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Abstract  

As shown in 1982, Julia sets of quadratic functions 
as well as many other deterministic fractals exist 
in spaces of higher dimensionality than the complex 
plane. Originally a boundary-tracking algorithm was 
used to view these structures but required a large 
amount of storage space to operate. By ray tracing 
these objects, the storage facilities of a graphics work- 
station frame buffer are sufficient. A short discussion 
of a specific set of 3-D deterministic fractals precedes 
a full description of a ray-tracing algorithm applied 
to these objects. A comparison with the boundary- 
tracking method and applications to other 3-D deter- 
ministic fractals are also included. 

C R  Ca tegor i e s  a n d  S u b j e c t  Descr ip tors :  
1.3.7 [Computer Graphics]: Three Dimensional 
Graphics and Realism - -  Color, shading, shadowing 
and texture. 

G e n e r a l  Terms:  Algorithms, Theory. 

A d d i t i o n a l  K e y w o r d s  a n d  Phrases :  fractal, 
quaternions, distance estimate, ray tracing, surface 
determination. 

1 Introduct ion  

Computer graphics has greatly aided the investiga- 
tion of the dynamics of iterative functions. Stan- 

dard 2-D frame buffer techniques have provided suffi- 
cient visual information about the structures since 
most of the research has concentrated on the dy- 
namics of complex variables. However, recent inves- 
tigations into higher-dimensionM dynamical systems 
[14,15,3,5,17] have shown the need for 3-D visualiza- 
tion tools that will give researchers a better under- 
standing of these objects. 

One such method is ray tracing, but this method 
is prohibitively slow unless an efficient ray-surface in- 
tersection computation is used. While these functions 
are available for Euclidean surfaces, they do not exist 
(yet) for fractal ones. However, using an unusual con- 
struction called the unbounding volume, made pos- 
sible by a recent advance in the study of dynamics, 
swift ray tracing of these deterministic fractal objects 
is possible. 

Prior to the description of the algorithm, a specific 
family of 3-D deterministic fractals, quaternion Julia 
sets, is outlined. The generation algorithm is then 
developed using this family as example. Rendering 
procedures specific to fractal surfaces are then dis- 
cussed. Finally, the algorithm is compared with its 
predecessor [14] and applications to other families of 
3-D deterministic fractal objects are shown. 

2 Dynamics  in the Quater- 
nions 
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The dynamics of quadratic functions have been ob- 
served mainly in the complex plane. However, as 
shown first in 1982 [14], they exist in the 4-D space 
of the quaternions as well. A discussion of the spe- 
cial properties of Julia sets in the quaternions, for 
which the ray-tracing algorithm was developed to vi- 
sualize, is preceded by an introduction to dynamics 
and quaternion algebra. 
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2 .1  D y n a m i c s  o f  Q u a d r a t i c  F u n c t i o n s  

The examples used in this paper are derived from the 
quadratic function 

f (z) = + (1) 

where z is the iterated variable and p is a constant 
parameter of the equation. 

The dynamics of a function f are expressed as the 
n-fold application of function f to an initial value 
z. The result is denoted as fn  (z) and should not be 
confused with simply raising the result of f ( z )  to the 
nth power. 

The resulting value fn(z)  is used to classify the 
initial point z depending on its attraction to infinity. 
Two sets may be constructed under this classification. 
The filled-in Julia set/C~ and the Mandelbrot set .M. 

Def in i t ion  1 /C~, = {z:  lira f~ ( z )74  oo} 
rl---* Cx:) 

Def in i t ion  2 

.h4 = {p :  li~noo f ;  (zc) -74 oo, f~(zc) --- 0} 

Note that z¢ is the critical point of the function. 
There is only one critical point of eq. (1) and it is 
always 0. Several critical points are common for poly- 
nomials of degree 3 or greater. 

The interesting property that Julia and Mandel- 
brot sets share is that they are both fractal [12] pos- 
sessing detail at every level of magnification. 

2 . 2  T h e  Q u a t e r n i o n s  

The values z and p are commonly defined as real 
or complex. However, these values may be defined 
in any algebraic system closed under addition and 
multiplication. One such system, the quaternions [7], 
possesses the additionM benefit of having four dimen- 
sions. 

Def in i t ion  3 A quaternion value q is a four-tuple 
consisting of one real part and three imaginaries 

q = ql + qii + qjj  + qkk 

where i~ j~ k are imaginary units, 

Quaternion multiplication is also similar to polyno- 
mial multiplication but  with the special cases 

i j  = k; j k =  i; k i  = j ,  (3) 

and 
j i  = - k ;  k j  ik  = - j ,  (4) 

revealing an unfortunate side effect of the quater- 
nions: noncommutative multiplication. 

2 . 3  J u l i a  S e t s  i n  t h e  Q u a t e r n i o n s  

By using the rules of quaternion algebra, eq. (1) can 
be iterated in the quaternions and Julia sets may be 
computed. Since the complex plane is a subset of 
the quaternions, the same complex Julia sets exist in 
the quaternions but  often have extensions outside the 
complex plane. In fact, if ~ has an imaginary compo- 
nent, then the extensions are nontrivial, containing 
more information than their complex subsets. 

A subset of these extensions can be visualized in 
3-D by examining the intersection of the 4-space with 
a 3-space such as that  spanned by 1 , i , j  at Ok. It 
should be mentioned that the Julia sets of eq. (1) in 
the 3-space spanned by i t j ,  k at 0 are always concen- 
tric spheres centered at the origin [8]. 

An interesting property about  quaternion Julia sets 
is that given two complex Julia sets differing only by 
a rotation about  the origin, their supersets in 3-D 
may have completely different shapes. The rotation 
of the Julia set in the complex plane is computed by 
incorporating the homeomorphism 

g0(z) = (5) 

into the iterated function such that 

L,,e(z) = (6) 

which suffices to rotate the positive real axis into the 
positive imaginary axis and so forth in a counter- 
clockwise manner about  the origin in the complex 
plane. The resulting Julia set is merely rotated in 
the complex plane but  appears quite differently in the 
quaternions since its intersection with the imaginary 
3-space is changed. See [15,8] for details. 

i = j2 = k: = -1 .  (2) 

Algebraic operations can be defined in the quater- 
nions by treating the quaternion values as polynomi- 
als of three variables i, j ,  k. For example, the co- 
efficients of the sum of two quaternion values may 
be found by adding their corresponding coefficients. 

3 R a y  T r a c i n g  3 - D  J u l i a  S e t s  

Ray tracing is one of the more realistic methods of 
rendering objects. Easily accounting for hidden sur- 
faces and self-shadowing, it also provides a method 
for displaying reflection, transparency and refraction. 
Mathematical objects may be ray traced by detecting 
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Figure 1: A quaternion Julia set before and after a 
quarter turn in the complex plane. 

their boundaries during a ray-casting step and render- 
ing the surfaces by allowing the ray to be deflected 
off to a light source. 

A naive method to ray trace a quaternion Julia set 
is to sample each point at a given resolution along 
each ray. This is not an entirely ridiculous method 
since it is the basis of some volumetric rendering algo- 
rithms [10]. However, it is not practical when applied 
to fractal objects since each point's classification may 
rely on a large number of function iterations. With 
the use of a new ray-tracing mechanism, the amount 
of sample points per ray is greatly reduced. 

3 .1  U n b o u n d i n g  V o l u m e s  

One method of increasing the speed of ray tracing is 
the use of bounding volumes. A bounding volume, 
usually a sphere or ellipsoid, envelopes several sur- 
faces such that  if a ray does not intersect the bound- 
ing volume it does not intersect the surfaces corttairted 
in it. 

Bounding volumes are quite useful in hastening ray 
tracing of stochastically-defined fractal surfaces [9,4]. 
Unfortunately their application to deterministic frac- 
tals has not been as successful. However, with the 
discovery of the distance estimate, we can increase 
the speed of ray tracing deterministic fractals using 
uubounding volumes. 

Unbounding volumes are defined as volumes that 
do not contain any part of the object. Thus, given 
any point outside the object, the ideal bounding vol- 
ume is the largest volume that  does not intersect the 
object centered at the point. If this volume is a sphere 
then its radius is the distance to the object. Given 
a point and a deterministic fractal object, its exact 
distance cannot be computed efficiently but it can be 

estimated in time proportional to the time it takes to 
determine if the point is external to the object. 

The lower bound of the distance from a point ex- 
ternal to the deterministic fractal set is given as 

d(z) = sinhG(z) logG(z), (7) 
2ea(')lG'(z)l 

where G(z) is the electrostatic potential at point z 
and Gr(z) is the gradient of this potential. For the 
quadratic family, the approximation 

d(z) =. If' (z)l logfn(z)  
21/'"(Z)I 

(8) 

is sufficiently accurate [13,6]. See [17] for the compu- 
tation of f'(z). 

By using a distance estimate we can define an un- 
bounding volume of a deterministic fractal set as a 
sphere that is guaranteed not to intersect 1 nor con- 
tain the set in question. Since the distance estimate 
may be much smaller than the distance along the ray 
to the object, several repeated distance calculations 
must be made as the ray is traversed from eye to sur- 
face. 

3 .2  R a y  T r a v e r s a l  

Given the set of unbounding spheres completely sur- 
rounding an object, a ray is traversed from the eye 
through the projection plane to the object, testing 
and incrementing at each point along the ray. By in- 
crementing by the radius of the unbounding sphere, 
we leap along the ray until we approach the surface. 

As the current point on the ray approaches the sur- 
face, the unbounding spheres get smaller and smaller. 
To hasten convergence, a small number c is defined as 
the minimum ray increment. This increment should 
be set to give the best depth resolution with respect 
to the resolution of the projection plane. 

The ray traversal equation may be stated induc- 
tively given the eye position r0 and a point in the 
projection plane p~,u as 

rn+l = r ,  + m m a x d ( r , ) ,  e. (9) 

where m is a unit slope vector of the ray 

m - P~'~ - r0 (10) 
IP=,y - r0l 

1 W i t h  the  except ion of a single po in t .  

291 



'89, Boston, 31 July-4 August, 1989 

| ¢  ¢ 
ro  ~i r2  r3  r4  r5 

Figure 2: Ray traversal using unbounding spheres. 

3.3 Thin Objects 

Often the extensions of K: into 3-D are very thin, such 
as when ~ is a dendrite. This creates the possibility 
that incrementing by ~ may traverse the ray com- 
pletely through the object. 

This problem has also had manifestations in the 
2-D study of these images such as the complex Man- 
delbrot set. To show that  the "islands" off the main 
continent of .M are connected to it, the Mandelbrot 
set may be defined computationally as 

.A4, = {z: d(z) < e} (11) 

where d 0 is the distance estimate as defined in eq. (7). 
The result is the "hairy" Maudelbrot set [13] revealing 
its dendritic structures 2. 

A similar technique is used to ray trace dendritic 
sheets in 3-D. By terminating ray traversal when 
the distance is less than the minimum ray increment, 
thickness is added to the object while maintaining its 
structure and detail. 

3.4 Avoiding Bad Distance Estimates 

When the approximation to eq. (7) is used, it is inac- 
curate when z is far from the set. This can result in 
exaggerated distance estimates which could possibly 
push the ray far into the interior of the object. 

To avoid these bad estimates a single bounding vol- 
ume may be used to contain the fractal set if it can be 
bounded. Another alternative is to set a maximum 
distance to increment along the ray. 

4 R e n d e r i n g  F r a c t a l  S u r f a c e s  

The deterministic family of fractals has provided com- 
puter graphics with the most complicated borders. 

2Note  that  these  ha i r s  m a y  be  seen very clearly as the  set  
.Me- 2v[, 

The surfaces defined by these borders in 3-D, al- 
though quite chaotic, often reveal the structure of the 
object. A proper rendering of a fractal surface should 
reveal its order while hinting at its chaos. 

Since the surface of a fractal is infinitely convo- 
luted, its normal can only be approximated. The ap- 
proximated normal signifies the structure of the sur- 
face while at finer resolutions the light is scattered in 
all directions. Thus the surfaces should be diffusely 
shaded using the Lambertian model. 

Also, to achieve the most information from each 
view, it is often better to use axle light instead of 
ambient light. By defining a point light source at the 
eyepoint, every viewable point on the object will re- 
ceive light and thus even heavily-shadowed sections of 
the object will reveal information about themselves. 

4 .1  N o r m a l  A p p r o x i m a t i o n  

One reason fractal lines, such as the border of/C, are 
so interesting is that they are nondifferentiable. The 
slope at any point is undefined because closer exam- 
ination shows that  the point has different surround- 
ings. Hence, when expanded to surfaces, 3-D fractal 
surfaces are nondifferentiable and thus have no exact 
normal defined. 

In order to realistically render these surfaces a 
shading model must be used which requires the defi- 
nition of a surface normal. Normals may be approx- 
imated by examining a point's relationship with its 
surroundings. Two approximations have been found 
to work quite well: Z-buffer neighbors, previously dis- 
cussed in [14], and the gradient. 

4.1.1 Z-buf fer  N e i g h b o r s  

As shown in [14], the surface normal of a fractal sur- 
face may be approximated as the cross product of 
two vectors embedded in the surface. Given a buffer 
of visible z-values Z we can define three points 

x = {~, 0, z~+~,~ - z~,~} (12) 

Y = { 0 , e , z ~ , v + c - z ~ , u ]  (13) 

0 -= {0,0, Z ~ , y - Z z , ~ }  (14) 

where e is the width of an element in the z-buffer. 
The surface normal may then be approximated as the 
normal of the plane defined by these three points. 

4.1.2 G r a d i e n t  C o m p u t a t i o n  

The previous method is a useful normal determina- 
tion tool if a Z-buffer is maintained during rendering. 
Ray tracing does not require a Z-buffer so a normal 
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approximation method using a single point in 3-space 
would be more useful. 

This can be accomplished by computing the gradi- 
ent of a point on the surface. The gradient may be 
computed in a 3-D density map as 

N z  = D~+c,u,z  - D=-e ,u , z  

N y  = D=,y+~,z - D ~ , y - e , z  

N z  = D=,y,z+e - D ~ , , y , z - e  05)  

where D=,y,z is the density at the point x, y, z. 
The density function of a deterministic fractal is de- 

fined on its exterior and can be any continuous func- 
tion based loosely on the distance to the set. Two 
useful functions are the potential G 0 and the esti- 
mated distance d 0.  The latter should be used when 
possible since it is more closely associated with the 
actual distance although the former works when a 
distance estimate is not defined. 

Other gradient functions may be defined based on 
the number of samples taken. The 6-point gradient 
may be augmented by adding samples from points 
sharing edges producing an 18-point gradient. By 
including points sharing corners, a 26-point gradient 
results. 

4 .2  C l a r i t y  

Since these objects are fractal, they should reveal 
more detail when closely inspected. However, if the 
minimum ray increment e is constant, the surfaces 
will not reveal a finer structure when examined. A 
variable-resolution system is required such that closer 
sections of the object are defined at higher resolutions 
as suggested in [2]. 

One method of increasing the depth resolution is 
to set c to a function of distance from the eye. The 
clarity function P~,6 is defined 

r (d)  = (16) 

given d, the Euclidean distance from the eye to the 
current location on the ray, 

d = Ira - rol. (17) 

The parameter 6 is a depth-cueing exponent and o~ is 
an empirical proportion defining the depth resolution 
of the object. 

Three effects are defined by varying the depth- 
cueing exponent. When the clarity function is con- 
stant, inverse depth cueing occurs giving the appear- 
ance that farther objects have more detail. This may 
seem useless but is quite adequate when viewing en- 
tire fractal objects from a distance. Linear clarity 

F 0 Effect 
Constant Inverse clarity 

Linear Even clarity 
Quadratic Exaggerated depth 

Table i: Depth-cueing exponents and their effects on 
renderings 

gives an even clarity appearance with close objects 
appearing as detailed as far. Quadratic depth cue- 
ing gives an exaggerated depth cue, blurring distant 
surfaces. 

The c~ parameter is tuned to balance the equilib- 
rium of order and chaos. Setting c~ too small will 
produce a very noisy surface whereas a large o~ will 
wash out detail. When defining o~ a good starting 
point is to set it to an order of magnitude smaller 
than the pixel width. 

Figure 3: The same Quaternion Julia set rendered 
twice to show the difference between constant and 
linear clarity. 

Thus, by setting 

= - ,0l) (18) 

a variable-resolution rendering system is constructed 
allowing small details of the surfaces to be investi- 
gated without overcomputing the other visible sur- 
faces. The increment e may also be used in the gra- 
dient computation as the distance along the axes to 
sample nearby densities. 

5 A p p l i c a t i o n  t o  O t h e r  D e t e r -  

m i n i s t i c  F r a c t a l s  

The quaternions are convenient to observe 3-D dy- 
namics since all three dimensions may be spanned 
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by a single variable. Other 3-D spaces may be con- 
structed using multiple real or complex variables. 
Complex Julia sets form a 3-D object when they are 
stacked [14,12]. The cubic connectedness locus is a 
four-dimensional object when its two parameters are 
complex [5,17]. Also, Iterated Function Systems may 
be three-dimensional if they are specified with affine 
transformations of three real variables [1]. 

5.1 Julia Set Stacks 

A Julia set stack may be specified in 3-D as a slice 
(i.e. zeroset) of the four dimensional space C × C 
defined by the two complex variables z and c from 
eq. 1. By looking at the z-planes and varying some 
single-dimension function of c to define the third di- 
mension, the Julia sets may be stacked to form a 3-D 
object. 

There currently is no proven distance underesti- 
mate for this set although some images may be gen- 
erated using empirical formulas based on the Man- 
delbrot set distance estimate. 

Figure 4: Stack of Julia sets for Ira(c) = 0. 

5.2 The Cubic Connectedness Locus 
The cubic connectedness locus C is specified by the 
cubic function 

fa ,b (z )  = z a - 3a2z  + b, (19) 

where z is a complex variable and a, b are complex 
parameters. The parameter a is squared in the equa- 
tion because the two critical points of the equation 
are :t:a. 

Since a and b are both complex, a double complex 
plane is constructed that  houses the four-dimensional 
cubic connectedness locus. The locus in this case con- 
sists of two components, C+ and C-, based on the 
status of the appropriate critical point. 

n a Def in i t ion  4 C + {a, b: nli~noo fa,b( ) "-~ (:x~} 

n Def in i t ion  5 C- = {a, b: lim far,b(--a) -74 CX)} 

A picture of this set may be found in [17], presumably 
created using the technique outlined in [14]. 

At the moment, a distance estimate does not exist 
for this set either. However, the cubic connectedness 
locus has been proven to be connected [5] suggesting 
that potential measurement and therefore distance es- 
timation may be possible. 

5 .3  3 - D  I t e r a t e d  F u n c t i o n  S y s t e m s  

The most useful forms of deterministic fractals are 
Iterated Function Systems or IFS's. An IFS can be 
created to simulate almost any form using the Collage 
Theorem [1]. Then, given only the resulting set of 
iterative equations, the form can be reconstructed. 

Recently, deterministic IFS Julia and Mandelbrot 
set functions have been discovered and their exteriors 
have been categorized according to escape iterations 
not unlike their quadratic counterparts [1,19]. This 
suggests that  perhaps potential and distance mea- 
surements can be made on these sets as well. 

6 C o m p a r i s o n  w i t h  B o u n d a r y  
T r a c k i n g  

The ray-tracing algorithm's predecessor, Boundary 
Tracking [14], generates 3-D Julia sets by first lo- 
cating a starting point on the boundary of the ob- 
ject and then recursively detecting its neighbors un- 
til the entire boundary is scanned. To converge, 
this algorithm must constantly verify that neighbor- 
ing points have not been previously tested, which re- 
quires the efficient storage of all previously generated 
points. Thus, the Boundary Tracking algorithm runs 
in object-space and therefore object-time a. 

The main advantage of Boundary Tracking is that 
objects are only generated once and may be reposi- 
tioned as often as desired, requiring only re-rendering. 
Using the ray-tracing technique, repositioning of the 
object requires re-generation of the viewable sec- 
tions of the object as well as re-rendering. However, 
since the image-time ray-tracing algorithm generates 
these objects more efficiently than the object-time 
Boundary Tracking algorithm, it is the best choice 
for parameter-space animations such as varying/~ in 
eq. (1), 0 in eq. (5) or the k axis component of the 
viewable subspace of the quaternions. 

3S¢e [20] for a discussion of image-space vs. object-space 
and image-time vs. object-time. 
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The main disadvantage of Boundary Tracking is 
that it requires storage of every point in the object. 
This amount of storage can approach cubic propor- 
tions since the number of points defining a surface is 
O(rD), the resolution r of the surface raised to its 
fraetal dimension D [12]. The ray tracing technique, 
using image-space, requires exactly r 2 + O(1) space 4, 
the storage resources of a graphics workstation frame 
buffer. 

Another problem with Boundary Tracking is con- 
stant resolution. However, a variable-resolution 
Boundary Tracking algorithm was developed to cre- 
ate [16] by generating certain sections of the set al- 
ready known to be closely examined in the fly-by 
at higher resolutions. Although Boundary Tracking 
saves computing time by generating the object only 
once, the ray-tracing algorithm is the better choice 
for fly-bys since its dynamic resolution allows a more 
realistic inspection of the surface. 

Finally, ray tracing allows certain special effects 
such as reflections and refractions. The former pro- 
duces the interesting effect of revealing only macro- 
scopic images of its environment; the subtle details 
are lost in the convoluted interreflections of the frac- 
tal surface. Refraction as well as simple transparency 
should be avoided until a reliable internal distance es- 
timate is developed to prevent minimum increments 
in the interior of the sets. 

7 C o n c l u s i o n  

The research on this project began as a method of 
visualizing quaternion Julia sets in 3-D using the 
resources of a common computer graphics worksta- 
tion. The first at tempt relied on the Inverse Iteration 
method of generating Julia sets [11,18] which oper- 
ated in image-space and object-time but produced 
less than satisfactory results due to inherent problems 
of the process itself magnified by the addition of an 
extra dimension [8]. The ray-tracing solution, being 
forward iterative, does not experience the problems 
of the Inverse Iteration method while still requiring 
only image-space. 

7 .1  P a r a l l e l  I m p l e m e n t a t i o n  

The current implementation of the algorithm runs on 
an AT&T Pixel Machine with 64 parallel processors 
each running at about 10 MFLOPS. The architecture 

4If the gradient normal approximation method is used, a 
Z-buffer is not required. The only other considerable amount 
of memory used is a small array the size of the maximum al- 
lowable iteration count used to optimize the computation of 
the distance estimate [17]. 

of the Pixel Machine, each processor connected only 
to its portion of the frame buffer, dictates that image- 
space, image-time algorithms will run at the most 
optimal level. 

The ray-tracing code is replicated into 64 equiva- 
lent programs running simultaneously as if in a race, 
each generating and rendering its ~4th of the image. 
Of course, the first operation of each program is to 
find out which pixel with respect to the entire frame 
buffer it is working on. 

Currently, full screen images (1280 × 1024) take 
about an hour to generate. When positioning the ob- 
ject, lower image resolutions are used to create a more 
interactive environment. Also, reducing the depth 
resolution will increase the speed of the algorithm. 
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Figure 5: A dendritic quaternion Julia set, set in a 
sea whose waves are periodic functions of the distance 
estimate. 

Figure 6: Close up of the surface of the quaternion 
Julia set shown in fig. 3. 

Figure 7: Close up of an interesting section of the 
Julia set for 0 = 110 ° 
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