
Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 1

Navigation Controllers

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 2

Navigation Controller

drill-down interface in LootLogger
that lets the user see and edit the details of items.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 3

Navigation Controller

A UINavigationController maintains an array of view controllers presenting related
information in a stack. When a UIViewController is on top of the stack, its view is visible.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 4

Navigation Controller

More view controllers can be pushed on top of the UINavigationController’s stack while the
application is running. These view controllers are added to the end of the viewControllers
array that corresponds to the top of the stack. UINavigationController’s topViewController
property keeps a reference to the view controller at the top of the stack.

When a view controller is pushed onto the stack, its view slides onscreen from the right.
When the stack is popped (i.e., the last item is removed), the top view controller is removed
from the stack and its “view slides off to the right, exposing the view of the next view
controller on the stack, which becomes the top view controller.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 5

Navigation Controller

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 6

Navigation Controller

UINavigationController in the LootLogger will make the ItemsViewController the
UINavigationController’s root view controller.

The DetailViewController will be pushed onto the UINavigationController’s stack when an
Item is selected. This view controller will allow the user to view and edit the properties of an
Item selected from the table view of ItemsViewController.

Open LootLogger Project.

The only requirements for using a UINavigationController are that you give it a root view
controller and add its view to the window.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 7

Navigation Controller

“Open Main.storyboard and select the Items View Controller. Then, from the Editor menu,
choose Embed In → Navigation Controller (this can also be done from the button in the
bottom right). This will set the ItemsViewController to be the root view controller of a
UINavigationController. It will also update the storyboard to set the Navigation Controller as
the initial view controller.

Your Detail View Controller interface may have misplaced views now that it is contained
within a navigation controller. If it does, select the stack view and click the Update Frames
button in the Auto Layout constraint menu.

“Build and run the application and … the application crashes.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 8

Navigation Controller

You previously created a contract with the SceneDelegate that an instance of
ItemsViewController would be the rootViewController of the window. You have now broken
this contract by embedding the ItemsViewController in a UINavigationController. You need to
update the contract.

Open SceneDelegate.swift (if Xcode has not opened it for you) and update
scene(_:willConnectTo:options:) to reflect the new view controller hierarchy.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 9

Navigation Controller

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 guard let _ = (scene as? UIWindowScene) else { return }

 // Create an ItemStore
 let itemStore = ItemStore()

 // Access the ItemsViewController and set its item store
 let navController = window!.rootViewController as! UINavigationController
 let itemsController = navController.topViewController as! ItemsViewController
 itemsController.itemStore = itemStore
 }

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 10

Navigation Controller

Build and run the application again.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 11

Navigation Controller

With the application still running, create a new item and select that row from the
UITableView. Not only are you taken to DetailViewController’s view, but you also get a free
animation and a Back button in the UINavigationBar. Tap this button to get back to
ItemsViewController.

Having a view controller push the next view controller is a common pattern. The root view
controller typically creates the next view controller, and the next view controller creates the
one after that, and so on. Some applications may have view controllers that can push different
view controllers depending on user input. For example, the Photos app pushes a video view
controller or an image view controller onto the navigation stack depending on what type of
media is selected.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 12

Navigation Controller

Whenever a UINavigationController is about to swap views, it calls two methods:
viewWillDisappear(_:) and viewWillAppear(_:). The UIViewController that is about to be
popped off the stack has viewWillDisappear(_:) called on it. The UIViewController that will then
be on top of the stack has viewWillAppear(_:) call

In DetailViewController.swift, implement viewWillDisappear(_:)

override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)
// “"Save" changes to item
 item.name = nameField.text ?? ""
 item.serialNumber = serialNumberField.text

 if let valueText = valueField.text,
 let value = numberFormatter.number(from: valueText) {
 item.valueInDollars = value.intValue
 } else {
 item.valueInDollars = 0
 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 13

Navigation Controller

Now the values of the Item will be updated when the user taps the Back button on the
UINavigationBar.

In ItemsViewController.swift, override viewWillAppear(_:) to reload the table view.

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)
tableView.reloadData()
}

Build and run the app.
Now you can add items, move back and forth between the view controllers that you created,
and change the data with ease.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 14

Dismissing the Keyboard

Run the application, add and select an item, and touch the text field with the item’s name.
When you touch the text field, a keyboard appears onscreen.

The appearance of the keyboard in response to a touch is built into the UITextField class as
well as UITextView.

you are going to give the user two ways to dismiss the keyboard: pressing the keyboard’s
Return key and tapping anywhere else on the detail view controller’s view.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 15

Dismissing the Keyboard

If you touch another text field in the application, that text field will become the first responder,
and the keyboard will stay onscreen. The keyboard will only give up and go away when no text
field (or text view) is the first responder. To dismiss the keyboard, then, you call
resignFirstResponder() on the text field that is the first responder.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 16

Dismissing the Keyboard

in DetailViewController.swift, have DetailViewController conform to the UITextFieldDelegate
protocol.

class DetailViewController: UIViewController, UITextFieldDelegate {

func textFieldShouldReturn(_ textField: UITextField) -> Bool {
 textField.resignFirstResponder()
 return true
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 17

Dismissing the Keyboard

open Main.storyboard and connect the delegate property of each text field to the Detail View
Controller.

Control-drag from each UITextField to the Detail View Controller and choose delegate.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 18

Dismissing the Keyboard

Build and run the application. Add an item and drill down to its detail view. Tap a text field
and then press the Return key on the keyboard. “The keyboard will disappear. To get the
keyboard back, tap any text field.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 19

Dismissing the Keyboard

To dismiss the keyboard if the user taps anywhere else on DetailViewController’s view.
To do this, you are going to use a gesture recognizer when the view is tapped, just as you did
in the WorldTrotter app. In the action method, you will call resignFirstResponder() on the text
field.

Open Main.storyboard and find Tap Gesture Recognizer in the object library.
Drag this object onto the background view for the Detail View Controller. You will see a
reference to this gesture recognizer in the scene dock. (
Make sure you drag onto the VIEW, not on the DateCreated)

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 20

Dismissing the Keyboard

In the project navigator, Option-click DetailViewController.swift to open it in an additional
editor.

Control-drag from the tap gesture recognizer in the storyboard to the implementation of
DetailViewController.

In the panel that appears, select Action from the Connection menu. Name the action
backgroundTapped. For the Type, choose UITapGestureRecognizer.

Click Connect and the stub for the action method will appear in DetailViewController.swift.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 21

Dismissing the Keyboard

Update the method to call endEditing(_:) on the view of DetailViewController.

@IBAction func backgroundTapped(_ sender: UITapGestureRecognizer) {
 view.endEditing(true)
}

Calling endEditing(_:) is a convenient way to dismiss the keyboard without having to know (or
care) which text field is the first responder. When the view gets this call, it checks whether any
text field in its hierarchy is the first responder. If so, then resignFirstResponder() is called on
that particular view.

Build and run your application, add an item, and tap it. Tap a text field to show the keyboard.
Tap the view outside of a text field, and the keyboard will disappear.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 22

Dismissing the Keyboard

There is one final case where you need to dismiss the keyboard. When the user taps the Back
button, viewWillDisappear(_:) is called on the DetailViewController before it is popped off the
stack, and the keyboard disappears instantly, with no animation. To dismiss the keyboard
more smoothly, update the implementation of viewWillDisappear(_:) in
DetailViewController.swift to call endEditing(_:).

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 23

Dismissing the Keyboard

in DetailViewController.swift to call endEditing(_:).

override func viewWillDisappear(_ animated: Bool) {
 super.viewWillDisappear(animated)

 // Clear first responder
 view.endEditing(true)

 // "Save" changes to item
 item.name = nameField.text ??

“item.name = nameField.text ?? ""
 item.serialNumber = serialNumberField.text

 if let valueText = valueField.text,
 let value = numberFormatter.number(from: valueText) {
 item.valueInDollars = value.intValue
 } else {
 item.valueInDollars = 0
 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 24

UINavigationBar

Every UIViewController has a navigationItem property of type UINavigationItem. However,
unlike UINavigationBar, UINavigationItem is not a subclass of UIView, so it cannot appear on
the screen. Instead, the navigation item supplies the navigation bar with the content it needs
to draw. When a UIViewController comes to the top of a UINavigationController’s stack, the
UINavigationBar uses the UIViewController’s navigationItem to configure itself.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 25

UINavigationBar

By default, a UINavigationItem is empty. At the most basic level, a UINavigationItem has a
simple title string. When a UIViewController is moved to the top of the navigation stack and
its navigationItem has a valid string for its title property, the navigation bar will display that
string

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 26

UINavigationBar

Open Main.storyboard. Drag a Navigation Item from the library on top of the Items View
Controller. Double-click the center of the navigation bar above the Items View Controller to
edit its title. Give it a title of LootLogger.

Build and run the application. Notice the string LootLogger on the navigation bar. Create and
tap a row and notice that the navigation bar no longer has a title. It would be nice to have the
DetailViewController’s navigation item title be the name of the Item it is displaying. Because
the title will depend on the Item that is being displayed, you need to set the title of the
navigationItem dynamically in code.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 27

UINavigationBar

In DetailViewController.swift, add a property observer to the item property that updates the
title of the navigationItem.

var item: Item! {
 didSet {
 navigationItem.title = item.name
 }
}

“Build and run the application once again. Create and tap a row and you will see that the title
of the navigation bar is the name of the Item you selected.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 28

UINavigationBar

To replace the two buttons that are in the table’s header view with two bar button items that
will appear in the UINavigationBar when the ItemsViewController is on top of the stack. A bar
button item has a target-action pair that works like UIControl’s target-action mechanism:
When tapped, it sends the action message to the target.

In ItemsViewController.swift, update the method signature for addNewItem(_:)

@IBAction func addNewItem(_ sender: UIButton) {
@IBAction func addNewItem(_ sender: UIBarButtonItem) {
….}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 29

UINavigationBar

open Main.storyboard. Open the object library and drag a Bar Button Item to the right side of
the items view controller’s navigation bar. Select this bar button item and open its attributes
inspector. Change the System Item to Add

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 30

UINavigationBar

Control-drag from this bar button item to the Items View Controller and select addNewItem:

“Build and run the application. Tap the button and a new row will appear in the table.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 31

UINavigationBar

In ItemsViewController.swift, override the init(coder:) method to set the left bar button item.

required init?(coder aDecoder: NSCoder) {
 super.init(coder: aDecoder)

 navigationItem.leftBarButtonItem = editButtonItem
}

Build and run the application, add some items, and tap the Edit button. The UITableView
enters editing mode. The editButtonItem property creates a UIBarButtonItem with the title
Edit.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 32

UINavigationBar

“Open Main.storyboard. Now that LootLogger has a fully functional navigation bar, you can
get rid of the header view and the associated code. Select the header view on the table view
and press Delete.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 33

UINavigationBar

Finally, in ItemsViewController.swift, remove the toggleEditingMode(_:) method:

@IBAction func toggleEditingMode(_ sender: UIButton) {
 // If you are currently in editing mode...

if isEditing {
 // Change text of button to inform user of state

sender.setTitle("Edit", for: .normal)

 // Turn off editing mode
setEditing(false, animated: true)

 } else {
 // Change text of button to inform user of state

sender.setTitle("Done", for: .normal)

 // Enter editing mode
setEditing(true, animated: true)

 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 34

UINavigationBar

“Build and run again. The old Edit and Add buttons are gone, leaving you with a lovely
UINavigationBar

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

