tree.

The square root returns at least two values, so both are plotted. Theorem 45 allows
us to reflect each point across C. These two symmetries allow each point to be plotted as
four in the resulting point cloud. The production of four points from each iteration reduces
the number of quaternion square root function calls, which are computationally expensive.

Another point worth keeping in mind is that once z; € C for some 7, then f~1(z;)
will remain in C for some time until the iteration sends it to the negative real numbers,
R_. Therefore, should it occur that z; € C, it is advisable to restart the algorithm with a
different initial value.

When forward iteration is applied to a point with zero k component, the result also
has zero k component. This is not true for the inverse iteration. Theorem 45 shows how any
point in the Julia set with non-zero £ component can be rotated into a point in the Julia set
with zero k component. This can be done by setting

2= Re(2) +Imi(2) + jy/(Im;(2))? + (Imy(2))?
for any z in the Julia set. This way we can describe a 4D Julia set in 3D space.

In the next section we provide a method to improve the algorithm.

8.8 Tree Pruning

We already know it is difficult to produce enough points to define the image of a Julia set in
the quaternions. Since the inverse function in Equation 8.8 produces two values after each

78

Figure 8.1: Tree Structure

iteration, we can use a tree structure for the inverse iteration of an initial point. The entire
binary tree of values may be generated using only O(log,n) space by storing the values in
the order suggested by Figure 8.1. Since the immediate descendants of a node only differ in
sign, only one value needs to be stored. The tree structure also allows pruning. The pruning
operation halts the inverse iteration at a certain point such that the point’s descendants
are not generated. This is necessary for solving the point distribution problem mentioned
earlier.

There are several forms of tree pruning: temporal redundancy pruning, spatial redun-
dancy pruning and repulsiveness pruning.

Temporal redundancy pruning is the method presented in Algorithm 3. The idea is to
stop traversing a path whose root value has already been plotted. This is one of the easiest
ways to prune a tree to obtain a more even distribution of values.

If every point is to be checked against all previously generated points, the algorithm
would result in using the 3D object-space. Instead, the points are checked against the
viewable subset of previously generated points. Although more accurate in object-space
than image-space, the result is still a more even distribution. The main drawback to this
technique results from the Butterfly Effect, in which the n-th iteration of a point may be
arbitrarily far from the n-th iteration of its nearest neighbors. This becomes a problem,
since our comparisons are only as accurate as the resolution of the image. The Butterfly
Effect may be controlled by storing with each value z in the tree, the number of collisions
with the set previously generated by z and its ancestors. If this number becomes too large,
then the tree is pruned at this node.

Spatial redundancy pruning is derived from a paper on the ergodic property of inverse
iteration [32] and was developed by Peitgen and Richter to produce some of the images
illustrating their book [33]. By this method, one creates a grid of lower resolution than the
final image, keeping a count of points contained in each domain of the grid. If the count
reaches a maximum number, the traversal is discontinued. This seems to work well in the
complex plane but is not efficient in 3D, since a three-dimensional array must be used. If
the array is nearly the resolution of the resulting image, an object-space algorithm results.
Smaller arrays retain the image-space complexity of the algorithm, but are not as useful.

79

Perhaps a reasonable compromise between size and effectiveness could be accomplished.

Another method is to prune the tree by measuring the repulsiveness (inverse attrac-
tiveness) of values. If a value is very repulsive, its derivative will be very large; less repulsive
points have smaller derivatives. Thus, by keeping a running derivative at each point in the
tree of inverse iterates, less attractive points may be emphasized. The absolute value of the
derivative of each point in the Julia set is defined as

|20l = 2lznsa 24, (8.9)

where z,,; is computed from z, by the inverse function f~!. We could set 2y = 1. The
derivative is then updated (in constant time) after each application of the inverse mapping
[17].

8.9 Displaying Julia Sets

We have displayed the point clouds of Julia sets on an IRIS workstation, and we produced
interactive animations in the Cave Automated Virtual Environment (CAVE) and the Imm-
ersaDesk [36).

On our workstation, we used perspective projection together with animation, which
gives a better sense of depth to the point-cloud image. Stereo was used to generate more
realistic images using the following formula,

=z, (8.10)
¥ =z—az, (8.11)
Yy =u. (8.12)

Equation 8.10 computes the left image and Equation 8.11 computes the right image. This
is computed for the positive xz-axis pointing to the viewer’s left and positive z-axis pointing
toward the viewer. This is the same as the CAVE coordinate system. The parameter « is
an adjustable constant. We take v = 0.12 if the center of focus of the stereo projection is to
be at the z = 0 plane.

Another 3D cue is obtained by depth-cueing; see [17]. This is a technique by which
the color of an object fades for points farther away as if the point-cloud is viewed through a
fog. A similar depth cue uses a modular color scheme based on the coordinates. For example,
if valid color indices range from 0 to 255, inclusive, then the function

c(z) = |256(Re(z) mod 1)]
will assign colors that vary across the point cloud in the direction of the real axis. See [17].

It is not difficult to produce renderable point clouds by inverse iteration. During
inverse iteration, a z-buffer in maintained, and each resulting point is added to the z-buffer.

80

Then all the points in the z-buffer are rendered by computing their surface normal, and
lighting is added according to the Lambertian lighting model. The surface normal of a
z-buffer point may be found by following two other vectors. See [31]. Let

X =(1,0,2(z + 1,y)),

Y =(0,1,2(z,y + 1)),

where z is the z-buffer indexed by z and y. The surface normal may then be computed as

| >
|~

N = X

X1 YT
The object can be rendered with shadows if a shadow buffer is maintained by projecting each
point with respect to each light source and adding the result to a separate z-buffer dedicated
to each light source.

The inverse iteration algorithm is much simpler and faster than other methods for
visualization of quaternion Julia sets. It also does not require a computationally expensive
frame buffer.

Chapter 9

Ray Tracing Methods by Distance
Estimation

9.1 Distance Estimation via Ray Tracing

The method of ray tracing has made a tremendous impact on computer graphics since its
introduction in the 1980’s. Realistic three-dimensional scenes are rendered using a simple
model of the way light illuminates an object. A “ray” of light is followed, or traced, from the
eye of the viewer, through a pixel in the display device, and then to a point on the surface
of the object to be rendered. The ray is deflected by the object, and then traced to the
light sources illuminating the scene. This procedure is followed for each pixel, resulting in an
image-space, image-time algorithm. Since the number of ray paths computed is proportional
to the resolution of the display device, the complexity of the algorithm depends only on the
complexity of the image, and not the complexity of the underlying object.

An important step in the ray tracing algorithm is finding the intersection of the ray
with the object. Mathematical objects may be traced to detect their boundaries by finding
the intersection of the ray with the object. The surface is rendered by allowing the ray to
be deflected off to a light source. Intersections are not difficult to find for objects that can
be represented by mathematical functions. However, finding the intersection of a ray with
the surface of higher dimensional deterministic fractals is very difficult, if not impossible.

A naive method to ray trace a deterministic fractal would be to sample each point at
a given resolution along each ray. This is not an entirely ridiculous idea, since it is the basis
of the volumetric rendering algorithms in [24]. However, it would not be practical to classify
each point on the ray, since we may need a large number of function iterations.

The distance estimation formula given in Chapter 3 gives us a lower bound for the
distance from a point to a deterministic fractal. We can use this value as the lower bound
of the distance along the ray of a point on the ray to the fractal. By this mechanism, the
amount of sample points per ray is greatly reduced. Distance estimation therefore makes
the ray tracing of higher dimensional deterministic fractals possible.

81

82

9.2 A Classical Ray Tracing Algorithm

Using the standard ray tracing model, at every pixel we traverse every point in the ray
starting at the eye of the viewer and moving away along the ray. The algorithm is:

Algorithm 4
1. For each ray,

(a) For each point on the ray,

1. Classify the point with respect to the fractal.
. If the point is interior, stop.
s, If the point is exterior, continue.

(b) End for.
2. End for.

In the following section, we will optimize the ray tracing algorithm by using the
distance estimation formula for higher dimensional fractals.

9.3 A Ray Tracing Algorithm Using Distance Estima-
tion

The classical ray tracing algorithm provides a simple model, but it usually requires a large
amount of computation. Consequently, many papers have been written that describe meth-
ods to optimize the algorithm. A method of particular interest is the use of bounding
volumes in [39]. A bounding volume is a volume such that the computation of the intersec-
tion of a line with the volume is much faster than the computation of the intersection of the
line and the object that the volume contains or “bounds.” Bounding volumes are usually
spheres or ellipsoids. They have been implemented on most objects, even fractals [6], [20].

Another method uses unbounding volumes instead of bounding volumes [16]. An
unbounding volume defines a region containing absolutely no part of the object. Distance
estimation produces unbounding volumes. Each time we estimate the distance of a point
from the fractal, a sphere of that radius becomes an unbounding volume. This process
greatly reduces the number of computations per ray.

Using the lower bound of the distance estimate, we no longer need to traverse rays in
near infinitesimal increments. Instead, the algorithm leaps across each ray, incrementing by
the amount of the estimated distance to the object. Since the distance estimate is the lower
bound of the distance from the point to the fractal, the ray is guaranteed not to intersect the
object. We have proved that the lower bound of the higher dimensional distance estimation
formula is basically the same as in the complex case (see Chapter 7), hence this method may

83

be applied to many different classes of higher dimensional deterministic fractals, including
Julia sets and Mandelbrot sets.

Since we use the lower bound of the distance estimate, we get a fraction closer at each
leap. The ray never intersects the surface of the object. Often, we can also give an upper
bound to the distance estimate, which is a constant times the lower bound. Then, we can
determine the intersection of the ray with the object when the difference of the upper bound
and lower bound is less than a predetermined limit. The algorithm depends on a choice of
n > 1 and a constant a chosen empirically.

Algorithm 5
1. For every ray extending from the eye to a pizel p(x,y) on the projection plane.

(a) Set an initial point zy on the ray.
(b) While zy is not in the object, do
i. Compute |z,| and |z,,| using the iterative function.

ii. Compute the lower bound of the distance from zy to the object, d_ = a/z,|/|z]|.

i1, Update zy to zg = zg + am, where m is the unit vector of the ray.
(c) End while.
(d) Compute the color at pizel p(x,y).

2. End for.

We discuss the algorithm in detail in the next few sections.

9.4 Quaternion Multiplication in the Algorithm

In this section we discuss quaternion multiplication, which we will need for the ray tracing
algorithm. We can write a quaternion in form

q = a+ bu,
where u = uyi 4+ usj + usk and |u| = 1. The square of a quaternion is
¢* = a® — b + 2abu.

This method requires less real number multiplication than multiplying two quaternions di-
rectly. We can also use this method to calculate higher dimensional squaring when we create
higher dimensional deterministic fractals. Namely, for any value X € R¥, we can write

X =a+ bu,
where v € RY~!. Then the square of X is

X? = a* — v* 4 2abu,

84

deds Ay 4z d: iy

Figure 9.1: Unbounding Spheres

where we suppose u? = —1.
For any two different quaternion values p,q € H, we can also write

p=p1+D2J
and

q=q + qJ,
where pi,po, q1,q2 € C. Here, a quaternion is written in the form z; + 257, where z; and
zy are complex numbers, and the quaternion generators are 1, ¢, j, and 15 = k. Thus,
(3+4i) + (5+61)j = 3+ 4i+ 55 + 6k. Note that we identify ¢ in the quaternions with 7 in
the complex numbers. Then the product pq is

Pq = (P1q1 — P2q2) + (P1g2 — P21 J.-

This method is particularly useful for analyzing deterministic fractals in five or more dimen-
sions.

9.5 Calculating the Derivative in the Algorithm

In Section 7.3, we deduced the distance estimation formula for the iterative function
F(z)=2"+c¢, (9.1)

which is given by:
1 [F(2)]
——— <.
K |D(F"(2))]

85

Therefore, for any higher dimensional function of the form of Equation 9.1, the distance

estimate is
| Zn|

a !
EA

if we use z/, to represent D(F"™(z)), where a € RT. We can calculate 2/, by

< 0,

2] = |z "2 .
For any other quaternion functions of the form
F(z) =qz"+p (9.2)
we can deduce
| Dsu(F"(2))] = |D(FT'(2))]
where
Fi(z) = [q]z™ + |pl.

See Section 7.3. In fact, for any quaternion functions of the form of Equation 9.2

2| = mlalzn-a| ™24 .

For a general quaternion polynomial of the form p(z) (see Section 7.3) we can introduce
a new function p(z), which is

I m
p(z) = Z Z piopi1---pir| 2"

k=01=0

We can iteratively evaluate |z] | by using D(p(z,)). That is, let

|20l = [D(P(zn)] |2 |

Note that the lower bound of the distance from a point to the fractal may be much smaller
and less accurate than the actual distance when we introduce the polynomial p(z). But it
still provides a lower bound for the distance estimate, which we can use for the ray tracing
algorithm. However, computation with p(z) may take significantly longer than Equation 9.1.

9.6 Some Important Parameters in the Algorithm

In this section, we discuss some important parameters in the ray tracing algorithm introduced
in Section 9.3. First, let us look at the coefficient a in the higher dimensional distance

estimation formula 2
z
d_ > a—. (9.3)
EA

Compare this with the complex distance estimation formula

In |z,], (9.4)

86

where z, = f™(z) and 2z is the initial point outside the object. After several iterations |z,|
will exceed the range of numbers the computer can represent. In other words, there exists
an integer n such that |z,| is greater than the maximal number the computer is capable of
representing. In our tests, the limit for n was 9. Since we get a better distance estimate
with larger n, we can calculate |z,| until it exceeds the maximal number of the computer.
Experimentally, we find the value of In |z, | just before it exceeds the capacity of the computer,

then treat that value as a constant. So Equation 9.4 can be approximated by
1 |z
g > Lol

2|2

which is essentially the same as the higher dimensional distance estimation formula in Equa-
tion 9.3.

On the other hand, since we can use G,(2) = In(|F"(2)| + 1) instead of F", we also
have a distance estimation formula for higher dimensional deterministic fractals of the form

|2n]
23]
We can therefore use Equation 9.3 as the distance estimate for all kinds of functions in all
dimensions.

d_ >«

In|z,|.

The parameter 0 is the lower bound of the depth resolution of the object. By special-
izing the value ¢, the clarity problem, discussed below in Section 9.11.3, can be solved. The
constant 0 should be large enough to support swift completion, but small enough to give
adequate image detail. By setting § to a linear or a quadratic function, certain depth cues
may be synthesized. Given the updated current point zém on the ray defined by the initial

value z(()o), the ray traversal equation is

M =Y 4 Tﬁmin(d(n_l) J).

-)

Note that the distance estimate is only accurate near the object. If the ray completely
misses the object, or begins at a view point far from the object, incorrect distance estimates
may result. By defining the 3D object inside a bounding sphere of radius two centered at
the origin, a ray point |z(()n)| > 2 incremented by a positive scalar r, is computed as

Ty = |z(()n)| — 2.
If the resulting ray point zénﬂ) is not in or on the bounding sphere, the ray has missed the
object.

9.7 The n-th power Family of Quaternion Mandelbrot
Sets

It is known that the parameter space of complex Julia sets under the function f(z) = 22 +cis
the complex Mandelbrot set. Namely, the complex Mandelbrot set is the set of constants for

87

which the corresponding complex Julia set is connected and, as such, provides a useful index
to the forms of the Julia sets. We have defined the Mandelbrot set My under f(z) = 2% + ¢,
where ¢ € H, as the parameter space such that zero is in the corresponding quaternion Julia
set. We now turn our discussion to the Mandelbrot set Mjy.

Theorem 46 The Mandelbrot set My is a surface of revolution in H.

Proof: For any g € My, there is a unit quaternion p, |p| = 1 such that pgp~' € C. By
Lemma 28 in Chapter 6, pgp ! € M,, the complex Mandelbrot set, if and only if ¢ € Mj.
By Lemma 29 in Chapter 6, for any ¢ € C and any unit quaternion p € H, pcp ! € My. So
the Mandelbrot set M, is the surface of revolution of M5 in H. O

This theorem tells us that the Mandelbrot set in quaternion space is equivalent, in
some sense, to the Mandelbrot set in the complex plane. In particular, the set of magnitudes
of the quaternion iteration is equal to the set of magnitudes of the complex iteration. Intu-
itively, the quaternionic Mandelbrot set can be viewed as a rotation of the 2D Mandelbrot
set along the real axis in 4D space. A visualization method in [23] uses the look-up table
and distance estimation to give a view of the 4D Mandelbrot set projected onto 3D cubes.

Using the distance estimation formula proved in Chapter 7 and the quaternion multi-
plication discussed in the previous section, we can view entire 4D Mandelbrot sets with the
same computational complexity as the algorithms in [23]. The method can be used for all
Mandelbrot sets defined by

f(z) =2"+q,
where ¢ € H. It also works well for the external Mandelbrot sets defined by
f(2) =p(2) +q.

where p(z) is a fixed quaternion polynomial. The constant ¢ is in the constant parameter
space. For example, p(z) = 22 + z.

The higher dimensional Mandelbrot set defined by f(z) = z* + ¢, where z,c € R",
can also be rendered using these methods. Furthermore, Theorem 46 applies to higher
dimensional Mandelbrot sets, as well. Note that the theory given in Chapter 7 gives a
mathematical foundation for the visualization of a great variety of high dimensional fractals,
including high dimensional Mandelbrot sets.

9.8 The Quadratic Family of Julia Sets

A classical quaternion Julia set is defined by

f(z) =2"+q, (9.5)

where ¢ € H. Let us consider the Julia sets defined by Equation 9.5 with constant ¢ = ¢ € C.
That is,
f(z) =2 +e (9.6)

88

is an extension of a complex function.

Using the rules of quaternion algebra, Equation 9.6 can be iterated in the quaternions,
and Julia sets may be computed. Since the complex plane is a subset of the quaternions,
any given complex Julia set exists in the quaternions but often has extensions outside the
complex plane. In fact, if ¢ has imaginary components, the extensions are non-trivial. The
quaternionic Julia set contains more information than its complex subsets. When ¢ € R,
the Julia set is only a revolution of a 2D Julia set.

Theorem 47 Any Julia set J. defined by Equation 9.6 with ¢ € R is a surface of revolution
in H about the real azis.

Proof: For any initial quaternion value 7, = X, + Yyu, we can find a complex number
20 = To+Yol, where Xo = x¢ and Yy = yo, which are all real numbers. Let {Z,},n=0,1,2...,
be the orbit of Zy, and {z,},n =0,1,2, ..., be the orbit of z;. Then we can prove,

Zn =X, + You,

Zn = Tp + yni'/

and
Xn = Tn,

Yo = Yn-
Actually,
1= Zg +c
= (Xo + You)* + ¢
= (X§ = Y7 +¢) +2X,You
= X; + Yu,
and
2= zg +c
= (25 +yoi)* + ¢
= (23 — Y3 + ¢) + 220yoi)x1 + Y1i.
S0
Xy =,
Yi=uy.

Suppose X,, 1 = x,-1 and Y,_1 = y,_1. We can by analogy deduce X,, = x,. Y, = y,.
Therefore, the Julia set J. defined by Equation 9.6 with ¢ € R is a surface of revolution in
H about the real axis. O

A subset of the extensions of Julia sets under Equation 9.6 can be visualized in 3-
space by finding the intersection of the 4D object with a 3D space spanned by 1, 7, and j.
And by Theorem 45, the entire Julia set generated by Equation 9.6 can be viewed in three
dimensions.

89

For any Julia set J, defined by the iterative function f(z) = 22 + ¢, ¢ € H, there is a
complex number ¢ such that the Julia set J, defined by f(z) = 2? + ¢ is equivalent to J, by
a rotation in quaternion space. We have the following theorem.

Theorem 48 Associated with any quaternion q, there is a unit quaternion p, |p| =1, and a
complex number ¢ € C such that pgp~* = c. Then the Julia set J, defined by f(z) = 2*°+q,q €
H can be obtained by a rotation of the complex Julia set J. defined by f(z) = 2%+ ¢, c € C
m quaternion space.

Proof: We can find the unit quaternion p and the complex number ¢ as follows. Set
p=x+txj, where t,x € C and set ¢ = a + bj, where a,b € C. Then by pgp ! = ¢, we have
pq = cp. That is,

(x +txj)(a+bj) = c(x + taj).

We can cancel x from this equation,

(1+tj)(a+bj) = c(l+tj).

So,
a+taj +bj —th=c+ctj.
That is,
c=a—1b (9.7)
ta+b
ct=ta+b or c= a: : (9.8)
Hence,

From this equation we can solve for ¢, and from Equation 9.7 or Equation 9.8 we can find
the complex number ¢. Then we can set x € C such that |z|? + |¢|?|z]? = 1, so we can have
p=x+txj.

According to Hamilton [14], for any quaternion g, there is a unit quaternion p and a
complex number ¢ € C such that pgp=' = c¢. Let 2z € H be the initial value for Equation 9.6,
and let Z, = pzop~' be the initial value for Equation 9.5. Then

Zy=Z5+q=(p2op)’ +q
=pzip '+ ¢
=p(z +p 'qp)p™!
=p(z5 +c)p
= pzp .

Suppose Zn_1 = pzn—1p ‘. Then we can obtain Z,, = pz,p ' by induction:

Zn - Z72L—1 +4q

90

Figure 9.2: Julia sets defined by quadratic functions with different parameters c.

= (P21’ + ¢
=pz 0 +g
=plza_i +p qp)p”
= p(%%—l + C)p_l
= pzap
Therefore, z, € J. if and only if Z,, € J,. That is,

1

Jq = chpil-
O

Figure 9.2 depicts ray-traced Julia sets defined by a quadratic function with different
parameters c.

9.9 Generalized Quaternion Julia Sets

We can study the Julia sets that are defined by any quaternion polynomial of the form of
Equation 4.10. One of the polynomials we use in the ray tracing method is

f(z) =p2* +q, (9.9)

where p, ¢ € H. This polynomial generates different quaternion Julia sets than those defined
by Equation 9.5. In other words, there are some Julia sets that can be generated by a
function of the form of Equation 9.9, but not by a function of the form of Equation 9.5.

We now consider the function

fz) =e 22+ e, (9.10)

91

where ¢ € C. This is a special case of Equation 9.9 for p = e and ¢ = ¢“c.

Let _
go(z) = €z (9.11)
be a function that rotates the point z by 6 counter-clockwise about the origin in C. Another
complex function can be defined as

Jo(2) = go(f (95 (2))) = e "2 + ", (9.12)

which causes the resulting Julia set to be rotated by 6 counter-clockwise about the origin in
C.

What is perhaps unexpected is that when Equation 9.10 is iterated in quaternion
space, completely different shapes occur for the same ¢ but different . These shapes all share
the same intersection with C, but the topology of their extensions in H change dramatically.
See [16]. The reason for the change is again related to the lack of commutativity of the
quaternions. See Appendix A for details about these families in relation to the CD-ROM
that accompanies this book.

Next, let us consider the Julia set J; defined by

f(z) = zpz +q, (9.13)
and the Julia set J; defined by

9(2) = 2" + pqg.
Let Zo = p~'zp, and let z, = g"(20) and Z,, = f"(Zy). Then

Zy= (p"20)p(p~"20) + ¢

=p 'z +q

=p (2§ + pq)

- p_lzla

and by the same reasoning Z, = p~'z,, therefore,
Ji = p ().

Thus the apparently more complex set J; is a rotate of the standard Julia set Js.

In fact, any quaternion polynomial defines by iteration a Julia set. We can use a
ray-tracing algorithm with the distance estimation formula to create a great variety of Julia
sets for visualization. For example, we can take a cubic quaternionic function,

flz)=2"+c
The images in Figure 9.3 are quaternionic Julia sets defined by cubic functions with different

parameters.
The images in Figure 9.4 are some other generalized quaternionic Julia sets.

As discussed in Chapter 7, we can also use the distance estimation formula for viewing
higher dimensional Julia sets. Figure 9.5 shows three dimensional sections of five dimensional
Julia sets defined by n-th power polynomials with different parameters.

92

Figure 9.5: Generalized Julia sets in higher dimensional space.

93

9.10 Disconnected Quaternion Julia Sets

Distance estimation works well for quaternionic or higher dimensional deterministic fractals,
in particular for Julia sets and Mandelbrot sets. We already know in the complex case that
there are two kinds of dynamical systems under the iteration of f(z) = 2? + ¢: connected
and Cantor-like. In the quaternions, connectivity classification is more complicated. For
this reason, we have not defined the quaternion Mandelbrot set as the control space of the
connected Julia sets, as it is in the complex case. Our proof of the distance estimation
formula in higher dimensions was based on the fact that the fractals are connected around
the origin. As we change parameters to obtain disconnected hypercomplex Julia sets, the
components themselves are sometimes large connected sets (not Cantor dust!). For this
reason, the distance estimate can work well even in this disconnected regime.

9.11 Displaying and Rendering

Rendering is an important step in the visualization process. The object is given shading,
surface texture and depth cues to create a convincing illusion of three-dimensionality. In
this section we discuss rendering considerations that arise in the application of ray tracing
to high dimensional deterministic fractals.

9.11.1 Light Models

When rendering a 3D image, it is essential to add light sources and to shade the surface of
the object according to its position in space. The surface should appear continuous and solid.
Specular reflection is commonly used to render Euclidean objects to reveal information about
the material properties of the surface. However, specularity is not recommended when gen-
erating fractals, since the surface contains an infinite amount of detail at increasingly smaller
scales. The extreme convolution of these surfaces scatters light in all directions, and specu-
lar lighting would suggest a diffuse, even grainy surface. Therefore, the familiar Lambertian
model of diffuse shading is preferred for rendering fractals. The rendering equation we used
is:

1(2) = Koo +) Kailai(N(2), Li(2)) (9.14)
i=1

where [(z) is the resulting color of point z. K, is the percentage of ambient light. I, is the
color of the ambient light and therefore the color of the object. The variable n is the number
of light sources. Kj; is the intensity of the light source, that is, the percentage of light
contributed from light source . I, is the color of light source i. N(z) is the surface normal
at point z. L;(z) is the direction of the ray of light striking point 2. The only unconventional
approach used in rendering the images is the addition of a light source behind the viewer to
supply the ambient light contribution. This allows portions of the object that are completely
shaded to convey information. This added light source is very cheap, since it casts no visible
shadow, and computation of the light vector occurs when the viewing direction is computed.

94

9.11.2 Surface Normal

To render a fractal, we must determine a surface normal. There are several methods to
compute the surface normal.

First, Norton [30] has used a normal computation that requires knowledge of the
neighboring point values. He kept the entire object in accessible memory to improve effi-
ciency, but the approach is not very useful when an image-space render-on-the-fly algorithm
is required. Several other methods have been developed [15] for approximating the surface
normal of a 3D fractal that require no external information.

One method for computing the surface normal uses the “neighbor cross product.” If
a neighboring pixel’s z-values may be accessed, then it is easy to approximate the surface
normal by taking the cross product of two non-colinear vectors defined by the original point
and two of its neighbors. Thus, given the position in 3D of a point in a z-buffer p, ,, the
surface normal may be computed as

Nw,y - (pw+1,y - pw,y) X (pac,y-i-l - paz,y)u (915)

which should be subsequently normalized. Although this is a quick and well-defined method
of determining the surface normal, it requires information about pixel neighbors.

Another method to find a surface normal is to use maximum distance. Pick a point
Zo on the set. Consider points z with a fixed distance from z;. Since we have a continuous
distance estimate to the Julia set, we can determine those z with maximal distance from the
Julia set. A vector of the form z — zy is a good candidate for a normal to the fractal at z.
The maximum distance normal [15] is computed as

N, ={z—z2| max d(z)}. (9.16)

2€20+€S2

Thus, by maximizing the distance from a point constrained to a sphere, the vector pointing
the farthest from the surface may be found.

Another method of determining the surface normal relies on the repelling nature of
deterministic fractals. Points in the interior of the object are pulled toward the attractive
cycle of the Julia set in its interior, if such a cycle exists. If these points take a long time
to reach the cycle, then they are closer to the object. Conversely, if they approach quickly,
then they must be farther away. By using these properties, we can compute the minimum
iteration surface normal by:

Noy = {~(2—2) | _min (n),["(z) €7}, (9.17)

2€20+€s2
where « is the attractive cycle. The resolution of the surface normal may be increased

by defining a larger maximum iteration and a more strict criterion for membership in the
attractive cycle [15].

The method for determining the surface normal used in [16] and the one we favored in
our ray tracing algorithm involves computing the gradient. The classical gradient as applied
to the distance estimate is computed per component as:

95

N, :d(I+6,y,Z) —d(.T—E,y,Z), (918)
N, =d(z,y+e2) —d(z,y+ez), (9.19)
N, =d(x,y,z+¢€) —d(z,y,z —€). (9.20)

The above equations define a gradient by comparing the neighbors adjacent to the
faces of a cube surrounding the point in question. If the data is very convoluted, it is
possible that the six-point gradient may give erroneous results. Greater refinement may
be achieved by computing the eight-point gradient defined using the points touching the
cube’s edges, in addition to the six-point gradient, to produce a fourteen-point gradient.
By defining a generalized gradient as any symmetric set of vectors from an origin to a
surrounding sphere, we can implement a gradient that adaptively samples as many points as
necessary to produce a sufficiently accurate surface normal. This use of the gradient is rather
unconventional, since the distance estimate is not defined on the interior of a deterministic
fractal. The results, however, give a reasonable justification for its use in this context,
since the gradient does produce an accurately shaded, visually acceptable surface. Usually,
the number of iterations required to compute the gradients is no more than the maximum
number of iterations required to find the intersection of a ray with the object. Our empirical
tests show that computing the surface normal using gradients is less iterative than the other
methods.

9.11.3 Clarity

In projecting a three-dimensional object on a two-dimensional screen, far away parts appear
smaller, and hence will receive fewer pixels for their rendering than similar parts that are
closer to the viewer. Since the objects to be rendered are fractals, we should see more
detail when the objects are closely inspected. However, if the minimum ray increment € is a
constant, the surfaces will not reveal fine structure below the level of this constant.

Clarity can be improved by selecting a clarity function I'(d) [16] that equals the
minimum discrimination radius € used by the algorithm. It is convenient to set

I'(d) = ad

where d = |z, — 2o is the distance from the eye to the current location on the ray, and a
and ¢ are constants described below. The clarity function determines the magnitude of the
minimum ray traversal step and the size of the sphere around each point used to compute
the surface normal.

The parameter ¢ is a depth-cueing exponent which defines how details react to dis-
tance, namely whether distant objects have more, less or equal detail when compared to near
objects. If the eye is not too close to the object, that is, when d > 1, we have the following
results: when § = 0, distant objects are shown in more detail than near objects; when 6 = 1,
distant objects have as much detail as near objects; and when 6 > 2, distant objects have

96

Figure 9.6: When 6 = 0, distant objects are shown in greater detail.

less detail than near objects. We give two examples: In Figure 9.6, 6 = 0 and in Figure 9.7,
0 = 1. With the second choice, we obtain greater clarity over a range of depths.

The parameter a is a resolution factor which should be about the size of a pixel or
less. Larger a tends to blur the image and wash out the details; smaller o produces noisier
results.

It should be noted that computation is much faster when the clarity function I'(d) is
a constant. Thus, when viewing from a distance, we should choose constant clarity, the most
efficient option. At higher magnifications, clarity can be adjusted to produce the desired
effects.

97

Figure 9.7: When ¢ = 1, nearby and distant objects are shown with equal detail.

9.11.4 Other Rendering Considerations

Reflection, refraction and texture mapping may also be incorporated in the rendering of
deterministic fractals. By using the surface normal to implement reflection, refraction and
transparency, the fractals may be constructed of illusory chrome, crystal or clouds.

Figure 9.8 illustrates the use of the clarity function to represent the details of the
Julia sets.

98

Figure 9.8: Details of a quaternionic Julia set.

Chapter 10

Quaternion Deterministic Fractals in
Virtual Reality

10.1 Introduction to Virtual Reality

Virtual reality (VR) provides a way for people to visualize, manipulate and interact with
computers and complex data. VR is a 3D environment of computer-generated images that
exhibits the following characteristics:

1. It provides the illusion of position.
2. It provides the illusion of depth.

3. It provides for interaction with the simulated environment.

In such an environment, users can immerse themselves in simulations and interact with
virtual objects in real time.

The Electronic Visualization Lab at the University of Illinois at Chicago hosts the
Cave Automated Virtual Environment (CAVE), a surround-screen, surround-sound, projection-
based VR system. The illusion of immersion is created by projecting 3D computer graphics
into a 10’ x 10" x 9’ cube composed of display screens that completely surround the viewer.
The CAVE is coupled with head and hand tracking systems to produce the correct stereo
perspective and to isolate the position and orientation of a 3D input device. A sound system
provides audio feedback. The viewer explores the virtual world by moving around inside the
cube and grabbing objects with a three-button pointing device.

Multiple viewers can share a virtual experience and manipulate objects inside the
CAVE, enabling researchers to collaborate in a 3D visualization context. The user holding
the pointing device is the active viewer, controlling the stereo projection reference point,
while the other users are passive viewers. Control of the environment can easily be transferred
from one viewer to another by passing the pointer.

The rendering of higher dimensional fractals requires massive computational resources.
It is nearly impossible to visualize these fractals interactively without the help of supercom-

99

100

puting techniques. Implementing higher dimensional deterministic fractals in the CAVE is
a test case for difficult visual computations. Most importantly, the CAVE can be coupled to
remote data sources, supercomputers and scientific instruments via high-speed networks.

The ImmersaDesk(TM) is a scaled-down version of the CAVE that brings 3D virtual
environment, technology into the office. About the size of a large drafting table, the Immer-
saDesk is portable yet large enough to fill a person’s field of view when he or she is seated

in front of it. Images are viewed through the same lightweight stereoscopic glasses used in
the CAVE.

In the next few sections, we will explain techniques that we used to visualize higher
dimensional deterministic fractals in the CAVE. We expect that a good and flexible source
of images of higher-dimensional deterministic fractals will raise many mathematical ques-
tions heretofore unknown. Participants can interactively change the constants specifying the
fractal, evolving one fractal form from another.

10.2 Parallel Computation

Exploratory visualization of hypercomplex deterministic fractals is necessarily constrained
by the long rendering times required to produce the images. In order to facilitate experi-
mentation, our work has aimed to optimize the distance estimation algorithm and to make
use of supercomputing techniques.

The algorithms had been tested on the Cray-YMP at NCSA and the Alpha-Cluster
at PSC with Fortran90 and PVM in earlier experiments. By using Power C, the current
implementation of the algorithms run on the SGI POWER CHALLENGE, which is a shared-
memory multiprocessor (from 12 to 16) architecture based on the MIPS superscalar RISC
R8000 chip with 64-bit processors.

Our code was written in IRIS PowerC, which is a parallel processing version of stan-
dard C. We used directives to mark the parallel code, and wrote the loops to be executed
in parallel on multiple processors. We also used the Power C Analyzer (PCA), which can
analyze serial C source code and increase the computational speed.

10.3 Data Communication

We used the CAVEcomm library developed at the Mathematics and Computer Science Di-
vision of Argonne National Laboratory to communicate between the Onyx that runs the
CAVE and three separate supercomputers at NCSA that performed all the calculations.

Connections were established between the CAVE and the supercomputers, and the
information that was being sent back and forth was tracked. Based on the movements of
the tracker and the wand pointing device in the CAVE, information that required updating
was sent to one of the three supercomputers, whichever was least busy. The supercomputer

101

would calculate the appropriate sections of the image based on the information it received,
and send the results back to the CAVE, which then updated the display.

The Information Wide Area Year (I-WAY) is an experimental high-performance net-
work linking dozens of the country’s fastest computers and advanced visualization envi-
ronments. We used an I-WAY network for the data communication when the project was
shown in Supercomputing '95 (SC’95). This network is based on Asynchronous Transfer
Mode (ATM) technology, an emerging standard for advanced telecommunications networks.
It supports both TCP/IP over ATM and direct ATM-oriented protocols. The I-WAY net-
work provided the wide-area high-performance backbone for various experimental networking
activities at SC’95. It was built from a combination of existing network connectivity and
additional connectivity provided by multiple national service providers.

10.4 An Improved Display Algorithm

Displaying the Julia sets in real time was impossible, even with three supercomputers working
on ray tracing the images. In order to alleviate the problem of downtime during lengthy
computations, we successively refined the image. The objective was to first ray trace the
entire image in lower resolution in the CAVE. We could then use the low resolution image to
determine which areas needed refinement and which areas have more contrast. Areas with
more contrast could be refined first, as they tend to be more visually interesting.

To refine the lower resolution image, we first need to determine the color of the current
pixel. If it is not background color, it needs to be refined, otherwise we will do as follows.

Without loss of generality, let us suppose that the shape of the pixels of the lower
resolution image are circles with radius r. Let Dy denote the center of the current pixel
on the projection plane. Let the eye’s position be E. Let CN = (Dy, F) denote the cone
constructed by £ and Dy. Then we can find a sequence of points on the ray from £ to the
center of Dy by the following method:

We can give the lower bound of the distance d; from point Fy = E to the Julia set
by the distance estimation formula. Let F; = Ey+ dyu, where u is the unit vector of the ray
(from the eye to the pixel). Then we can give the lower bound of the distance ds from point
E4 to the Julia set by the distance estimation formula. Let Ey = E; 4+ dou. Continue until
we find some n such that dy +dy 4+ ...+ d, is greater than the distance from E to the center
of Dy. Now we have a sequence of positive numbers {dy,ds,...,d,}. Let S;, i =1,2,...,n,
denote the sphere with center F; and radius d;. If the cone CN C S US;U...US,, then
we can conclude that this pixel does not need to be refined since none of the points in the
cone C'N is in the Julia set.

We can give an algorithm based on the above discussion.

Algorithm 6

1. For each pizel P on the current lower resolution projection plane:

102

2. Let P be a circle of radius r (this is the pizel shape).

3. If the color of the pizel is NOT a background color return YES, otherwise goto next
step.

4. (a) Find the sequence of positive numbers {dy,ds, ...,d,} and the sequence of spheres
{51, Ss,...,S,} by using the method described above.

(b) If CN C S1US;U...US,, then return NO, otherwise return YES.

5. End for.

10.5 Display of Quaternion Deterministic Fractals in
VR

In the preceding chapters we described two methods for the visualization of higher dimen-
sional deterministic fractals. One method is inverse iteration, which gives a point cloud im-
age of a Julia set. It is a real-time interactive method. The other is the unbounding-volume
ray-tracing method using the distance estimation formula, which gives a finer rendering of
the object. Combining these two methods, we obtain good results for displaying higher
dimensional Julia sets in a VR system such as the CAVE.

First, we can input parameters which represent the Julia set we wish to see using
the wand pointing device. Then, interactively, we obtain the point cloud of the Julia set by
employing the inverse iteration method. The computations are performed on local comput-
ers or supercomputers (we used local SGI or SGI POWER CHALLENGE). We can adjust
our position, the object’s position or parameters that influence the shapes of the Julia sets.
Once we obtain a view of the object that we wish to see in detail, we can send the current
parameters to remote supercomputers, which perform low resolution ray tracing computa-
tions. The results from the supercomputers are obtained quickly and sent back to the CAVE
for display. In the mean time, the information from the lower resolution image is sent back
to the supercomputers for refinement of the image. After each computation for each pixel in
the lower resolution image, the results are sent back and displayed in the proper position in
the CAVE. This refining procedure can take a few minutes, during which the viewers observe
the updating of the refined images. The more interesting parts are refined first, as discussed
in the previous sections.

The viewer who wears the tracker can stop the procedure at any time and search
through point clouds of other Julia sets. The rendering procedure will then be repeated.

10.6 Conclusion
We have outlined the visualization of higher dimensional Julia sets in virtual reality. These

abstract sets of points become vivid geometrical realities in virtual space. Even with the
present level of our algorithms, there is much left for further exploration. With the inevitable

103

improvements in technology and mathematics, future visualizations will yield new insights
into the structure of these fractals and the recursions that underlie them.

104

Appendix A

The CD-ROM that accompanies this book exhibits many families of quaternionic Julia sets
in three dimensional space. This appendix gives the equations and parameterizations for
these families.

Our images are produced by choosing a specific value of 0 for each family, and then
varying a complex constant ¢ = R+ I. Thus, a given family depends upon a 2-dimensional
array of parameters (R,). The function that is iterated for a fixed 6 (and fixed ¢ = R +il)
is

fo=e"92% 4 €%
where z is a quaternionic variable.

The Julia set Jy is the set of z in 4-space that do not escape to infinity under this
repeated iteration. The Julia set

Jo = Jo NR® = {(20, 21, 22) | (20, 21, 22, 23) ¢ 20 + 121 + jzo + kzg € Jo}
is the set that is displayed graphically.

For the record, the recursion has the following form when written out in detail:
Let 2 = 2y + 21 + jzo + kzg, and let 22 = a + bi + ¢j + dk. Thus

2 2 2 2

b= 2202’1
Cc = 22y29
d= 22023.

Then
Jo = (cos(0) —isin(0))(a + bi + cj + dk) + (cos(0) + isin(f))(co + icy).

Thus
fo = cos(0)a + sin(0)b + cos(0)co — sin(0)cy

+(—sin(@)a + cos(0)b + cos(0)cy + sin(f)cy)i
+(cos(#)c + sin(8)d)j + (cos(0)d — sin(f)c)k.

105

106

The specific distance estimation algorithm is

|20

D= .
E4

In(z,)

where z, = f§(Zinitiar) and |2, 1| = 2|2n]|2,,].

Note that since z,41 = e 22 4+ e“c, then 2/, = 2e “z,2], (by the chain rule), and so

|[2n i1l = 2[2nl[2]

Appendix B

PRINT"Iterated 3d Power Map — QUATERNION SLICE"
PRINT"COPYRIGHT-1986-L0U KAUFFMAN-KNOTS INC."
mag=200:INPUT"magnification";mag

’SEED input atbu : u=cos(theta)+isin(theta) <theta degrees>"
’formally uu=-1"

PI=3.141592653588:5=1:COUNT=1
INPUT"a";A:INPUT"b";B:INPUT"theta";T
T=2%PI*T/360
X=a:Y=b*COS(T) : z=b*SIN(T)

PRINT"input CONSTANT A+BU"
INPUT"A";K:INPUT"B";L:INPUT"phi";F
F=2*PIx*F/360
a=K:b=L*COS (F) : C=L*SIN(F)

CLS

’now compute square roots

100 ’(x,y,z) is seed., (a,b,c) is constant
X=X+a:Y=Y+b:z=z+C

R=SQR (X*X+Y*Y+z*z)
X=X/R:Y=Y/R:z=z/R:R=SQR(R)

M=SQR (Y*Y+z*z)

E=SQR(.5*(1+X)) :G=SQR(.5*(1-X))
IF M=0 THEN X=R:Y=0:z=0:GOTO 180
’this case is (pos) sqr(real)
X=R*E:Y=R*Y*G/M:z=R*z*G/M

180 ’end of square rooting!

COUNT=COUNT+1:IF COUNT<30 THEN 375
’now project xx=x,yy=y+.3*z
XX=X*mag+300:YY=175-(Y+.3*z) *mag
IF XX<0 OR XX>640 THEN 250

IF YY<O OR YY> 420 THEN 250

PSET (XX, YY)

107

108

250 XX=-X+*mag+300:YY=175+(Y+.3%*z) *mag
IF XX<0 OR XX>640 THEN 375

IF YY<O OR YY>420 THEN 375

PSET (XX, YY)

375 ’end of screen print!

IF RND(1)>.5 THEN S=-S
X=S*X:Y=S%*Y:z=S*z

GOTO 100

END

Bibliography

9]

[10]

[11]

[12]

[13]

[14]

Barnsley, M. F. (1988) Fractals Everywhere, Academic Press.

Barr, A. H. (1986) “Ray tracing deformed surfaces”, Computer Graphics 20, (4), 287-
2906.

Branner, B. and Hubbard, J. H. (1988) “The iteration of cubic polynomials, Part I: The
global topology of the parameter space”, Acta Mathematica 160, (3), 143-206.

Blanchard, P. (1984) “Complex analytic dynamics on the Riemann sphere”, Bulletin of
the American Mathematics Society 11, 85-141.

Blanchard P. (1986) “Disconnected Julia sets”, in M. Barnsley and S. Demko, eds.
Chaotic Dynamics and Fractals, Academic Press, Inc. 181-201.

Bouville, C. (1985) “Bounding ellipsoid for ray-fractal intersection”, Computer Graphics
19, (3), 45-51.

Bedding, S. and Briggs, K. (1995) “Regularly iterable linear quaternion maps”, Sub-
mitted to J Aust Math Soc, April.

Bedding, S. and Briggs, K. (1996) “Iteration of quaternion functions”, American Math-
ematical Monthly 103, (8), 654-664.

Bedding, S. and Briggs, K. (1995) “Iteration of quaternion maps”, International Journal
of Bifurcation and Chaos 5, (3), 877-881.

Charles, J. J. (1905) A Manual of Quaternions, Macmillan and Co.

Dang, Y. and Kauffman, L. H. (1997) “Hypercomplex fractal distance estimation”, in
M. M. Novak and T. G. Dewey, eds. Fractal Frontiers, World Scientific. 117-130.

Deavours, C. A. (1973) “The quaternion calculus”, American Math. Monthly 80, 995-
1008.

Douady, A. and Hubbard, J. H. (1982) “Iteration des polynomes quadratiques com-
plexes”, CRAS Paris 294, 123-126.

Hamilton, W. R. (1969) Elements of Quaternions, 3rd ed., Chelsea Publishing Company.

109

110

[15]

[16]

[17]

18]

[19]

[20]

[21]
22]
23]

[24]

[25]

[26]

[27]

28]

Hart, J. C., Sandin, D. J. and Kauffman, L. H. (1989) “Ray tracing deterministic 3-D
fractals”, Computer Graphics(SIGGRAPH '89 Proceedings) 23, (3), 289-296.

Hart, J. C. (1989) Image space algorithms for visualizing quaternion Julia sets, Masters
Thesis, University of Illinois at Chicago.

Hart, J. C., Sandin, D. J. and Kauffman, L. H. (1990) “Interactive visualization of
quaternion Julia sets”, Proceedings of Visualization '90, IEEE Computer Society, 209-
218.

Holbrook, J. A. R. (1983) “Quaternionic asteroids and starfields”, Applied Mathematical
Notes 8, (2), 1-34.

Holbrook, J. A. R. (1987) “Quaternionic Fatou-Julia sets”, Annals of Science and Math
Quebec 1, 79-94.

Kajiya, T. J. (1983) “New techniques for ray tracing procedurally defined objects”,
Computer Graphics(SIGGRAPH 83 Proceedings) 17, (3), 91-102.

Kauffman, L. H. (1991, 1993, 2001) Knots and Physics, World Scientific.
Kelley, J. (1975) General Topology, Springer-Verlag.
Ke, Y. and Pandurange, E. S. (1990) A Journey into the Fourth Dimension, IEEE.

Levoy, M. (1988) “Display of surface from volume data”, IEEE Computer Graphics and
Applications 8, (3), 29-37.

Mandelbrot, B. B. (1980) “Fractal aspects of the iteration of z — Az(1 — z) for complex
A and 27, Annals of the New York Academy of Sciences 357, 249-259.

Mandelbrot, B. B. and Ness, J. W. (1968) “Fractional Brownian motions, fractal noise
and application”, SIAM Review 10, 422-437.

Mandelbrot, B. B. (1982) The Fractal Geometry of Nature, 2nd ed., Freeman.

Milnor, J. (1989) “Computers in geometry and topology”, in M. Tangora, ed. Self-
Similarity and Hairiness in the Mandelbrot Set: Lecture Notes in Pure and Applied
Mathematics 114, Marcel Dekker, 211-257.

Norton, V. A. (1986) “Generation and rendering of geometric fractals in 3-D”, Computer
Graphics 16, (3), 61-67.

Norton, V. A. (1989) “Julia sets in the quaternions”, Computer Graphics 13, (2), 267-
278.

Norton, V. A., Rockword A. P. and Skolmoski, P. T. (1982) “Clamping: a method
of antialiasing textured surfaces by bandwidth limiting in object space”, Computer
Graphics 16, (3), 1-8.

111
[32] Peitgen, H. and Richter, P. H. (1986) The Beauty of Fractals: Images of Complex
Dynamical Systems, Springer-Verlag.
[33] Peitgen, H. (1988) The Science of Fractal Images , Springer-Verlag.
[34] Perlin, K. (1985) “An image synthesizer”, Computer Graphics 19, (3), 287-296.

[35] Sandin, D. J., Hart J. C. and Kauffman, L. H. (1990) “Interactive visualization of
complex, stacked and quaternion Julia sets”, Proceedings of Ausgraph’90.

[36] Sandin, D. J., Dang. Y., Insley, J. and Kauffman L. H. (1995) “Quaternion Julia sets
in virtual reality”, Supercomputing '95, San Diego.

[37] Sudbery, A. (1979) “Quaternionic analysis”, Math. Proc. Camb. Phil. Soc. 85, (2),
199-224.

[38] Voss, R. F. (1988) “Fractals in nature: from characterization to simulation”, in H.
Peitgen and D. Saupe, eds. The Science of Fractal Images, Springer-Verlag.

[39] Whitted, T. (1980) “An improved illumination model for displays”, Communications of
the ACM 23, (6), 343-349.

