
High-performance Computing and Virginia Tech “System X”
David Benham and Yu-Chung Chen

Department of Computer Science

28 November 2005

Abstract

 This project is the research of Virginia Tech’s Terascale facility, also known as

“System X”. This report is for CS 466 Advanced Computer Architecture class taught in

Fall 2005. In this report we present our research on the ideas of high-performance

computing and the system aspect of the G5-based “System X”. Section 2, 3, 4, 6 are from

David Benham and Section 1 and 5 are from Yu-Chung Chen.

1. High-performance computing
The Top500 list [1] is compiled twice a year by Jack Dongarra of the University

of Tennessee, Knoxville; Erich Stohmaier and Horst Simon of NERSC/Lawrence

Berkeley National Laboratory; Hans Meuer of the University of Mannheim, Germany

[2]. The latest list is released in Nov. 2005 Supercomputing conference, an annual

conference held specifically for areas of high-performance and supercomputing. Unlike

consumer or business computing needs, high-performance computing (HPC) demands on

performance so much that system architects have to squeeze out the best performance. In

the old days, supercomputers are almost all specially made machines. Unlike commodity

off-shelf computers, some of them are designed to work on complicated mathematics and

scientific problems in an efficient way, for example vector-based supercomputer Cray

series [3]. And most of them will cost up to several million dollars.

Cray-2 supercomputer http://en.wikipedia.org/wiki/Image:Cray.jpeg [4]

But in the past decade, commodity computer components or personal computers

are taking off like never before. More and more systems appearing on the top500 list are

made with a large number of personal computers connected together as a ‘PC cluster’ or

‘Beowulf PC cluster’. In today’s latest top500 list, there are 360 systems being defined as

clusters, making it the most common architecture [2].

1.1 Hardware and software stacks
To build a cluster of computers, making it work as one system, the system

architect must consider hardware and software components required. Here we will take a

look at some basic required components of a working cluster system.

In hardware aspect, a computational cluster will typically have huge number of

CPUs partitioned in computation ‘nodes’. Take modern personal computer for example:

one node might contain 1 to 4 CPUs. Each node has their local memory and local scratch

disk shared by multiple CPUs (if there’s more than 1). Each node is connected together

with high-speed networking. Typically we will call this kind of setup is a “distributed

memory” [6]. There are also systems using “distributed shared memory” [7].

In the software side, since most of the target user of such high computation power

systems are application scientists and researchers, the operation systems used are more

U*IX based than commodity operation systems like Microsoft Windows. Currently the

most popular ones are Linux [8] or BSDs [9].

Aside from the basic operation system, to meet the requirements of running

computation codes across multiple computer systems (nodes), management and

programming middleware are also developed. In the management software, due to cluster

systems are to be fully utilized, scheduling and queuing software systems are developed

for the system administrators. Users must submit their computation ‘jobs’ through

queuing system along with the job description information. Then the scheduling

middleware will look at the job’s specification and then try to allocate required resources

for the job. When the resources required are available, then the job will be put into

execution. Currently most widely used and freely available software are Torque resource

manager [10] (former Portable Batch System [11]) and Maui scheduler [12].

 For parallel computing middleware, there are several programming paradigms are

proposed along the development of supercomputering history. Also because most of the

users of computational cluster system might not be experts of computer for information

science background. Most of them are researchers and scientists in different application

domains like civil engineering, computational fluid dynamics or micro-electro-

mechanical systems. Providing them a higher level of programming paradigm will model

the whole system in a more abstract level and ease the learning curve of inside- outs

knowledge of the whole system dramatically. OpenMP [13] is an application program

interface (API) for distributed shared memory. Due to some old supercomputer are

distributed shared memory based, like Silicon Graphics, Inc. Origin 3000 [14], OpenMP

is quite common for scientists who used to work on large shared memory machines.

Parallel Virtual Machine (PVM) is developed by University of Tennessee, the Oak Ridge

National Laboratory and Emory University. PVM provides the programmer an abstract

view over the whole cluster as one massive parallel computer, which ease the tedious

details of computer architecture and system setups. The last one and also the most

important one middleware nowadays is “Message-passing Interface (MPI)” [16]. MPI is

first developed in Mathematics and Computer Science Division, Argonne National

Laboratory [17]. Later it is “proposed and standardized by a broadly based committee of

vendors, implementers, and users” [16].

1.2 Applications
With so many computers and so much computing power, what can a computation

cluster or supercomputer be used for? We will first look at the system level and then the

application level. Furthermore, in application level, we will look at different application

domains ranging from tightly coupled applications like computational fluid dynamics to

loosely coupled applications like SETI@Home.

 In the system level, a large number of computers can served as a server farm to

providing enterprise infrastructure needs. The need of enterprise for server farms can be

categorized into two main functionalities: “high availability (HA)” and “high

throughput”. “High availability” means the time of one service available to the user

should be high and the time the service is down should be low. With proper software and

hardware technology, if one service provided by a node is down, the system should be

able to allocate another node and switch the user’s service to another node and the end

user is not aware. “High throughput” means the number of incoming user requests one

system can serve at a period of time. If we assume that the incoming services requests are

independent with each other, with increasing number of nodes in a cluster computing

system, the throughput number of the system can serve will be nearly linear proportional

to the number of nodes available in the system. Almost most of modern enterprise system

will employ such system clustering to provide better customer services. One outstanding

example is Google complex service farms [18]. According to [18], Google has several

clusters geographically distributed worldwide. Each cluster contains a few thousand mid-

range desktop x86-based machines. All hooked up with reliability-focused software

system provide the huge amount of requests and computing needs of the whole Google

services.

In the computational-oriented level, the applications can be categorized into two

kinds, tightly coupled and loosely coupled applications. In tightly coupled applications,

the parallel computing is distributed to all computing nodes and the computations

happened in a ‘near real time’ fashion. When a computing job submitted to a system, the

‘job master‘ would try to spawn multiple ‘job slaves’ in nodes (resource) allocated by the

resource manager. Depends on the computation needs, the slave jobs in different nodes

might communicate and exchange data with each other (including master). Take CFD

application for example [19], if the shape of a louvered fin cannot fit into a single

computation node, it can be partitioned into multiple grids and distributed across multiple

computation nodes. Each grid components in single computation node is actually related

to each other, so the “boundary condition” must be considered. In some areas, the

calculation results must be passed to the next block; also the calculation in the next might

not be able to start until other nodes’ results arrive. This kind of parallel programming

paradigm is suitable for application like computational fluid dynamics (CFD) and micro-

electro-mechanical systems (MEMS). Those problems tend to be too huge for a single

machine and the communication between cluster nodes is frequent. In the loosely coupled

applications, it is also called “embarrassingly parallel” [20]. In this kind of parallelism,

the computation codes in different nodes will run independently from each other. This

also means the communications between each slave to the master or between slaves are

minimal. The best application suited for this kind of parallelism is “single program

multiple data” program. One of the most the most famous examples is SETI@Home [21].

2. Overview of System X

The Virginia Tech System X supercomputer was once held the distinction of

being the 7th fastest computer in the world. But that was last year. As of the date of the

writing of this paper, Virginia Tech's System X is now ranked 20th in the world [4]. The

rank is a noteworthy distinction, regardless of which figure is used. The ever changing

list of the most powerful computers on the planet demonstrates just how quickly

advances in hardware and software allow high performance computing to make

continuous and significant advances in performance.

Illustration 1: System X [1]

The first version of System X was conceived in January of 2003. At a cost of 5.5

million dollars, the initial System X computer was composed of 1100 Power Mac G5

desktop computers [2]. However, the memory used in the G5 computer contained no

logic for correcting errors, so the ability to use System X for scientific computations was

limited [2].

To correct this deficiency, System X underwent a significant upgrade in 2004.

Over the course six months, the Power Mac G5 machines were all replaced with custom

Xserve G5 servers for a total cost of $600,000. The Xserve servers had a 15 percent

performance increase over the G5 desktop machines. The Xserve also brought error

correcting code (ECC) memory to System X and significantly reduced the physical

amount of space required to house the hardware [3]. The upgrade, along with some

software optimizations, boosted the performance of System X by 20 percent.

Current System X system specifications obtained from [1]:

• Benchmark performance - Linpack Rpeak = 20.24 Teraflops, Rmax = 12.25

Teraflops

• Nodes

• Compute nodes - 1100 Apple XServe servers. Dual 2.3 GHz PowerPC

970FX processors, 4 GB ECC DDR400 (PC3200) RAM, 80 GB S-ATA

hard disk drive, Mellanox Cougar InfiniBand 4x HCA

• Compile nodes - 3 Apple XServe servers. Dual 2.3 GHz PowerPC 970FX

processors, 4 GB ECC DDR400 (PC3200) RAM, 3x250 GB S-ATA hard

disk drive

• Network

• Primary - Infiniband

• 4 SilverStream Technologies 9120 Infiniband core switches. 4X

Infiniband, 10 Gbps bidirectional port speed, 132 ports per switch

• 64 SilverStream Technologies Infiniband leaf switches. 4X

Infiniband, 10 Gbps bidirectional port speed, 24 ports per switch

• Secondary - Gigabit Ethernet. Provided by 6 Cisco 4506 Gigabit Ethernet

switches.

• Storage - Apple XServe RAID. Total storage: 2.7TB

• Software

• Mac OS X 10.3.9

• MVAPICH for message passing

• IBM XL Fortran, IBM XLC, and gcc

• Torque (Queue) and Moab(Scheduler)

3. Dollars and Cents
System X, aside from being a pioneer in terms of raw computing power, is

possibly even more impressive when analyzed from a cost standpoint. At the time of

construction, the total cost for the system was 5.7 million dollars, which was by far the

lowest cost of any comparable machine. In fact, when System X was #4 in the top 500

list in 2004, it was constructed for only 20 percent of the cost of the next least expensive

machine in the top 10 [1].

In addition to hardware costs, operating costs of System X played a critical factor

during its construction. When operating thousands of nodes, every watt matters. The

PowerPC 970FX consumes significantly less power (55 watts) when compared to the

AMD Opteron (89 watts) or an Intel Xeon (110W) [2]. As a whole, System X consumes

310 kilowatts of power or about 250 MW/month.

4. System Cooling
 Transferring the heat from System X to the outdoor water chillers begins inside

the individual nodes themselves. Apple Xserve servers are air-cooled and contain two air

ducts on the front of the machine and a rear mounted fan to obtain a front to rear airflow

[1]. Each rack contains air to liquid heat exchangers that take heated air and transfer the

heat to a liquid refrigerant. Each rack is connected to a Liebert Extreme Density XDP

unit, which transfers heat from the refrigerant to chilled water loops [2]. This setup helps

isolate chilled water loops and greatly decreases risk associated with leakage in piping

and reduces risk of damage to equipment [2]. Essentially, the only water that exists in the

entire system is contained in these units. Once the heat is removed from the refrigerant,

the water is pumped to outdoor water chillers.

Illustration 2: Liebert Extreme Density XDP unit [2]

At the end (or beginning, depending on your perspective) of the cooling system

for System X are two 125 ton Carrier water chillers. Together these two units can provide

3 million BTUs of cooling capacity. System X utilizes just under half of its available

cooling capacity.

Illustration 3: Outdoor Carrier water chillers [2]

5. Interconnection

In the networking part, System X uses InfiniBand as the major internal message

passing fabric. Each computation node is equipped with an InfiniBand host channel

adaptor (HCA). Nodes are first connected to 64 InfiniBand switches and the uplink to 4

core switches backbone [22], to construct a “fat-tree” [27-29] overall architecture. Also

the built-in gigabit Ethernet ports are used for typical administration and job submission

purpose. The following table is downloaded from [22], lists System X’s major network

components.

4 SilverStorm Technology
9120 InfiniBand core
switches

- 4X InfiniBand, 10 Gbps
bidirectional port speed.

- Each Switch populated with 11 leaf
modules and 3 spine modules

- Total 132 InfiniBand ports per core
switch

64 SilverStorm
Technologies 9024
InfiniBand leaf switches

- 4X InfiniBand, 10 Gbps
bidirectional port speed

- Total 24 InfiniBand ports per leaf
switch

Primary

InfiniBand fabric management by SilverStorm Technologies
Secondary 6 Cisco Systems 240-port 4506 Gigabit Ethernet switches
Table data courtesy of Virginia Tech Terascale Computing Facility [22]

5.1 About InfiniBand architecture

With the computing power advances, the CPUs are gaining more and more power

over time following the Moore Law [30]. For example, one first generation G5 CPU has

two double-precision floating-point units, meaning 2 floating-point operations per cycle.

In a 2GHz CPU, it means 8 Gflops (Giga-FLoating-points Operations Per second). With

dual G5 CPUs, one node can achieve 16 Gflops peak performance! But on the other end,

the input/output system is always much slower than the computation core. Even worse,

with the advances in CPU, the gap between could get even bigger over time.

“InfiniBand is a high performance, switched fabric interconnect standard for

servers” [31]. InfiniBand was first designed for storage area network. But due to its high

bandwidth, low latency characteristics, more and more cluster architects are using

InfiniBand as the interconnect when building clusters and supercomputers. Merged from

two competing infinitives designing a better I/O system for the computer system in the

future [32], InfiniBand absorbs merits from both camps. To become the I/O standard of

the future, performance, flexibility, scalability, and reliability are all being taken into

account in the specification design phase.

A basic single IB channel connection can have 5 Gbps bidirectional bandwidth.

IB also supports double and quad data rates for 10 Gbps and 20 Gbps respectively. With

8B/10B encoding [32], about 4/5 of raw data stream are actually user data. Theoretically

multiple IB links can be aggregated together like Ethernet channel bonding does to

achieve high bandwidths.

Unit: Gbps SDR DDR QDR
1X 2.5 5 10
4X 10 20 40
12X 30 60 120
Table information downloaded from [32]
(Uni-direction bandwidth in listed, and this is ‘raw’ data size, not user data size.)

Just like other new interconnect network technologies like Myrinet [35] and

Quadrics [36], all of them do not use TCP/IP protocol natively. One reason is that the

TCP/IP stack would pose too much latency. Data stream need to be transferred from one

end going all the way down to the bottom of the stack and then sent through the network

fabric and unpack all the way up at the other end of TCP/IP-based network. Not using

TCP/IP protocol implies that some of the communication middleware might need to be

rewritten, like widely used message passing interface, MPI. Currently MVAPICH – (MPI

for InfiniBand on VAPI) [37] is publicly available for InfiniBand-based cluster system to

gain the best performance. And according to [37], it powers up to 4000-node (8000-

processors) InfiniBand cluster at Sandia National Laboratory [2]. As we can see since

from 2003 when System X is built with first system using InfiniBand in top500 list,

InfiniBand network architecture is getting more and more popular in HPC to obtain better

performance.

5.2 Infiniband applications

 Except high-performance supercomputers, the high bandwidth and low latency

characteristics of InfiniBand also fit to the requirement of parallel visualization system.

In the recent talk in OpenIB alliance meeting [38], Stanford University uses cheap PC

clusters to outperform more traditional graphics supercomputers [39]. Aside from all the

advantages PC cluster can provide, the interconnection using InfiniBand also plays an

important role, especially in the interaction required applications. For example in volume

rendering, the user would expect to manipulate a volume data of size 1K * 1K * 1K with

reasonable frame rate. With the results from Stanford SPIRE graphics cluster, they can

achieve performance of 8.2 GVoxel/s (10243 at 8 frames per second) at 790 MB/s node to

node and 10.2 GB/s cross sectional bandwidth [38, A8 – Visualization Experience and Requirements]. In

the future, IB could skip computer system’s internal bus (PCI-X or PCI-Express),

hooking up “HyperTransport” technology used in AMD etc [32, 34] through

“HyperTunnel”, to build a massive computing system with high speed CPUs and high

bandwidth, low latency I/O system. And it is also scalable, flexible and reliable.

6. Message Passing

Communication between processes on System X is accomplished using

MVAPICH. MVAPICH is an implementation of the Message Passing Interface (MPI)

and MVAPICH is essentially an “offshoot” of the popular MPICH, an implementation of

MPI maintained by Argonne National Laboratory [2].

A number of implementations of MPI exist, often the choice of what implementation to

use is influenced by interconnect technology and platform.

For Mac OS X, a number of MPI implementations options exist [2].

• MPICH - One of the oldest MPI implementations available.

• MVAPICH - Implementation that utilizes the Infiniband interconnect

technologies.

• LAM/MPI - Maintained by Pervasive Technology Labs at Indiana University.

Offers a native installer in lieu of a UNIX tar package.

• MacMPI - Fist MPI implementation for the Macintosh platform. Presents a

graphical representation of node status.

In MPI, each process is assigned a positive number starting from zero. So x processes

will be numbered from 0 to x-1. Perhaps the quickest way to introduce the basics of MPI

is to start with the classic “Hello World!” [3] . The following code is from [1] and is

modified slightly for clarity:

1 #include <stdio.h>
2 #include "mpi.h"
3
4 main(int argc, char** argv) {
5 int my_rank; /* Rank of process */
6 int p; /* Number of processes */
7 int source; /* Rank of sender */
8 int dest; /* Rank of receiver */
9 int tag = 50; /* Tag for messages */
10 char message[100]; /* Storage for the message */
11 MPI_Status status; /*Return status for receive */
12
13 MPI_Init(&argc, &argv);
14 MPI_Comm_rank(MPI_COMM_WORLD, &my_rank);
15 MPI_Comm_size(MPI_COMM_WORLD, &p);
16

17 if (my_rank != 0) {
18 sprintf(message, "Hello from proc %d!", my_rank);
19 dest = 0;
20
21 /* Use strlen(message)+1 to include '\0' */
22 MPI_Send(message,strlen(message)+1,
23 MPI_CHAR, dest, tag, MPI_COMM_WORLD);
24 }
25 else { /* my_rank == 0 */
26 for (source = 1; source < p; source++) {
27 MPI_Recv(message, 100, MPI_CHAR, source, tag,
28 MPI_COMM_WORLD, &status);
29 printf("%s\n", message);
30 }
31 }
32 MPI_Finalize();
33 }

In this program, the process with ID 0 receives a simple “hello” message from all

the other processes running this program. Each processor in a multiprocessor system will

receive a copy of this program and execute it. Depending on the identity of the process, a

different section of code will be executed. This is a Single Program Multiple Data or

SPMD model. In this model, a different portion of the same program is executed

depending on the data local to an individual process. Our simple example has a single

branch and each process will take either one branch or the other. Each process executes

it's own stream of instructions based on conditional branches in a single program. This

approach is often used when writing Multiple Instruction Multiple Data or MIMD

programs using MPI [1].

In our example, we called a handful of MPI functions:

• MPI_Init - Executes any code the system needs to begin executing MPI function

calls. This function must be called before any other MPI function.

• MPI_Comm_rank - Determines the rank of a given process.

• MPI_Comm_size- Returns the total number of processes executing a program.

• MPI_Send - Send a message to a specified process with a known rank. Function

will block, program execution will not continue until the message is sent.

• MPI_Recv - Receive a message from a specified process with a known rank.

Function will block, program execution will not continue until a message is

received.

• MPI_Finalize - Execute code to clean up.

Our “Hello World!” program, while it might help illustrate simple MPI concepts, is

actually a fairly bad example of parallel programing for several reasons. First, the work is

not evenly distributed. Every process reports to process 0, so process 0 is doing a

disproportionate amount of work in the program. Secondly, by using blocking send and

receive calls, programs spend a great deal of time doing nothing waiting for other

processes to respond or send information. There are ways to address both of these issues

using MPI.

Ideally, non blocking communication functions should be used in an MPI program.

MPI provides non blocking communication functions:

• MPI_ISend() - non blocking send operation, allows program execution to

continue

• MPI_IRecv() - non blocking receive operation, allows program execution to

continue

• MPI_Wait() - completes the communication transaction

In addition to non blocking communication functions, the use of broadcast

communication can greatly simplify communications in an MPI program. Imagine you

need to pass runtime information to a group of processes. Unless you have prior

knowledge of the number of processes running in the system, you will have to loop

through and pass the information to each process running the program. Instead, MPI

gives you the function MPI_Bcast, which in a single call, will broadcast messages to

groups of processes.

6. 1 Can't we all work together?

MPI also provides communication functionality designed aiding the programmer

accomplish collaborative tasks. Many tasks which are broken down must often combine

or compare their results to derive a final solution to a problem.

For example, if you were computing of a integral over an interval [a ,b], one

approach could assign each process in a multiprocessor system the task of solving a

subinterval of the integral. Once each process completed, coming up for a value for the

original integral would simply require adding all the calculations from each process that

was assigned a portion of the integral. MPI provides a single function to aid in

calculations of this type, MPI Reduce [1]. Every process in the system would call this

function, and processes responsible for collecting the results would neatly assemble their

figures. The MPI_Reduce function provides the capability for the following

collaborative calculations [1]:

Operation Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical And

MPI_BAND Bitwise And

MPI_LOR Logical Or

MPI_BOR Bitwise Or

MPI_LXOR Logical Exclusive Or

MPI_BXOR Bitwise Exclusive Or

MPI_MAXLOC Maximum and Location of Maximum

MPI_MINLOC Minimum and Location of Minimum

 Other collaborative MPI functions include [1]:

• MPI_Barrier - allows multiple processes to synchronize at a given point in a

program

• MPI_Gather - Collect data from multiple processes reporting to a given root

• MPI_Scatter - A root process can distribute a buffer of information to other

processes.

• MPI_Allgather - Similar to MPI_Gather, but when operating on a group of

processes, gives each process data collected from all the other processes in a

group
• MPI_Allreduce - Similar to MPI_Scatter, but when operating on a group of

processes, sends each process in the group information from every other process

Bibliographies
Sec. 1 – High-performance computing

Sec. 5 – Interconnection

1. Top 500 supercomputer sites: http://www.top500.org/

2. Top 500 list for November 2005: http://top500.org/lists/2005/11/

3. Cray Inc.: http://www.cray.com/

4. Wikipedia – Cray: http://en.wikipedia.org/wiki/Cray

5. Wikipedia – Distributed memory:

http://en.wikipedia.org/wiki/Distributed_memory

6. Wikipedia – Distributed shared memory:

http://en.wikipedia.org/wiki/Distributed_shared_memory

7. Wikipedia – Beowulf: http://en.wikipedia.org/wiki/Beowulf_%28computing%29

8. Linux: http://www.linux.org/

9. Wikipedia – Berkeley Software Distribution: http://en.wikipedia.org/wiki/BSD

10. Torque resource manager:

http://www.clusterresources.com/pages/products/torque-resource-manager.php

11. Portable Batch System: http://www.openpbs.org/

12. Maui scheduler: http://www.clusterresources.com/pages/products/maui-cluster-

scheduler.php

13. OpenMP: http://www.openmp.org/

14. Silicon Graphics Origin 3000: http://www.sgi.com/products/servers/origin/3000/

15. Parallel Virtual Machine: http://www.csm.ornl.gov/pvm/

16. Message Passing Interface: http://www-unix.mcs.anl.gov/mpi/

17. Mathematics and Computer Science Division, Argonne National Laboratory:

http://www-unix.mcs.anl.gov/

18. “Web Search for a Planet: the Google Cluster Architecture”:

http://labs.google.com/papers/googlecluster-ieee.pdf

19. NCSA CFD story: http://www.ncsa.uiuc.edu/News/Access/Stories/CoolTurbines/

20. Wikipedia – Embarrassingly parallel:

http://en.wikipedia.org/wiki/Embarrassingly_parallel

21. SETI at home: http://setiathome.ssl.berkeley.edu/

22. Virginia Tech Terascale Computing Facility: http://www.tcf.vt.edu/

23. “Virginia Tech – System X Takes on the Grand Challenge”:

http://www.apple.com/science/profiles/vatech2/

24. Wikipedia – System X: http://en.wikipedia.org/wiki/System_X

25. COLSA Corporation “Taking Apple Xserve to MACH5”:

http://www.apple.com/science/profiles/colsa/

26. Detailed Notes from Virginia Tech Supercomputer Presentation:

http://www.chaosmint.com/mac/vt-supercomputer/

27. Wikipedia – Fat tree: http://en.wikipedia.org/wiki/Fat_tree

28. Distributed-memory MIMD machines: http://www.top500.org/ORSC/2004/dm-

mimd.html

29. “Computer Architecture, A Quantitative Approach” by John L. Hennessy and

David A. Patterson, 3rd Edition

30. Wikipedia – Moor’s Law: http://en.wikipedia.org/wiki/Moore%27s_Law

31. An InfiniBand Technology Overview: http://www.infinibandta.org/ibta/

32. Wikipedia – InfiniBand: http://en.wikipedia.org/wiki/Infiniband

33. An Introduction to the InfiniBand Architecture:

http://www.oreillynet.com/pub/a/network/2002/02/04/windows.html

34. Wikipedia – HyperTransport: http://en.wikipedia.org/wiki/HyperTransport

35. Myricom/Myrinet: http://www.myri.com/

36. Quadrics: http://www.quadrics.com/

37. MPI for InfiniBand Project: http://nowlab.cse.ohio-state.edu/projects/mpi-iba/

38. OpenIB Developers Workshop Feb 2005:

http://openib.org/openib_workshop_0205.html

39. Stanford SPIRE Parallel Interactive Rendering Engine: http://spire.stanford.edu/

Section 2 – Overview of System X

1. Virginia Tech Terascale Computing Facility. www.tcf.vt.edu/systemX.html

2. System X Faster, but Falls Behind

http://www.wired.com/news/mac/0,2125,65476,00.html?tw=wn_tophead_2

3. Va. Tech speeds up Mac OS X supercomputer by almost 20%

http://www.computerworld.com/hardwaretopics/hardware/story/0,10801,96933,0

0.html

4. Top 500. http://www.top500.org/

Section 3 – Dollars and Cents

1. Virginia Tech, System X Takes on the Grand Challenge -

www.apple.com/science/profiles/vatech2/

2. Apple – http://www.apple.com/xserve/

3. Virginia Tech Terascale Computing Facility. http://www.tcf.vt.edu/systemX.html

Section 4 – System Cooling

1. Xserve G5 Technology Overview.

http://images.apple.com/server/pdfs/20050912_Xserve_G5_TO.pdf

2. Virginia Tech Terascale Computing Facility. www.tcf.vt.edu/systemX.html

3. http://www.liebert.com/dynamic/displayproduct.asp?id=1077&cycles=60hz

Section 6 – Message Passing

1. A User's Guide to MPI. Peter S. Pacheco, Department of Mathematics, University

of San Francisco.

2. Introduction to MPI Distributed Programming on Mac OS X

developer.apple.com/hardware/hpc/mpionmacosx.html

3. The C Programming Language. Brian W. Kernighan and Dennis M. Ritchie.

