IBM PowerPC 970 (a.k.a. G5)

David Benham and Yu-Chung Chen UIC - Department of Computer Science CS 466

PPC 970FX overview

- 64-bit RISC
- 58 million transistors
- 512 KB of L2 cache and 96KB of L1 cache
- 90um process with a die size of 65 sq. mm
- Native 32 bit compatibility
- Maximum clock speed of 2.7 Ghz
- SIMD instruction set (Altivec)
- 42 watts @ 1.8 Ghz (1.3 volts)
- Peak data bandwidth of 6.4 GB per second

A picture is worth a $2^{\wedge} 10$ words (approx)

PowerPC 970Fx

A little history

- PowerPC processor line is a product of the AIM alliance formed in 1991. (Apple, IBM, and Motorola)
- PPC 601 (G1) - 1993
- PPC 603 (G2) - 1995
- PPC 750 (G3) - 1997
- PPC 7400 (G4) - 1999
- PPC 970 (G5) - 2002
- AIM alliance dissolved in 2005

Processor

[^0]

Core details

- 16(int)-25(vector) stage pipeline
- Large number of 'in flight' instructions (various stages of execution) - theoretical limit of 215 instructions
- 512 KB L2 cache
- 96 KB L1 cache
- 64 KB I-Cache
- 32 KB D-Cache

Core details continued

- 10 execution units
- 2 load/store operations
- 2 fixed-point register-register operations
- 2 floating-point operations
- 1 branch operation
- 1 condition register operation
- 1 vector permute operation
- 1 vector ALU operation
- 3264 bit general purpose registers, 3264 bit floating point registers, 32128 vector registers

Pipeline

Benchmarks

- SPEC2000
- BLAST - Bioinformatics
- Amber / jac - Structure biology
- CFD lab code

SPEC CPU2000

- IBM eServer BladeCenter JS20
- PPC 970 2.2Ghz
- SPECint2000
- Base: 986 Peak: 1040
- SPECfp2000
- Base: 1178 Peak: 1241
- Dell PowerEdge 1750 Xeon 3.06Ghz
- SPECint2000
- Base: 1031 Peak: 1067

Apple's SPEC Results*2

- SPECfp2000
- Base: 1030 Peak: 1044

BLAST

Ref. 5

BBSv3

```
Bioinformatics Benchmark System (BBSv3)
Dual Processor tests
```


Amber/jac

PME Simulation

"jac" = Joint Anber/Charrm DHFR benchmark. This is the protein DHFR, solvated with TIP3 water, in a periodic box. There are 23,558 total atoms, and PME used with a direct space cutoff of 9 Ang. This is the benchmark in benchmarks/jac subdirectory of the Amber 7 distribution.

CFD code

Prof. Sean Garrick, Dept. ME., Univ. of Minnesota

Large (500MB)

- 1.42 GHz G4
- 2.4 GHz Xeon P4
- 1.8 GHz G5
- 900 MHz Itanium2
- 1.3 GHz Itanium2
- Cray XI
\diamond G4 is unusable
$\diamond \mathrm{G} 5$ is 112% faster than 24 GHiz Xeon P 4
\diamond G5 100% faster than 900 MHz Itanium2
\diamond G5 47\% faster than 1.3 GHz Itanium2
\diamond Cray XI 564% faster than 1.8 GHz G5

VMX

- PPC 970 = simplified Power4 + VMX
- a.k.a. Velocity Engine(Apple), AltiVec (Motorola)
- A vector processing add-on to PowerPC RISC instruction set
- Simple Instruction Multiple Data (SIMD)

Single Instruction Multiple Data SIMD

- SIMD vs. Instruction Level Parallelism
- Parallel in 'Data' vs. parallel in 'instructions'

IBM PowerPC 970FX RISC Microprocessor

Figure 12-1. VPU High-Level Block Diagram

Simple Code example

- 400Mhz G4, vector size: 1000
- Matrix addition (88 vs. 345 MFLOPS, 3.9X)
- Matrix rotation (300 vs. 472 MFLOPS, 1.6X)
- Matrix multiplication (84 vs. 384 MFLOPS, 4.6X)
- Apple's vector multiplication algorithm: up to 8X!

Applications

- Good for math, science and graphics manipulation
- Scientific array processing systems
- Muti-channel modems, echo cancelers, image and video processing system
- Internet routers

"Power Everywhere"

- POWER - Performance Optimization With Enhanced RISC
- 6 out of top 10 in current top 500 list are IBM RISC machines
- ps. Current No. 5 is based on PPC970
- From high performance(supercomputer) to low power(embedded system)

"Power Everywhere"

- Power5
- Cell processor
- Power 970FX
- IP telephony, Internet modems, routers, game consoles
- Mars rovers: 32-bit RISC running VxWorks
- Expect more to come: Power.org

Questions?

References

1)http://www.macvillage.de/pages/x_magazin/ibmchips/Power970F X.jpg
2)www.anandtech.com/mac/showdoc.aspx? $i=2436 \& p=2$
3)IBM PowerPC 970FX RISC Microprocessor User's Manual
4)http://perso.wanadoo.fr/kakace/PowerPC/PPC970.html
5)http://www.spec.org/cpu2000/results/
6)http://www.apple.com/
7)http://apple.sysbio.info/~mjhsieh/archives/000295.html
8)http://www.xlr8yourmac.com/G5/G5_fluid_dynamics_bench/G5_ fluid_dynamics_bench.html
9)http://arstechnica.com/articles/paedia/cpu/simd.ars
10)IBM PowerPC 970FX RISC Microprocessor User's Manual

Backup Slides

Execution Units

- Vector Permute Unit: 1-stage execution
- Manipulate vector elements fast
- Vector ALU
- Floating-point: 7-stages execution
- Simple fixed: 1-stage execution
- Complex fixed: 4-stages execution

Matrix Multiplication

$$
\left[\begin{array}{ccccc}
c_{11} & c_{12} & \cdots & \cdots & c_{1 n} \\
c_{21} & c_{22} & & & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
c_{n 1} & \cdots & \cdots & \cdots & c_{n n}
\end{array}\right]=\left[\begin{array}{ccccc}
a_{11} & a_{12} & \cdots & \cdots & a_{1 n} \\
a_{21} & a_{22} & & & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
a_{n 1} & \cdots & \cdots & \cdots & a_{n n}
\end{array}\right]\left[\begin{array}{ccccc}
b_{11} & b_{12} & \cdots & \cdots & b_{1 n} \\
b_{21} & b_{22} & & & \vdots \\
\vdots & & \ddots & & \vdots \\
\vdots & & & \ddots & \vdots \\
b_{n 1} & \cdots & \cdots & \cdots & b_{n n}
\end{array}\right]
$$

$$
c_{i j}=a_{i 1} b_{i j}+a_{i 2} b_{2 j}+\cdots+a_{i k} b_{k j}+\cdots+a_{i n} b_{n j}
$$

In Scalar

$$
\begin{aligned}
& \text { for }(\mathrm{i}=1, \mathrm{i}<=\mathrm{n}, \mathrm{i}++)\{ \\
& \quad \text { for }(\mathrm{j}=1 ; \mathrm{j}<=\mathrm{n} ; \mathrm{j}++)\{ \\
& \quad \text { for }(\mathrm{k}=1 ; \mathrm{k}<=\mathrm{n} ; \mathrm{k}++)\{ \\
& \quad \mathrm{c}[\mathrm{i}, \mathrm{j}]=\mathrm{c}[\mathrm{i}, \mathrm{j}]+\mathrm{a}[\mathrm{i}, \mathrm{k}] * \mathrm{~b}[\mathrm{k}, j] ;
\end{aligned} \quad \begin{aligned}
& \} \\
& \{
\end{aligned}
$$

In Vector

$$
\text { for }(\mathrm{i}=1 ; \mathrm{i}<=\mathrm{n} ; \mathrm{i}++)\{
$$

$$
\begin{array}{r}
\text { for (i= } \\
\text { for } \\
\text { f } \\
\left\{\begin{array}{l}
\}
\end{array}\right\}
\end{array}
$$

$$
\text { for }(j=1 ; j<=n ; j++)\{
$$

$$
\text { for }(k=1 ; k<=n / 4 ; k++)\{
$$

$$
\mathrm{c}\left[\mathrm{j}+(\mathrm{i}-1)^{*} \mathrm{n}\right]=\text { vector_madd }(\mathrm{a}[\mathrm{k}+(\mathrm{i}-1) * \mathrm{n}] \text {, }
$$

$$
\mathrm{b}[\mathrm{j}+(\mathrm{k}-1) * \mathrm{n}] \text {, }
$$

$$
\mathrm{c}\left[\mathrm{j}+(\mathrm{i}-1)^{*} \mathrm{n}\right] ;
$$

References Continued

- http://ascii24.com/news/i/topi/article/2005/07/07/ 656844-000.html

IBM Announce weres

 Offerings: PowerPC 970Fxa 1.2 GHz at 13 W (typica)
01.4 GHz at 13 W (tipea)
1.6GHzat 16 W (typca)

- New dual-core Powerpc gromp offering:
$\square 1.4$ to 2.5 GHz
- Watch for continued enhancements

[^0]: PowerPC 970FX Bus

