Alerts
Presenting View Controllers

% MOblle App Development o DES 421 :;c::‘:;sional Practice Il Daria Tsoupikova

Presenting View Controllers

We are skipping Saving States (read Ch 13 on your own to follow the example).

I0S apps often present users with a view controller showing an action they must complete or
dismiss. For example, when adding a new contact on iPhone, users are presented with a
screen to fill out the contact’s details. We call this kind of presentation modal, as the
application is being put into a different “mode” where a set of actions become the focus.

The user must interact with the modally presented view controller before proceeding.

© add email

%,/%' B Professional Practice Il Daria Tsoupikova
W M Ob I Ie App DeVE Ringtone Default Spring

Presenting View Controllers

We will extend the LootLogger application to add the ability for users to associate a photo
with each of their items. We will present the user with the option to select a photo from either
the camera or the device's photo library.

Camera

Photo Library

Cancel

% MObIIe App Development o DES 421 Professional Practice Il Daria Tsoupikova

Spring

Presenting View Controllers

Open LootLogger.xcodeproj and navigate to Main.storyboard. In the detail view controller,
select the bottom constraint for the outer stack view and press Delete to remove it. The stack
view will resize itself, which will make some room for the toolbar at the bottom of the screen.

eve M) » B LootLogger B LootLogger) [] iPhone 16 Pro (18.1) Build Succeeded | Today at 9:31 PM 3 & + (6|
&= B 0 a A © 5§ D B 8 < Main (Base) 2= ® B O @ B = h @
B LootLogger LootLogger) & LootLogger } Main) Main (Base)) Detail View } Detail View) C] View) [0 Constraints) Ba Safe Area.bottom = Stack View.bottom -8 ¢ > Bottom Alignment Constraint
~ @ LootLogger v LootLogger Scene First ltem Safe Area.Bottom o @
3 AppDelegate v (&) Lootlogger Jr— . Ralation| Equal
3 SceneDelegate v EETab\e View i @ Second Item Stack View.Bottom) @
hem > B temcell Constant -8 BS
S PR e LootLogger B < LootLogger -
3 ItemStore Priority 1000 o
. First Responder i , iamd =
Main — Multiplier 1 . G
5 (&) Exit = i erial |
3 ftemsViewController o Show segue “showltem” to “Detail Vie... | alue] Identifier
3\ DetailViewController + §5 Detail View Controller Scene - Placeholder Remove at build time
ItemCell i
3 v () Detail View Controller Installed
@ Assets v OQview
LaunchScreen [Safe Area
EH Info v DS(ack View
v @@ LootLoggerTests > [Dstack view o>
3 LootLoggerTests > [Dstack view Y

E8 Info

> [stack View

v @ LootLoggerUlTests LD bl Date Created
> [0l Constraints
3\ LootLoggerUITests v [Constraints
E3 Info =| Safe Area.trailing = Stack Vie.
_'_H'Saie Area.bottom = Stack View.bottom - 8 e _—
|& Stack View.leading = Safe Ar...
1" Stack View.top = Safe Area.t...
< Navigation Item
First Responder
4 Exit —_— k
®) Tap Gesture Recognizer
> Navigation Controller Scene
1% \
2%:;
by

0)

no 6 n

iPhone 11

o)

52% @&

Oeorae [

Presenting View Controllers

Now, drag a toolbar from the library and place it near the bottom of the view.
Make sure it is above the Home indicator (the black bar along the bottom of the screen).

£ LootLogger
Name
Serial

Value

Date Created

% oo
iy Mobile App Development — DES 421 _

/ soupikova

Presenting View Controllers

You want the toolbar to extend from the superview's leading edge to its trailing edge,
independent of the safe area. To do this, select both the toolbar and the superview and open
the Auto Layout Align menu. Configure the constraints as shown on the left:

Select only the toolbar this time and open the Auto Layout Add New Constraints menu.
Configure the top and bottom constraints as shown on the right:

Add New Constraints
Add New Alignment Constraints

I&' Leading Edges 0 v s I

&l Trailing Edges 0 v 0 v|i~i[l—i[o .
0° Top Edges 0 v I
0| Bottom Edges 0 v 0 b

Spacing to nearest neighbor

& Horizontal Centers 0 v Constrain to margins

f18/ Vertical Centers 0 v Width 375 =
9 First Baselines 0 v Height a4 =
[#] Horizontally in Container v

& Vertically in Container v

Add 2 Constraints [Aspect Ratio
Add 2 Constraints
DR o] tal ¥ »fessional Practice Il Daria Tsoupikova

ng Q= ol A @

Presenting View Controllers

By default, a new instance of UlToolbar that is created in an interface file comes with one
UlBarButtonltem. Select this bar button item and open the attributes inspector. Change the
System Item to Camera, and the item will show a camera icon.

= 2 < LootLogger
. O ¢ |+1]) ’ (-

DOoOOo®mY i o
Bar Button Item

Serial

Value

Style Bordered

System lItem Camera

olof o)

Tint Default
Drag and Drop Spring Loaded

Bar Item @—)

Title

Date Created

Image
Landscape

Accessibility

Bl <] <] <

Tag 0
Enabled

% MOblle App Development o DES 421 :;c::‘:;sional Practice Il Daria Tsoupikova

Presenting View Controllers

Build and run the application and navigate to an item’s details to see the toolbar with its
camera bar button item.

With Main.storyboard still open, Option-click DetailViewController.swift in the project
navigator to open it in another editor.

In Main.storyboard, select the camera button in the document outline and Control-drag from
the selected button to the DetailViewController.swift editor.

In the panel, select Action as the Connection, Connection | Action
name it choosePhotoSource, Object Detail View Cont...
select UlBarButtonltem as the Type, and click Connect Name | choosePhotoSource

Type UlBarButtonitem von

Cancel Connect

/;,5/’ MOblle App Development o DES 421 :::ifre:;sional Practice ll Daria Tsoupikova

Alerts

To allow the user to choose a photo source, you will present an alert with the possible choices.
Alerts are often used to display information the user must act on. When you want to display

an alert, you create an instance of UlAlertController with a preferred style. The two available
styles are UlAlertControllerStyle.actionSheet

The .actionSheet style is used to present the user with a list of actions to choose from. The
alert type is used to display critical information and requires the user to decide how to
proceed. The distinction may seem subtle, but if the user can back out of a decision or if the
action is not critical, then an .actionSheet is probablv the best choice.

% Mobile App Development — DES 421 H

.actionSheet .alert

Alerts

In DetailViewController.swift, update choosePhotoSource(_:) to create an alert controller
instance.

@IBAction func choosePhotoSource(_ sender: UlBarButtonltem) {
let alertController = UlAlertController(title: nil,
message: nil,
preferredStyle: .actionSheet)

Professional Practice Il Daria Tsoupikova

% Mobile App Development — DES 421 ¢ing

Alerts

After determining that the user wants to associate a photo with some item, you create an
instance of UlAlertController. No title or message are needed for this action sheet since the
purpose should be self-evident from the action the user took. Finally, you specify the
.actionSheet style for the alert.

If the alert controller were presented with the current code, there would not be any actions
for the user to choose from. You need to add actions to the alert controller, and these actions
are instances of UlAlertAction. You can add multiple actions (regardless of the alert’s style).
They are added to the UlAlertController instance using the addAction(_:) method.

/;,5/’ MOblle App Development — DES 421 :::if:;sional Practice ll Daria Tsoupikova n

Alerts

IBAction func choosePhotoSource(_ sender: UlBarButtonltem) {
let alertController = UlAlertController(title: nil,
message: nil,
preferredStyle: .actionSheet)
let cameraAction = UlAlertAction(title: "Camera", style: .default) { _in
print("Present camera")

}

alertController.addAction(cameraAction)

let photoLibraryAction
= UlAlertAction(title: "Photo Library", style: .default) { _in
print("Present photo library")

}
alertController.addAction(photoLibraryAction)

let cancelAction = UlAlertAction(title: "Cancel", style: .cancel, handler: nil)
alertController.addAction(cancelAction)

}

Professional Practice Il Daria Tsoupikova

@4@ Mobile App Development — DES 421 (g

12

Alerts

Each action is given a title, a style, and a closure to execute if that action is selected by the
user. The different styles — .default, .cancel, and .destructive — influence the position and
styling of the action within the action sheet. For example, .cancel actions show up at the
bottom of the list, and .destructive actions use red font colors to emphasize the destructive
nature of the action.

Now that the action sheet has been configured, you need a way to present it to the user. To
present a view controller modally, you call on the initiating
view controller, passing in the view controller to present as the first argument.

/;,5/’ MOblle App Development o DES 421 :::if:;sional Practice ll Daria Tsoupikova

Alerts

Update choosePhotoSource(_:) to present the alert controller modally:

@IBAction func choosePhotoSource(_ sender: UlBarButtonltem) {
let alertController = UlAlertController(title: nil,
message: nil,
preferredStyle: .actionSheet).......

alertController.addAction(photoLibraryAction)

let cancelAction = UlAlertAction(title: "Cancel", style: .cancel, handler: nil)
alertController.addAction(cancelAction)

present(alertController, animated: true, completion: nil)

}

Professional Practice Il Daria Tsoupikova

% Mobile App Development — DES 421 ¢ing

Alerts

The pr method takes in a view controller to present, a Bool
indicating whether that presentation should be animated, and an optional closure to call
once the presentation is completed. Generally, you will want the presentation to be animated,
as this provides context to the user about what is happening.

Build and run the application. Tap the camera button and watch the action sheet slide up.
Finally, tap one of the actions. If you tap either the Camera or Photo Library action, you will see
a message logged to the console indicating which was tapped. Regardless of which action
you tap, you will notice that the action sheet is automatically dismissed.

/;,5/’ MOblle App Development o DES 421 :::ifre‘;sional Practice ll Daria Tsoupikova

Presentations Styles of View Controllers

.automatic
Presents the view controller using a style chosen by the system. Typically this results in a

formSheet presentation. This is the default presentation style.

formSheet
Presents the view controller centered on top of the existing content

fullScreen
Presents the view controller over the entire application.

.overFullScreen
Similar to .fullScreen except the view underneath the presented view controller stays visible.

Use this style if the presented view controller has transparency

.popover
Presents the view controller in a popover view on iPad. (On iPhone, using this style falls back

to a form sheet presentation style due to space constraints)

//;Z/ MOblle App Development o DES 421 :::if:;sional Practice ll Daria Tsoupikova

16

Presentations Styles of View Controllers

Action sheets should be presented using the popover style.

on iPad this produces a popover interface with a “pointer” connecting it to the element that
triggered it.

On iPhone, because of the smaller window size, .popover falls back to .automatic and allows
the system to choose the best style.

This is what you want for your alert controller. On iPad, you want it to appear in a popover

pointing at the camera bar button. On iPhone, you want the system to select the best style for
the screen size (which will be the .formSheet style you just saw in action).

/;,5/’ MOblle App Development o DES 421 Professional Practice ll Daria Tsoupikova

Spring

17

Presentations Styles of View Controllers

Update choosePhotoSource(_:) to tell the alert controller to use the popover presentation
style.

@IBAction func choosePhotoSource(_ sender: UlBarButtonltem) {
let alertController = UlAlertController(title: nil,
message: nil,
preferredStyle: .actionSheet)

alertController.modalPresentationStyle = .popover

% Moblle App Development o DES 421 :;z::’:;sional Practice Il Daria Tsoupikova

Presentations Styles of View Controllers

To indicate where the popover should point, you can specify a frame or a bar button item for it
to point to. Since you already have a bar button item, that is the better choice here.

In choosePhotoSource(_:), specify the bar button item that the popover should point at.
@IBAction func choosePhotoSource(_ sender: UlBarButtonltem) {
let alertController = UlAlertController(title: nil,
message: nil,
preferredStyle: .actionSheet)

alertController.modalPresentationStyle = .popover

% MOblle App Development o DES 421 :;c::‘:;sional Practice Il Daria Tsoupikova

19

Presentations Styles of View Controllers

Every view controller has a popoverPresentationController, which is an instance of
UlPopoverPresentationController. The popover presentation controller is responsible for
managing the appearance of the popover. One of its properties is barButtonltem, which tells
the popover to point at the provided bar button item. Alternatively, you can specify a
sourceView and a sourceRect if the popover is not presented from a bar button item.

Build and run the application in simulator, navigate to an item'’s details, and tap the camera
button. The action sheet is presented in a popover pointing at the camera button

Professional Practice Il Daria Tsoupikova 20

’;’5/ Mobile App Development — DES 421 ¢ ing

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

