
David Benham and Yu-Chung Chen
UIC – Department of Computer Science

CS 466

IBM PowerPC 970
(a.k.a. G5)

Ref 1

PPC 970FX overview
● 64-bit RISC
● 58 million transistors
● 512 KB of L2 cache and 96KB of L1 cache
● 90um process with a die size of 65 sq. mm
● Native 32 bit compatibility
● Maximum clock speed of 2.7 Ghz
● SIMD instruction set (Altivec)
● 42 watts @ 1.8 Ghz (1.3 volts)
● Peak data bandwidth of 6.4 GB per second

A picture is worth a 2^10 words (approx.)

Ref 2

A little history

● PowerPC processor line is a product of the AIM
alliance formed in 1991. (Apple, IBM, and
Motorola)

● PPC 601 (G1) - 1993
● PPC 603 (G2) - 1995
● PPC 750 (G3) - 1997
● PPC 7400 (G4) - 1999
● PPC 970 (G5) - 2002
● AIM alliance dissolved in 2005

Processor

Ref 3

Ref 3

Core details

● 16(int)-25(vector) stage pipeline
● Large number of 'in flight' instructions (various

stages of execution) - theoretical limit of 215
instructions

● 512 KB L2 cache
● 96 KB L1 cache

– 64 KB I-Cache
– 32 KB D-Cache

Core details continued

● 10 execution units
– 2 load/store operations

– 2 fixed-point register-register operations

– 2 floating-point operations

– 1 branch operation

– 1 condition register operation

– 1 vector permute operation

– 1 vector ALU operation

● 32 64 bit general purpose registers, 32 64 bit

floating point registers, 32 128 vector registers

Pipeline

Ref 4

Benchmarks

● SPEC2000
● BLAST – Bioinformatics
● Amber / jac - Structure biology
● CFD lab code

SPEC CPU2000
● IBM eServer BladeCenter JS20
● PPC 970 2.2Ghz
● SPECint2000
● Base: 986 Peak: 1040
● SPECfp2000
● Base: 1178 Peak: 1241

● Dell PowerEdge 1750 Xeon
3.06Ghz

● SPECint2000
● Base: 1031 Peak: 1067
● SPECfp2000
● Base: 1030 Peak: 1044

Apple’s SPEC Results*2

BLAST

Ref. 5

BBSv3

Ref. 6

Amber/jac

Ref. 7

CFD code
Prof. Sean Garrick, Dept. ME., Univ. of Minnesota

Ref. 8

VMX

● PPC 970 = simplified Power4 + VMX
● a.k.a. Velocity Engine(Apple), AltiVec

(Motorola)
● A vector processing add-on to PowerPC RISC

instruction set
● Simple Instruction Multiple Data (SIMD)

Single Instruction Multiple Data -
SIMD

● SIMD vs. Instruction Level Parallelism
● Parallel in ‘Data’ vs. parallel in ‘instructions’

Ref. 9

Simple Code example

● 400Mhz G4, vector size: 1000
● Matrix addition (88 vs. 345 MFLOPS, 3.9X)
● Matrix rotation (300 vs. 472 MFLOPS, 1.6X)
● Matrix multiplication (84 vs. 384 MFLOPS,

4.6X)
● Apple’s vector multiplication algorithm: up to

8X!

Applications

● Good for math, science and graphics
manipulation

● Scientific array processing systems
● Muti-channel modems, echo cancelers, image and

video processing system
● Internet routers

“Power Everywhere”

● POWER - Performance Optimization With
Enhanced RISC

● 6 out of top10 in current top500 list are IBM
RISC machines

● ps. Current No.5 is based on PPC970
● From high performance(supercomputer) to low

power(embedded system)

“Power Everywhere”

● Power5
● Cell processor
● Power 970FX
● IP telephony, Internet modems, routers, game

consoles
● Mars rovers: 32-bit RISC running VxWorks
● Expect more to come: Power.org

Questions?

References
1)http://www.macvillage.de/pages/x_magazin/ibmchips/Power970F

X.jpg

2)www.anandtech.com/mac/showdoc.aspx?i=2436&p=2

3)IBM PowerPC 970FX RISC Microprocessor User’s Manual

4)http://perso.wanadoo.fr/kakace/PowerPC/PPC970.html

5)http://www.spec.org/cpu2000/results/

6)http://www.apple.com/

7)http://apple.sysbio.info/~mjhsieh/archives/000295.html

8)http://www.xlr8yourmac.com/G5/G5_fluid_dynamics_bench/G5_
fluid_dynamics_bench.html

9)http://arstechnica.com/articles/paedia/cpu/simd.ars

10)IBM PowerPC 970FX RISC Microprocessor User’s Manual

Backup Slides

Execution Units

● Vector Permute Unit: 1-stage execution
– Manipulate vector elements fast

● Vector ALU
– Floating-point: 7-stages execution
– Simple fixed: 1-stage execution
– Complex fixed: 4-stages execution

Matrix Multiplication

In Scalar

for (i=1, i<=n, i++) {
 for (j=1; j<=n; j++) {
 for (k=1; k<=n; k++) {
 c[i, j] = c[i, j] + a[i, k] * b[k, j];
 }
 }
}

In Vector

for (i=1; i<=n; i++) {
 for (j=1; j<=n; j++) {
 for (k=1; k<=n/4; k++) {
 c[j+(i-1)*n] = vector_madd(a[k+(i-1)*n],
 b[j+(k-1)*n],
 c[j+(i-1)*n];
 }
 }
}

References Continued

● http://ascii24.com/news/i/topi/article/2005/07/07/
656844-000.html

