
Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 1

Camera

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 2

Camera

Adding a camera to existing LootLogger app.

UIImagePickerController enables the user to take and save a picture of each item. The image
will then be associated with an Item instance and viewable in the item’s detail view.

ImageStore, a second store for images, will store images (large data), fetch and cache images
as they are needed.

the DetailViewController get and display an image. An easy way to display an image is to put
an instance of UIImageView on the screen.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 3

Camera

Open LootLogger.xcodeproj and Main.storyboard. Drag an Image
View from the library onto the detail view controller’s view,
positioning it as the last view within the stack view.

Select the image view and open its size inspector. You want the
vertical content hugging and content compression resistance
priorities for the image view to be lower than those of the
other views.

• Change the Vertical Content Hugging Priority to 248
• Vertical Content Compression Resistance Priority to 749.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 4

Camera

A UIImageView displays an image according to the image view’s contentMode property.
This property determines where to position and how to resize the content within the image
view’s frame.
 For image views, you will usually want either aspect fit (if you want to see the whole image) or
aspect fill (if you want the image to fill the image view).

With the UIImageView still selected, open the attributes inspector.
Find the Content Mode attribute and confirm it is set to Aspect Fit.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 5

Camera

Option-click DetailViewController.swift in the project navigator to open it in another editor.
Control-drag from the UIImageView to the top of DetailViewController.swift. Name the outlet
imageView and make sure the storage type is Strong. Click Connect.

…
class DetailViewController: UIViewController, UITextFieldDelegate {

 @IBOutlet var nameField: UITextField!
 @IBOutlet var serialNumberField: UITextField!
 @IBOutlet var valueField: UITextField!
 @IBOutlet var dateLabel: UILabel!
 @IBOutlet var imageView: UIImageView!

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 6

Camera

In the choosePhotoSource(_:) method, you will instantiate a UIImagePickerController and
present it on the screen. When creating an instance of UIImagePickerController, you must set
its sourceType property and assign it a delegate.

Close the editor showing Main.storyboard. In DetailViewController.swift, add a new method
that creates and configures a UIImagePickerController instance. You will need to create the
UIImagePickerController instance from more than one place, so abstracting it into a method
will help avoid repetition.

func imagePicker(for sourceType: UIImagePickerController.SourceType)
 -> UIImagePickerController {

 let imagePicker = UIImagePickerController()
 imagePicker.sourceType = sourceType
 return imagePicker
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 7

Camera

“The sourceType is a UIImagePickerController.
SourceType enumeration value and tells the image picker where to get images. It has three
possible values:

.camera

 Allows the user to take a new photo.

.photoLibrary

 Prompts the user to select an album and then a photo from that album.

.savedPhotosAlbum

 Prompts the user to choose from the most recently taken photos.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 8

Camera

In choosePhotoSource(_:), create an image picker controller instance when the user chooses one of the action sheet options.

@IBAction func choosePhotoSource(_ sender: UIBarButtonItem) {
 let alertController = UIAlertController(title: nil,
 message: nil,
 preferredStyle: .actionSheet)
 alertController.modalPresentationStyle = .popover
 alertController.popoverPresentationController?.barButtonItem = sende
 let cameraAction = UIAlertAction(title: "Camera", style: .default) { _ in
 print("Present camera")
 let imagePicker = self.imagePicker(for: .camera)
 }
 alertController.addAction(cameraAction)

 let photoLibraryAction =
 UIAlertAction(title: "Photo Library", style: .default) { _ in

print("Present photo library")
 let imagePicker = self.imagePicker(for: .photoLibrary)
 }
}
 alertController.addAction(photoLibraryAction)
 let cancelAction = UIAlertAction(title: "Cancel", style: .cancel, handler: nil)
 alertController.addAction(cancelAction)
 present(alertController, animated: true, completion: nil)
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 9

Camera

The first source type, .camera, will not work on a device that does not have a camera. So
before using this type, you have to check for a camera by calling the method
isSourceTypeAvailable(_:) on the UIImagePickerController class:

class func isSourceTypeAvailable
 (_

Calling this method returns a Boolean value indicating whether the device supports the
passed-in source type.

Update choosePhotoSource(_:) to only show the camera option if the device has a camera:

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 10

Camera

Update choosePhotoSource():

@IBAction func choosePhotoSource(_ sender: UIBarButtonItem) {
 let alertController = UIAlertController(title: nil,
 message: nil,
 preferredStyle: .actionSheet)

 alertController.modalPresentationStyle = .popover
 alertController.popoverPresentationController?.barButtonItem = sender

 if UIImagePickerController.isSourceTypeAvailable(.camera) {
 let cameraAction = UIAlertAction(title: "Camera", style: .default) { _ in
 let imagePicker = self.imagePicker(for: .camera)
 }
 alertController.addAction(cameraAction)
 }

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 11

Camera

In addition to a source type, the UIImagePickerController instance needs a delegate. When
the user selects an image from the UIImagePickerController’s interface, the delegate is sent
the message imagePickerController(_:didFinishPickingMediaWithInfo:). (If the user taps the
cancel button, then the delegate receives the message imagePickerControllerDidCancel(_:).)
The image picker’s delegate will be the instance of DetailViewController.

In DetailViewController.swift:

class DetailViewController: UIViewController, UITextFieldDelegate,
 UINavigationControllerDelegate, UIImagePickerControllerDelegate {

func imagePicker(for sourceType: UIImagePickerController.SourceType) ->
 UIImagePickerController {
 let imagePicker = UIImagePickerController()
 imagePicker.sourceType = sourceType
 imagePicker.delegate = self
 return imagePicker
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 12

Camera

In choosePhotoSource(_:) add the following code:

if UIImagePickerController.isSourceTypeAvailable(.camera) {
 let cameraAction = UIAlertAction(title: "Camera", style: .default) { _ in
 let imagePicker = self.imagePicker(for: .camera)
 self.present(imagePicker, animated: true, completion: nil)
 }
 alertController.addAction(cameraAction)
}

let photoLibraryAction = UIAlertAction(title: "Photo Library", style: .default) { _ in
 let imagePicker = self.imagePicker(for: .photoLibrary)
 self.present(imagePicker, animated: true, completion: nil)
}
alertController.addAction(photoLibraryAction)

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 13

Camera

Apple’s documentation for UIImagePickerController mentions that the camera should be
presented full screen, and the photo library and saved photos album must be presented in a
popover. The only change you need to make to satisfy these requirements is to present the
photo library in a popover.
Update the image picker to do just that.

In DetailViewController.swift:

let photoLibraryAction = UIAlertAction(title: "Photo Library", style: .default) { _ in
 let imagePicker = self.imagePicker(for: .photoLibrary)
 imagePicker.modalPresentationStyle = .popover
 imagePicker.popoverPresentationController?.barButtonItem = sender
 self.present(imagePicker, animated: true, completion: nil)
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 14

Camera

Build and run the application. Select an Item to see its details and then tap the camera button
on the UIToolbar. Choose Photo Library and then select a photo.

Camera option no longer appears, because the simulator has no camera.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 15

Camera

When attempting to access potentially private information, such as the camera, iOS prompts
the user to consent to that access. Contained within this prompt is a description of why the
application wants to access the information. LootLogger is missing this description, and
therefore the application is crashing.

There are a number of capabilities on iOS that require user approval before use:
• Camera
• Photos
• Location
• microphone
• HealthKit data
• Calendar
• Reminders

For each of these, your application must supply a usage description that specifies the reason
that your application wants to access the capability or information. This description will be
presented to the user when the application attempts the access.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 16

Camera

In the project navigator, select the project at the top. In the editor, make sure the LootLogger
target is selected and open the Info tab along the top

Hover over the last entry in this list of Custom iOS Target Properties and click the + button.
“Privacy – Camera Usage Description.” By default, Xcode displays human-readable strings
instead of the actual key names. When adding or editing an entry, you can use either the
human-readable string or the actual key name.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 17

Camera

Control-click on the key-
like to view the actual key names in Xcode, Control-click on the key-value table and select
Raw Keys & Values.

For the Value, enter ”This app uses the camera to associate photos with items”. This is the
string that will be presented to the user.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 18

Camera

Build and run the application on a device and navigate to an item.
Tap the camera button, select the Camera option, and you will see the permission dialog
presented with the usage description that you provided. After you tap OK, the
UIImagePickerController’s camera interface will appear on the screen, and you can take a
picture.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 19

Saving the Image

Selecting an image dismisses the UIImagePickerController and returns you to the detail view.
However, you do not have a reference to the photo once the image picker is dismissed. To fix
this, you are going to implement the delegate method
imagePickerController(_:didFinishPickingMediaWithInfo:). This method is called on the image
picker’s delegate when a photo has been selected.

In DetailViewController.swift, implement
imagePickerController(_:didFinishPickingMediaWithInfo:) to put the image

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 20

Saving the Image

Create a new Swift file named ImageStore. In ImageStore.swift, define the ImageStore class
and add a property t

import UIKit

class ImageStore {

 let cache = NSCache<NSString,UIImage>()
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 21

Saving the Image

The cache works very much like a dictionary. You are able to add, remove, and update values
associated with a given key. Unlike a dictionary, the cache will automatically remove objects if
the system gets low on memory.

Note that the cache is associating an instance of NSString with UIImage. NSString is
Objective-C’s version of String. Due to the way NSCache is implemented (it is an Objective-C
class, like most of Apple’s classes that you have been working with), it requires you to use
NSString instead of String.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 22

Saving the Image

In the ImageStore.swift:

class ImageStore {

 let cache = NSCache<NSString,UIImage>()

 func setImage(_ image: UIImage, forKey key: String) {
 cache.setObject(image, forKey: key as NSString)
 }

func image(forKey key: String) -> UIImage? {
 return cache.object(forKey: key as NSString)
 }

 func deleteImage(forKey key: String) {
 cache.removeObject(forKey: key as NSString)
 }

}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 23

Saving the Image

In DetailViewController.swift, add a property for an ImageStore:

var item: Item! {
 didSet {
 navigationItem.title = item.name
 }
}
var imageStore: ImageStore!

in ItemsViewController.swift:

var itemStore: ItemStore!
var imageStore: ImageStore!

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 24

Saving the Image

in ItemsViewController.swift:
update prepare(for:sender:) to set the imageStore property on DetailViewController:

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
 // If the triggered segue is the "showItem" segue
 switch segue.identifier {
 case "showItem":
 // Figure out which row was just tapped
 if let row = tableView.indexPathForSelectedRow?.row {

 // Get the item associated with this row and pass it along
 let item = itemStore.allItems[row]
 let detailViewController
 = segue.destination as! DetailViewController
detailViewController.item = item
 detailViewController.imageStore = imageStore
 }
 default:
 preconditionFailure("Unexpected segue identifier.")
 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 25

Saving the Image

In SceneDelegate.swift

func scene(_ scene: UIScene,
 willConnectTo session: UISceneSession,
 options connectionOptions: UIScene.ConnectionOptions) {
 guard let _ = (scene as? UIWindowScene) else { return }

 // Create an ImageStore
 let imageStore = ImageStore()

 // Create an ItemStore
 let itemStore = ItemStore()

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 26

Saving the Image

When an image is added to the store, it will be put into the cache under a unique key, and the
associated Item object will be given that key. When the DetailViewController wants an image
from the store, it will ask its item for the key and search the cache for the image.

Add a property to Item.swift to store the key.

let dateCreated: Date
let itemKey: String

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 27

Saving the Image

In Item.swift, generate a UUID and set it as the itemKey.

init(name: String, serialNumber: String?, valueInDollars: Int) {
 self.name = name
 self.valueInDollars = valueInDollars
 self.serialNumber = serialNumber
 self.dateCreated = Date()
 self.itemKey = UUID().uuidString
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 28

Saving the Image

in DetailViewController.swift, update imagePickerController(_:didFinishPickingMediaWithInfo:) to
store the image in the ImageStore:

func imagePickerController(_ picker:
UIImagePickerController,
 didFinishPickingMediaWithInfo info:
[UIImagePickerController.InfoKey: Any]) {
// Get picked image from info dictionary
 let image = info[UIImagePickerControllerOriginalImage] as! UIImage

 // Store the image in the ImageStore for the item's key
 imageStore.setImage(image, forKey: item.itemKey)

 // Put that image on the screen in the image view
 imageView.image = image

 // Take image picker off the screen - you must call this dismiss method
 dismiss(animated: true, completion: nil) }

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 29

Saving the Image

Each time an image is captured, it will be added to the store. Notice that the images are
saved immediately after being taken, while the instances of Item are saved only when the
application enters the background. You save the images right away because they are too big
to keep in memory for long.

Both the ImageStore and the Item will know the key for the image, so both will be able to
access it as needed.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 30

Saving the Image

In ItemsViewController.swift, update tableView(_:commit:forRowAt:) to remove the item’s
image from the image store:

override func tableView(_ tableView: UITableView,
 commit editingStyle: UITableViewCellEditingStyle,
 forRowAt indexPath: IndexPath) {
 // If the table view is asking to commit a delete command...
 if editingStyle == .delete {
 let item = itemStore.allItems[indexPath.row]

 // Remove the item from the store
 itemStore.removeItem(item)

 // Remove the item's image from the image store
 imageStore.deleteImage(forKey: item.itemKey)

 // Also remove that row from the table view with an animation
 tableView.deleteRows(at: [indexPath], with: .automatic)
 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 31

Saving the Image

Each item’s itemKey is encoded and decoded, but what about its image? At the moment,
images are lost when the app enters the background state. In this section, you will extend the
image store to save images as they are added and fetch them as they are needed.

The images for Item instances should also be stored in the Documents directory. You can use
the image key generated when the user takes a picture to name the image in the filesystem.

Implement a new method in ImageStore.swift named imageURL(forKey:) to create a URL in
the documents directory using a given key.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 32

Saving the Image

In ImageStore.swift:

func imageURL(forKey key: String) -> URL {
 let documentsDirectories =
 FileManager.default.urls(for: .documentDirectory, in: .userDomainMask)
 let documentDirectory = documentsDirectories.first!
return documentDirectory.appendingPathComponent(key)
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 33

Saving the Image

In ImageStore.swift:
modify setImage(_:forKey:) to get a URL and save the image:

func setImage(_ image: UIImage, forKey key: String) {
 cache.setObject(image, forKey: key as NSString)

 // Create full URL for image
 let url = imageURL(forKey: key)

 // Turn image into JPEG data
 if let data = image.jpegData(compressionQuality: 0.5) {
 // Write it to full URL
 try? data.write(to: url)
 }
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 34

Saving the Image

In ImageStore.swift:
update image(forKey:) so that the ImageStore will load the image from the filesystem if it
does not already have it:

func image(forKey key: String) -> UIImage? {
return cache.object(forKey: key as NSString)

 if let existingImage = cache.object(forKey: key as NSString) {
 return existingImage
 }

let url = imageURL(forKey: key)
 guard let imageFromDisk = UIImage(contentsOfFile: url.path) else {
 return nil
 }

 cache.setObject(imageFromDisk, forKey: key as NSString)
 return imageFromDisk
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 35

Saving the Image

You are able to save an image to disk and retrieve an image from disk. Now you need the
functionality to remove an image from disk. In ImageStore.swift, make sure that when an
image is delete

func deleteImage(forKey key: String) {
 cache.removeObject(forKey: key as NSString)

 let url = imageURL(forKey: key)
 do {
 try FileManager.default.removeItem(at: url)
 } catch {
 print("Error removing the image from disk: \(error)")
}
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 36

Saving the Image

Now that the ImageStore can store images, and instances of Item have a key to get an image
,you need to teach DetailViewController how to grab the image for the selected Item and
place it in its imageView.

The DetailViewController’s view will appear when the user taps a row in ItemsViewController
and when the UIImagePickerController is dismissed. In both of these situations, the
imageView should be populated with the image of the Item being displayed. Currently, it is
only happening when the UIImagePickerController is dismissed.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 37

Saving the Image

In DetailViewController.swift,

override func viewWillAppear(_ animated: Bool) {
 super.viewWillAppear(animated)

 nameField.text = item.name
 serialNumberField.text = item.serialNumber
 valueField.text =
numberFormatter.string(from: NSNumber(value: item.valueInDollars))
 dateLabel.text = dateFormatter.string(from: item.dateCreated)

 // Get the item key
 let key = item.itemKey

 // If there is an associated image with the item, display it on the image view
 let imageToDisplay = imageStore.image(forKey: key)
 imageView.image = imageToDisplay
}

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 38

Saving the Image

In DetailViewController.swift,
If error shows up- check case if declared imageView variable.

 @IBOutlet var imageView: UIImageView!

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 39

Saving the Image

Build and run the application. Create an item and select it from the table view. Then tap the
camera button and select a picture. The image will appear as it should. Pop out from the
item’s details to the list of items. Unlike before, if you tap and drill down to see the details of
the item you added a picture to, you will see the image.

Daria TsoupikovaProfessional Practice II
SpringMobile App Development — DES 421 40

Saving the Image

If errors persist – check swift syntax.
Use files from folder ClassFiles > CameraFinal to update your scripts.

Run on device and check camera in action.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

