IBM PowerPC 970 (a.k.a. G5)

David Benham and Yu-Chung Chen
UIC – Department of Computer Science
CS 466
PPC 970FX overview

- 64-bit RISC
- 58 million transistors
- 512 KB of L2 cache and 96KB of L1 cache
- 90um process with a die size of 65 sq. mm
- Native 32 bit compatibility
- Maximum clock speed of 2.7 Ghz
- SIMD instruction set (Altivec)
- 42 watts @ 1.8 Ghz (1.3 volts)
- Peak data bandwidth of 6.4 GB per second
A picture is worth a 2^{10} words (approx.)
A little history

- PowerPC processor line is a product of the AIM alliance formed in 1991. (Apple, IBM, and Motorola)
- PPC 601 (G1) - 1993
- PPC 603 (G2) - 1995
- PPC 750 (G3) - 1997
- PPC 7400 (G4) - 1999
- PPC 970 (G5) - 2002
- AIM alliance dissolved in 2005
Core details

- 16(int)-25(vector) stage pipeline
- Large number of 'in flight' instructions (various stages of execution) - theoretical limit of 215 instructions
- 512 KB L2 cache
- 96 KB L1 cache
 - 64 KB I-Cache
 - 32 KB D-Cache
Core details continued

• 10 execution units
 – 2 load/store operations
 – 2 fixed-point register-register operations
 – 2 floating-point operations
 – 1 branch operation
 – 1 condition register operation
 – 1 vector permute operation
 – 1 vector ALU operation

• 32 64 bit general purpose registers, 32 64 bit floating point registers, 32 128 vector registers
Pipeline
Benchmarks

- SPEC2000
- BLAST – Bioinformatics
- Amber / jac - Structure biology
- CFD lab code
SPEC CPU2000

- IBM eServer BladeCenter JS20
 - PPC 970 2.2Ghz
 - SPECint2000
 - Base: 986 Peak: 1040
 - SPECfp2000
 - Base: 1178 Peak: 1241

- Dell PowerEdge 1750 Xeon 3.06Ghz
 - SPECint2000
 - Base: 1031 Peak: 1067
 - SPECfp2000
 - Base: 1030 Peak: 1044

Apple’s SPEC Results*2
BLAST

Ref. 5
BBSv3

Bioinformatics Benchmark System (BBSv3)
Dual Processor tests

- Power Mac G5: 82% faster
- Dual 2.7GHz PowerPC G5: 72% faster
- Dual 2.3GHz PowerPC G5: 54% faster
- Dual 2GHz PowerPC G5: 37% faster
- Boxx Tech Series 7300 Dual 2.6GHz Opteron 252
- Dell Precision 670 Dual 3.6GHz Xeon

Ref. 6
PME Simulation

"jac" = Joint Amber/Charmm DHFR benchmark. This is the protein DHFR, solvated with TIP3 water, in a periodic box. There are 23,558 total atoms, and PME used with a direct space cutoff of 9 Ang. This is the benchmark in benchmarks/jac subdirectory of the Amber 7 distribution.

<table>
<thead>
<tr>
<th>node-name</th>
<th>CPU</th>
<th>OS</th>
<th>compiler</th>
<th>npcu</th>
<th>time-per-step</th>
</tr>
</thead>
<tbody>
<tr>
<td>PSSC Labs</td>
<td>Dual 2G Opteron</td>
<td>Linux</td>
<td>PathScale 1.0b3</td>
<td>1</td>
<td>0.700</td>
</tr>
<tr>
<td>PSSC Labs</td>
<td>Dual 2G Opteron</td>
<td>Linux</td>
<td>PathScale 1.0b3</td>
<td>2</td>
<td>0.360</td>
</tr>
<tr>
<td>PSSC Labs</td>
<td>Dual 2G Opteron</td>
<td>Linux</td>
<td>PGI 1.2.5</td>
<td>1</td>
<td>0.700</td>
</tr>
<tr>
<td>PSSC Labs</td>
<td>Dual 2G Opteron</td>
<td>Linux</td>
<td>Intel F90 7.1</td>
<td>1</td>
<td>0.720</td>
</tr>
<tr>
<td>Luo Lab</td>
<td>Dual 2.8G Xeon</td>
<td>Linux</td>
<td>Intel F90 7.1</td>
<td>1</td>
<td>0.934</td>
</tr>
<tr>
<td>Luo Lab</td>
<td>Dual 2.8G Xeon</td>
<td>Linux</td>
<td>Intel F90 7.1</td>
<td>2</td>
<td>0.675</td>
</tr>
<tr>
<td>Luo Lab</td>
<td>Dual 2.8G Xeon</td>
<td>Linux</td>
<td>Intel F90 7.1</td>
<td>4</td>
<td>0.576 (HTT)</td>
</tr>
<tr>
<td>Prof. E. M.</td>
<td>Dual 2G G5</td>
<td>MacOS X</td>
<td>XLF 8.1b</td>
<td>1</td>
<td>0.777</td>
</tr>
</tbody>
</table>

Ref. 7
CFD code
Prof. Sean Garrick, Dept. ME., Univ. of Minnesota
VMX

- PPC 970 = simplified Power4 + VMX
- a.k.a. Velocity Engine (Apple), AltiVec (Motorola)
- A vector processing add-on to PowerPC RISC instruction set
- Simple Instruction Multiple Data (SIMD)
Single Instruction Multiple Data - SIMD

- SIMD vs. Instruction Level Parallelism
- Parallel in ‘Data’ vs. parallel in ‘instructions’
Figure 12-1. VPU High-Level Block Diagram

Legend
- Permute
- ALU
- Data
- Control
Simple Code example

- 400Mhz G4, vector size: 1000
- Matrix addition (88 vs. 345 MFLOPS, 3.9X)
- Matrix rotation (300 vs. 472 MFLOPS, 1.6X)
- Matrix multiplication (84 vs. 384 MFLOPS, 4.6X)
- Apple’s vector multiplication algorithm: up to 8X!
Applications

- Good for math, science and graphics manipulation
- Scientific array processing systems
- Muti-channel modems, echo cancelers, image and video processing system
- Internet routers
“Power Everywhere”

- POWER - Performance Optimization With Enhanced RISC
- 6 out of top10 in current top500 list are IBM RISC machines
- ps. Current No.5 is based on PPC970
- From high performance(supercomputer) to low power(embedded system)
“Power Everywhere”

- Power5
- Cell processor
- Power 970FX
- IP telephony, Internet modems, routers, game consoles
- Mars rovers: 32-bit RISC running VxWorks
- Expect more to come: Power.org
Questions?
References

1) http://www.macvillage.de/pages/x_magazin/ibmchips/Power970FX.jpg
3) IBM PowerPC 970FX RISC Microprocessor User’s Manual
4) http://perso.wanadoo.fr/kakace/PowerPC/PPC970.html
5) http://www.spec.org/cpu2000/results/
6) http://www.apple.com/
7) http://apple.sysbio.info/~mjhsieh/archives/000295.html
8) http://www.xlr8yourmac.com/G5/G5_fluid_dynamics_bench/G5_fluid_dynamics_bench.html
9) http://arstechnica.com/articles/paedia/cpu/simd.ars
10) IBM PowerPC 970FX RISC Microprocessor User’s Manual
Backup Slides
Execution Units

• Vector Permute Unit: 1-stage execution
 – Manipulate vector elements fast

• Vector ALU
 – Floating-point: 7-stages execution
 – Simple fixed: 1-stage execution
 – Complex fixed: 4-stages execution
Matrix Multiplication

\[
\begin{bmatrix}
c_{11} & c_{12} & \cdots & c_{1n} \\
c_{21} & c_{22} & \cdots & c_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
c_{n1} & \cdots & \cdots & c_{nn}
\end{bmatrix}
=
\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} \\
a_{21} & a_{22} & \cdots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{n1} & \cdots & \cdots & a_{nn}
\end{bmatrix}
\times
\begin{bmatrix}
b_{11} & b_{12} & \cdots & b_{1n} \\
b_{21} & b_{22} & \cdots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & \cdots & \cdots & b_{nn}
\end{bmatrix}
\]

\[
c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \cdots + a_{ik}b_{kj} + \cdots + a_{in}b_{nj}
\]
In Scalar

```c
for (i=1, i<=n, i++) {
    for (j=1; j<=n; j++) {
        for (k=1; k<=n; k++) {
            c[i, j] = c[i, j] + a[i, k] * b[k, j];
        }
    }
}
```
In Vector

for (i=1; i<=n; i++) {
 for (j=1; j<=n; j++) {
 for (k=1; k<=n/4; k++) {
 c[j+(i-1)*n] = vector_madd(a[k+(i-1)*n], b[j+(k-1)*n], c[j+(i-1)*n];
 }
 }
}
References Continued

IBM Announces Extensions to its Award-Winning PowerPC® 970 Product Family

- Low-power PowerPC 970FX offerings:
 - 1.2 GHz at 13W (typical)
 - 1.4 GHz at 13W (typical)
 - 1.6 GHz at 16W (typical)

- New dual-core PowerPC 970MP offering:
 - 1.4 to 2.5 GHz

- Watch for continued enhancements
Power Architecture™ Leadership
Scalability: from mW to GHz

Architecture Innovation

Low Power

Power Architecture

High Performance
Aerospace

Mars Rovers: Spirit and Opportunity

Feature IBM's
Power Architecture™
Technology

High-performance 32-bit RISC
processor operates in high-radiation
space environment