
@ ~ Computer Graphics, Volume 23, Number 3, July 1989

Ray Tracing Deterministic 3-D Fractals

J o h n C. Har t* , Dan ie l J . Sandin* , Louis H. K a u f f m a n t

*Electronic Visualization Laboratory

tDept, of Mathematics, Statistics and Computer Science

University of Illinois at Chicago

Abstract

As shown in 1982, Julia sets of quadratic functions
as well as many other deterministic fractals exist
in spaces of higher dimensionality than the complex
plane. Originally a boundary-tracking algorithm was
used to view these structures but required a large
amount of storage space to operate. By ray tracing
these objects, the storage facilities of a graphics work-
station frame buffer are sufficient. A short discussion
of a specific set of 3-D deterministic fractals precedes
a full description of a ray-tracing algorithm applied
to these objects. A comparison with the boundary-
tracking method and applications to other 3-D deter-
ministic fractals are also included.

C R Ca tegor i e s a n d S u b j e c t Descr ip tors :
1.3.7 [Computer Graphics]: Three Dimensional
Graphics and Realism - - Color, shading, shadowing
and texture.

G e n e r a l Terms: Algorithms, Theory.

A d d i t i o n a l K e y w o r d s a n d Phrases : fractal,
quaternions, distance estimate, ray tracing, surface
determination.

1 Introduct ion

Computer graphics has greatly aided the investiga-
tion of the dynamics of iterative functions. Stan-

dard 2-D frame buffer techniques have provided suffi-
cient visual information about the structures since
most of the research has concentrated on the dy-
namics of complex variables. However, recent inves-
tigations into higher-dimensionM dynamical systems
[14,15,3,5,17] have shown the need for 3-D visualiza-
tion tools that will give researchers a better under-
standing of these objects.

One such method is ray tracing, but this method
is prohibitively slow unless an efficient ray-surface in-
tersection computation is used. While these functions
are available for Euclidean surfaces, they do not exist
(yet) for fractal ones. However, using an unusual con-
struction called the unbounding volume, made pos-
sible by a recent advance in the study of dynamics,
swift ray tracing of these deterministic fractal objects
is possible.

Prior to the description of the algorithm, a specific
family of 3-D deterministic fractals, quaternion Julia
sets, is outlined. The generation algorithm is then
developed using this family as example. Rendering
procedures specific to fractal surfaces are then dis-
cussed. Finally, the algorithm is compared with its
predecessor [14] and applications to other families of
3-D deterministic fractal objects are shown.

2 Dynamics in the Quater-
nions

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

©1989 ACM-O-89791-312-4/89/O07/0289 $00.75

The dynamics of quadratic functions have been ob-
served mainly in the complex plane. However, as
shown first in 1982 [14], they exist in the 4-D space
of the quaternions as well. A discussion of the spe-
cial properties of Julia sets in the quaternions, for
which the ray-tracing algorithm was developed to vi-
sualize, is preceded by an introduction to dynamics
and quaternion algebra.

289

 ',,(S,GGRAPH '89, Boston, 31 July-4 August, 1989

2 .1 D y n a m i c s o f Q u a d r a t i c F u n c t i o n s

The examples used in this paper are derived from the
quadratic function

f (z) = + (1)

where z is the iterated variable and p is a constant
parameter of the equation.

The dynamics of a function f are expressed as the
n-fold application of function f to an initial value
z. The result is denoted as fn (z) and should not be
confused with simply raising the result of f (z) to the
nth power.

The resulting value fn(z) is used to classify the
initial point z depending on its attraction to infinity.
Two sets may be constructed under this classification.
The filled-in Julia set/C~ and the Mandelbrot set .M.

Def in i t ion 1 /C~, = {z: lira f~ (z)74 oo}
rl---* Cx:)

Def in i t ion 2

.h4 = {p : li~noo f ; (zc) -74 oo, f~(zc) --- 0}

Note that z¢ is the critical point of the function.
There is only one critical point of eq. (1) and it is
always 0. Several critical points are common for poly-
nomials of degree 3 or greater.

The interesting property that Julia and Mandel-
brot sets share is that they are both fractal [12] pos-
sessing detail at every level of magnification.

2 . 2 T h e Q u a t e r n i o n s

The values z and p are commonly defined as real
or complex. However, these values may be defined
in any algebraic system closed under addition and
multiplication. One such system, the quaternions [7],
possesses the additionM benefit of having four dimen-
sions.

Def in i t ion 3 A quaternion value q is a four-tuple
consisting of one real part and three imaginaries

q = ql + qii + qjj + qkk

where i~ j~ k are imaginary units,

Quaternion multiplication is also similar to polyno-
mial multiplication but with the special cases

i j = k; j k = i; k i = j , (3)

and
j i = - k ; k j ik = - j , (4)

revealing an unfortunate side effect of the quater-
nions: noncommutative multiplication.

2 . 3 J u l i a S e t s i n t h e Q u a t e r n i o n s

By using the rules of quaternion algebra, eq. (1) can
be iterated in the quaternions and Julia sets may be
computed. Since the complex plane is a subset of
the quaternions, the same complex Julia sets exist in
the quaternions but often have extensions outside the
complex plane. In fact, if ~ has an imaginary compo-
nent, then the extensions are nontrivial, containing
more information than their complex subsets.

A subset of these extensions can be visualized in
3-D by examining the intersection of the 4-space with
a 3-space such as that spanned by 1 , i , j at Ok. It
should be mentioned that the Julia sets of eq. (1) in
the 3-space spanned by i t j , k at 0 are always concen-
tric spheres centered at the origin [8].

An interesting property about quaternion Julia sets
is that given two complex Julia sets differing only by
a rotation about the origin, their supersets in 3-D
may have completely different shapes. The rotation
of the Julia set in the complex plane is computed by
incorporating the homeomorphism

g0(z) = (5)

into the iterated function such that

L,,e(z) = (6)

which suffices to rotate the positive real axis into the
positive imaginary axis and so forth in a counter-
clockwise manner about the origin in the complex
plane. The resulting Julia set is merely rotated in
the complex plane but appears quite differently in the
quaternions since its intersection with the imaginary
3-space is changed. See [15,8] for details.

i = j2 = k: = -1 . (2)

Algebraic operations can be defined in the quater-
nions by treating the quaternion values as polynomi-
als of three variables i, j , k. For example, the co-
efficients of the sum of two quaternion values may
be found by adding their corresponding coefficients.

3 R a y T r a c i n g 3 - D J u l i a S e t s

Ray tracing is one of the more realistic methods of
rendering objects. Easily accounting for hidden sur-
faces and self-shadowing, it also provides a method
for displaying reflection, transparency and refraction.
Mathematical objects may be ray traced by detecting

290

, i ~ Computer Graphics, Volume 23, Number 3, July 1989

Figure 1: A quaternion Julia set before and after a
quarter turn in the complex plane.

their boundaries during a ray-casting step and render-
ing the surfaces by allowing the ray to be deflected
off to a light source.

A naive method to ray trace a quaternion Julia set
is to sample each point at a given resolution along
each ray. This is not an entirely ridiculous method
since it is the basis of some volumetric rendering algo-
rithms [10]. However, it is not practical when applied
to fractal objects since each point's classification may
rely on a large number of function iterations. With
the use of a new ray-tracing mechanism, the amount
of sample points per ray is greatly reduced.

3 .1 U n b o u n d i n g V o l u m e s

One method of increasing the speed of ray tracing is
the use of bounding volumes. A bounding volume,
usually a sphere or ellipsoid, envelopes several sur-
faces such that if a ray does not intersect the bound-
ing volume it does not intersect the surfaces corttairted
in it.

Bounding volumes are quite useful in hastening ray
tracing of stochastically-defined fractal surfaces [9,4].
Unfortunately their application to deterministic frac-
tals has not been as successful. However, with the
discovery of the distance estimate, we can increase
the speed of ray tracing deterministic fractals using
uubounding volumes.

Unbounding volumes are defined as volumes that
do not contain any part of the object. Thus, given
any point outside the object, the ideal bounding vol-
ume is the largest volume that does not intersect the
object centered at the point. If this volume is a sphere
then its radius is the distance to the object. Given
a point and a deterministic fractal object, its exact
distance cannot be computed efficiently but it can be

estimated in time proportional to the time it takes to
determine if the point is external to the object.

The lower bound of the distance from a point ex-
ternal to the deterministic fractal set is given as

d(z) = sinhG(z) logG(z), (7)
2ea(')lG'(z)l

where G(z) is the electrostatic potential at point z
and Gr(z) is the gradient of this potential. For the
quadratic family, the approximation

d(z) =. If' (z)l logfn(z)
21/'"(Z)I

(8)

is sufficiently accurate [13,6]. See [17] for the compu-
tation of f'(z).

By using a distance estimate we can define an un-
bounding volume of a deterministic fractal set as a
sphere that is guaranteed not to intersect 1 nor con-
tain the set in question. Since the distance estimate
may be much smaller than the distance along the ray
to the object, several repeated distance calculations
must be made as the ray is traversed from eye to sur-
face.

3 .2 R a y T r a v e r s a l

Given the set of unbounding spheres completely sur-
rounding an object, a ray is traversed from the eye
through the projection plane to the object, testing
and incrementing at each point along the ray. By in-
crementing by the radius of the unbounding sphere,
we leap along the ray until we approach the surface.

As the current point on the ray approaches the sur-
face, the unbounding spheres get smaller and smaller.
To hasten convergence, a small number c is defined as
the minimum ray increment. This increment should
be set to give the best depth resolution with respect
to the resolution of the projection plane.

The ray traversal equation may be stated induc-
tively given the eye position r0 and a point in the
projection plane p~,u as

rn+l = r , + m m a x d (r ,) , e. (9)

where m is a unit slope vector of the ray

m - P~'~ - r0 (10)
IP=,y - r0l

1 W i t h the except ion of a single po in t .

291

'89, Boston, 31 July-4 August, 1989

| ¢ ¢
ro ~i r2 r3 r4 r5

Figure 2: Ray traversal using unbounding spheres.

3.3 Thin Objects

Often the extensions of K: into 3-D are very thin, such
as when ~ is a dendrite. This creates the possibility
that incrementing by ~ may traverse the ray com-
pletely through the object.

This problem has also had manifestations in the
2-D study of these images such as the complex Man-
delbrot set. To show that the "islands" off the main
continent of .M are connected to it, the Mandelbrot
set may be defined computationally as

.A4, = {z: d(z) < e} (11)

where d 0 is the distance estimate as defined in eq. (7).
The result is the "hairy" Maudelbrot set [13] revealing
its dendritic structures 2.

A similar technique is used to ray trace dendritic
sheets in 3-D. By terminating ray traversal when
the distance is less than the minimum ray increment,
thickness is added to the object while maintaining its
structure and detail.

3.4 Avoiding Bad Distance Estimates

When the approximation to eq. (7) is used, it is inac-
curate when z is far from the set. This can result in
exaggerated distance estimates which could possibly
push the ray far into the interior of the object.

To avoid these bad estimates a single bounding vol-
ume may be used to contain the fractal set if it can be
bounded. Another alternative is to set a maximum
distance to increment along the ray.

4 R e n d e r i n g F r a c t a l S u r f a c e s

The deterministic family of fractals has provided com-
puter graphics with the most complicated borders.

2Note that these ha i r s m a y be seen very clearly as the set
.Me- 2v[,

The surfaces defined by these borders in 3-D, al-
though quite chaotic, often reveal the structure of the
object. A proper rendering of a fractal surface should
reveal its order while hinting at its chaos.

Since the surface of a fractal is infinitely convo-
luted, its normal can only be approximated. The ap-
proximated normal signifies the structure of the sur-
face while at finer resolutions the light is scattered in
all directions. Thus the surfaces should be diffusely
shaded using the Lambertian model.

Also, to achieve the most information from each
view, it is often better to use axle light instead of
ambient light. By defining a point light source at the
eyepoint, every viewable point on the object will re-
ceive light and thus even heavily-shadowed sections of
the object will reveal information about themselves.

4 .1 N o r m a l A p p r o x i m a t i o n

One reason fractal lines, such as the border of/C, are
so interesting is that they are nondifferentiable. The
slope at any point is undefined because closer exam-
ination shows that the point has different surround-
ings. Hence, when expanded to surfaces, 3-D fractal
surfaces are nondifferentiable and thus have no exact
normal defined.

In order to realistically render these surfaces a
shading model must be used which requires the defi-
nition of a surface normal. Normals may be approx-
imated by examining a point's relationship with its
surroundings. Two approximations have been found
to work quite well: Z-buffer neighbors, previously dis-
cussed in [14], and the gradient.

4.1.1 Z-buf fer N e i g h b o r s

As shown in [14], the surface normal of a fractal sur-
face may be approximated as the cross product of
two vectors embedded in the surface. Given a buffer
of visible z-values Z we can define three points

x = {~, 0, z~+~,~ - z~,~} (12)

Y = { 0 , e , z ~ , v + c - z ~ , u] (13)

0 -= {0,0, Z ~ , y - Z z , ~ } (14)

where e is the width of an element in the z-buffer.
The surface normal may then be approximated as the
normal of the plane defined by these three points.

4.1.2 G r a d i e n t C o m p u t a t i o n

The previous method is a useful normal determina-
tion tool if a Z-buffer is maintained during rendering.
Ray tracing does not require a Z-buffer so a normal

292

~ Computer Graphics, Volume 23, Number 3, July 1989

approximation method using a single point in 3-space
would be more useful.

This can be accomplished by computing the gradi-
ent of a point on the surface. The gradient may be
computed in a 3-D density map as

N z = D~+c,u,z - D=-e ,u , z

N y = D=,y+~,z - D ~ , y - e , z

N z = D=,y,z+e - D ~ , , y , z - e 05)

where D=,y,z is the density at the point x, y, z.
The density function of a deterministic fractal is de-

fined on its exterior and can be any continuous func-
tion based loosely on the distance to the set. Two
useful functions are the potential G 0 and the esti-
mated distance d 0. The latter should be used when
possible since it is more closely associated with the
actual distance although the former works when a
distance estimate is not defined.

Other gradient functions may be defined based on
the number of samples taken. The 6-point gradient
may be augmented by adding samples from points
sharing edges producing an 18-point gradient. By
including points sharing corners, a 26-point gradient
results.

4 .2 C l a r i t y

Since these objects are fractal, they should reveal
more detail when closely inspected. However, if the
minimum ray increment e is constant, the surfaces
will not reveal a finer structure when examined. A
variable-resolution system is required such that closer
sections of the object are defined at higher resolutions
as suggested in [2].

One method of increasing the depth resolution is
to set c to a function of distance from the eye. The
clarity function P~,6 is defined

r (d) = (16)

given d, the Euclidean distance from the eye to the
current location on the ray,

d = Ira - rol. (17)

The parameter 6 is a depth-cueing exponent and o~ is
an empirical proportion defining the depth resolution
of the object.

Three effects are defined by varying the depth-
cueing exponent. When the clarity function is con-
stant, inverse depth cueing occurs giving the appear-
ance that farther objects have more detail. This may
seem useless but is quite adequate when viewing en-
tire fractal objects from a distance. Linear clarity

F 0 Effect
Constant Inverse clarity

Linear Even clarity
Quadratic Exaggerated depth

Table i: Depth-cueing exponents and their effects on
renderings

gives an even clarity appearance with close objects
appearing as detailed as far. Quadratic depth cue-
ing gives an exaggerated depth cue, blurring distant
surfaces.

The c~ parameter is tuned to balance the equilib-
rium of order and chaos. Setting c~ too small will
produce a very noisy surface whereas a large o~ will
wash out detail. When defining o~ a good starting
point is to set it to an order of magnitude smaller
than the pixel width.

Figure 3: The same Quaternion Julia set rendered
twice to show the difference between constant and
linear clarity.

Thus, by setting

= - ,0l) (18)

a variable-resolution rendering system is constructed
allowing small details of the surfaces to be investi-
gated without overcomputing the other visible sur-
faces. The increment e may also be used in the gra-
dient computation as the distance along the axes to
sample nearby densities.

5 A p p l i c a t i o n t o O t h e r D e t e r -

m i n i s t i c F r a c t a l s

The quaternions are convenient to observe 3-D dy-
namics since all three dimensions may be spanned

293

~~SIGGRAPH '89, Boston, 31 July-4 August, 1989

by a single variable. Other 3-D spaces may be con-
structed using multiple real or complex variables.
Complex Julia sets form a 3-D object when they are
stacked [14,12]. The cubic connectedness locus is a
four-dimensional object when its two parameters are
complex [5,17]. Also, Iterated Function Systems may
be three-dimensional if they are specified with affine
transformations of three real variables [1].

5.1 Julia Set Stacks

A Julia set stack may be specified in 3-D as a slice
(i.e. zeroset) of the four dimensional space C × C
defined by the two complex variables z and c from
eq. 1. By looking at the z-planes and varying some
single-dimension function of c to define the third di-
mension, the Julia sets may be stacked to form a 3-D
object.

There currently is no proven distance underesti-
mate for this set although some images may be gen-
erated using empirical formulas based on the Man-
delbrot set distance estimate.

Figure 4: Stack of Julia sets for Ira(c) = 0.

5.2 The Cubic Connectedness Locus
The cubic connectedness locus C is specified by the
cubic function

fa ,b (z) = z a - 3a2z + b, (19)

where z is a complex variable and a, b are complex
parameters. The parameter a is squared in the equa-
tion because the two critical points of the equation
are :t:a.

Since a and b are both complex, a double complex
plane is constructed that houses the four-dimensional
cubic connectedness locus. The locus in this case con-
sists of two components, C+ and C-, based on the
status of the appropriate critical point.

n a Def in i t ion 4 C + {a, b: nli~noo fa,b() "-~ (:x~}

n Def in i t ion 5 C- = {a, b: lim far,b(--a) -74 CX)}

A picture of this set may be found in [17], presumably
created using the technique outlined in [14].

At the moment, a distance estimate does not exist
for this set either. However, the cubic connectedness
locus has been proven to be connected [5] suggesting
that potential measurement and therefore distance es-
timation may be possible.

5 .3 3 - D I t e r a t e d F u n c t i o n S y s t e m s

The most useful forms of deterministic fractals are
Iterated Function Systems or IFS's. An IFS can be
created to simulate almost any form using the Collage
Theorem [1]. Then, given only the resulting set of
iterative equations, the form can be reconstructed.

Recently, deterministic IFS Julia and Mandelbrot
set functions have been discovered and their exteriors
have been categorized according to escape iterations
not unlike their quadratic counterparts [1,19]. This
suggests that perhaps potential and distance mea-
surements can be made on these sets as well.

6 C o m p a r i s o n w i t h B o u n d a r y
T r a c k i n g

The ray-tracing algorithm's predecessor, Boundary
Tracking [14], generates 3-D Julia sets by first lo-
cating a starting point on the boundary of the ob-
ject and then recursively detecting its neighbors un-
til the entire boundary is scanned. To converge,
this algorithm must constantly verify that neighbor-
ing points have not been previously tested, which re-
quires the efficient storage of all previously generated
points. Thus, the Boundary Tracking algorithm runs
in object-space and therefore object-time a.

The main advantage of Boundary Tracking is that
objects are only generated once and may be reposi-
tioned as often as desired, requiring only re-rendering.
Using the ray-tracing technique, repositioning of the
object requires re-generation of the viewable sec-
tions of the object as well as re-rendering. However,
since the image-time ray-tracing algorithm generates
these objects more efficiently than the object-time
Boundary Tracking algorithm, it is the best choice
for parameter-space animations such as varying/~ in
eq. (1), 0 in eq. (5) or the k axis component of the
viewable subspace of the quaternions.

3S¢e [20] for a discussion of image-space vs. object-space
and image-time vs. object-time.

294

@ ~ Computer Graphics, Volume 23, Number 3, July 1989

The main disadvantage of Boundary Tracking is
that it requires storage of every point in the object.
This amount of storage can approach cubic propor-
tions since the number of points defining a surface is
O(rD), the resolution r of the surface raised to its
fraetal dimension D [12]. The ray tracing technique,
using image-space, requires exactly r 2 + O(1) space 4,
the storage resources of a graphics workstation frame
buffer.

Another problem with Boundary Tracking is con-
stant resolution. However, a variable-resolution
Boundary Tracking algorithm was developed to cre-
ate [16] by generating certain sections of the set al-
ready known to be closely examined in the fly-by
at higher resolutions. Although Boundary Tracking
saves computing time by generating the object only
once, the ray-tracing algorithm is the better choice
for fly-bys since its dynamic resolution allows a more
realistic inspection of the surface.

Finally, ray tracing allows certain special effects
such as reflections and refractions. The former pro-
duces the interesting effect of revealing only macro-
scopic images of its environment; the subtle details
are lost in the convoluted interreflections of the frac-
tal surface. Refraction as well as simple transparency
should be avoided until a reliable internal distance es-
timate is developed to prevent minimum increments
in the interior of the sets.

7 C o n c l u s i o n

The research on this project began as a method of
visualizing quaternion Julia sets in 3-D using the
resources of a common computer graphics worksta-
tion. The first at tempt relied on the Inverse Iteration
method of generating Julia sets [11,18] which oper-
ated in image-space and object-time but produced
less than satisfactory results due to inherent problems
of the process itself magnified by the addition of an
extra dimension [8]. The ray-tracing solution, being
forward iterative, does not experience the problems
of the Inverse Iteration method while still requiring
only image-space.

7 .1 P a r a l l e l I m p l e m e n t a t i o n

The current implementation of the algorithm runs on
an AT&T Pixel Machine with 64 parallel processors
each running at about 10 MFLOPS. The architecture

4If the gradient normal approximation method is used, a
Z-buffer is not required. The only other considerable amount
of memory used is a small array the size of the maximum al-
lowable iteration count used to optimize the computation of
the distance estimate [17].

of the Pixel Machine, each processor connected only
to its portion of the frame buffer, dictates that image-
space, image-time algorithms will run at the most
optimal level.

The ray-tracing code is replicated into 64 equiva-
lent programs running simultaneously as if in a race,
each generating and rendering its ~4th of the image.
Of course, the first operation of each program is to
find out which pixel with respect to the entire frame
buffer it is working on.

Currently, full screen images (1280 × 1024) take
about an hour to generate. When positioning the ob-
ject, lower image resolutions are used to create a more
interactive environment. Also, reducing the depth
resolution will increase the speed of the algorithm.

7 ,2 A c k n o w l e d g m e n t s

The authors wish to thank Alan Norton and Charlie
Gunn for their communications, AT~T for its ma-
jor grant to the Electronic Visualization Laboratory
which supported this research, Maggie Rawlings for
her artistic advice with the illustrations, and Tom
DeFanti and Maxine Brown for their assistance with
the manuscript. This research would not have been
possible without the efforts of the faculty, staff and
students of the Electronic Visualization Laboratory.

R e f e r e n c e s

[1] Barnsley, M. F. Fractals Everywhere. Academic
Press, New York, 1988.

[2] Barr, A. H. Ray tracing deformed surfaces.
Computer Graphics 20, 4 (1986), 287-296.

[3] Blanchard, P. Disconnected Julia sets. Chaotic
Dynamics and Fractals (1986), 181-201.

[4] Bouville, C.
intersection.
45-51.

Bounding ellipsoids for ray-fractal
Computer Graphics 19, 3 (1985),

Branner, B., and Hubbard, J. It. The iteration
of cubic polynomials, Part h The global topology
of the parameter space. Acta Mathematica 160,
3 (1988), 143-206.

[6] Fisher, Y. The Science of Fractal Images.
Springer-Verlag, New York, 1988, ch. Exploring
the Mandelbrot Set, pp. -287-296.

[71 Hamilton, W. R. Elements of Quaternious, 3rd
ed. Vol. 1-2, Chelsea Publishing Company, New
York, 1969.

295

~~SIGGRAPH '89, Boston, 31 July-4 August, 1989

[8] Hart, J. C. Image Space Algorithms for Visu-
alizing Quaternion Julia Sets. Master's thesis,
University of Illinois at Chicago, 1989.

[9] Kajiya, J. T. New techniques for ray tracing
procedurally defined objects. A CM Transactions
on Graphics 2, 3 (1983), 161-181.

[10] Levoy, M. Display of surfaces from volume data.
IEEE Computer Graphics and Applications 8, 3
(1988), 29-37.

[11] Mandelbrot, B. B. Practal aspects of the itera-
tion of z ~ Az(1 - z) for complex A and z. An-
nals New York Academy of Sciences 357 (1980),
249-259.

[12] Mandelbrot, B. B. The Fractal Geometry of Na-
ture, 2nd ed. Freeman, San Francisco, 1982.

[13] Milnor, J. Computers in Geometry and Topol-
ogy. Marcel Dekker, Inc., 1989, ch. Self-
similarity and hairiness in the Mandelbrot set,
pp. 211-257.

[14] Norton, V. A. Generation and rendering of geo-
metric fractals in 3-D. Computer Graphics 16, 3
(1982), 61-67.

[15] Norton, V. A. Julia sets in the quaternions. To
appear in Computers and Graphics.

[16] Norton, V. A., and Melton, E. A close encounter
in the fourth dimension. SIGGRAPtt Video Re-
view 39 (1988), 30.

[17] Peitgen, H. The Science of Fractal Images.
Springer-Verlag, New York, 1988, ch. Fantastic
Deterministic Fractals, pp. 169-218.

[18] Peitgen, H., and Richter, P .H. The Beauty of
Fractals. Springer-Verlag, New York, 1986.

[19] Prusinkiewicz, P., and Sandness, G. Koch curve
as attractors and repellers. [EEE Computer
Graphics and Applications 8, 6 (1988), 26-40.

[20] Sutherland, I., Sproul, R., and Schumacker, R.
A characterization of ten hidden-surface algo-
rithms. Computing Surveys 6, 1 (1974), 1-55.

Figure 5: A dendritic quaternion Julia set, set in a
sea whose waves are periodic functions of the distance
estimate.

Figure 6: Close up of the surface of the quaternion
Julia set shown in fig. 3.

Figure 7: Close up of an interesting section of the
Julia set for 0 = 110 °

296

