
Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 1

Stack Views
Nested Stack Views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 2

Stack Views

Auto Layout allows to create flexible interfaces that scale across device types and sizes.
However, auto-layouts could be very complex and it can be difficult to create dynamic
interfaces due to the need to constantly add and remove constraints.

An interface can be laid out in a linear fashion (such as a vertical interface consisting of a text
field and a few labels) and can be developed using a stack view.

A stack view is an instance of UIStackView that allows you to create a vertical or horizontal
layout that is easy to lay out and manages most of the constraints that you would typically
have to manage yourself.

Stack views can be nested.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 3

Stack Views

To create an interface for displaying the details of a specific Item in LootLogger we will use
multiple nested stack views, both vertical and horizontal.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 4

Stack Views

Open LootLogger project and then open Main.storyboard.

Drag a new View Controller from the object library onto the canvas.

Drag a Vertical Stack View from the object library onto the view for the View Controller.

Add 4 constraints to the stack view to pin it to the leading and trailing margins (use control
key , and pin the top and bottom edges to be 8 points from the top and bottom layout guides.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 5

Stack Views

pen your Homepwner project and then open Main.storyboard.

Drag a new View Controller from the object library onto the canvas.

Drag a Vertical Stack View from the object library onto the view for the View Controller.

Add constraints to the stack view to pin it to the leading and trailing margins (use control
key), and pin the top and bottom edges to be 8 points from the top and bottom layout guides.

Now drag four instances of UILabel from the object library onto the stack view. From top to
bottom, give these labels the text “Name,” “Serial,” “Value,” and “Date Created”

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 6

Stack Views

Now drag four instances of UILabel from the object library onto
the stack view. From top to bottom, give these labels the text “Name,”
“Serial,” “Value,” and “Date Created”

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 7

Stack Views

pen your Homepwner project and then open Main.storyboard.

Drag a new View Controller from the object library onto the canvas.

Drag a Vertical Stack View from the object library onto the view for the View Controller.

Add constraints to the stack view to pin it to the leading and trailing margins (use control
key), and pin the top and bottom edges to be 8 points from the top and bottom layout guides.

Now drag four instances of UILabel from the object library onto the stack view. From top to
bottom, give these labels the text “Name,” “Serial,” “Value,” and “Date Created”

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 8

Stack Views

The labels all have a red border (indicating an Auto Layout problem) and there is a warning
that some views are vertically ambiguous.

There are two ways you can fix this issue:
• by using Auto Layout,
• by using a property on the stack view.

IMPLICIT CONSTRAINTS

if you do not specify constraints that explicitly determine the width or height, the view will
derive its width or height from its intrinsic content size.

It does this using implicit constraints derived from a view’s content hugging priorities and its
content compression resistance priorities.
• horizontal content hugging priority
• vertical content hugging priority
• horizontal content compression resistance priority
• vertical content compression resistance priority

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 9

Stack Views

The content hugging priority is like a rubber band that is placed around a view.
The rubber band makes the view not want to be bigger than its intrinsic content size in that
dimension.
Each priority is associated with a value from 0 to 1000.
A value of 1000 means that a view cannot get bigger than its intrinsic content size on that
dimension.

This works great until the superview becomes wider. At that point, which label should
become wider? The first label, the second label, or both?

This is where the content hugging priority becomes relevant.
The view with the higher content hugging priority is the one
that does not stretch. You can think about the priority value
as the “strength” of the rubber band. The higher the priority value, the stronger the rubber
band, and the more it wants to hug to its intrinsic content size.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 10

Stack Views

The content compression resistance priorities determine how much a view resists getting
smaller than its intrinsic content size. Consider the same two labels . What would happen if
the superview’s width decreased? One of the labels would need to truncate its text. But which
one?

The view with the greater content compression resistance priority is the one that will resist
compression and, therefore, not truncate its text.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 11

Stack Views

To fix the problem with the stack view using AutoLayout:

Select the Date Created label and open its size inspector.
Find the Vertical Content Hugging Priority and lower it to 249.
Now the other three labels have a higher content hugging priority, so they will all hug to their
intrinsic content height.
The Date Created label will stretch to fill in the remaining space.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 12

Stack Views

To fix the problem with the stack view:

Select the Date Created label and open its size inspector.
Find the Vertical Content Hugging Priority and lower it to 249.
Now the other three labels have a higher content hugging priority, so they will all hug to their
intrinsic content height.
The Date Created label will stretch to fill in the remaining space.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 13

Stack Views

Another way to fix the issue is using Stack views:

Select the stack view, either on the canvas or using the document outline.
Open its attributes inspector and find the section at the top labeled Stack View.
One of the properties that determines how the content is laid out is the Distribution property.
Currently it is set to Fill, which lets the views lay out their content based on their intrinsic
content size.
Change the value to Fill Equally.
This will resize the labels so that they all have the same height, ignoring the intrinsic content
size.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 14

Stack Views

Another way to fix the issue is using Stack views:

Select the stack view, either on the canvas or using the document outline.
Open its attributes inspector and find the section at the top labeled Stack View.
One of the properties that determines how the content is laid out is the Distribution property.
Currently it is set to Fill, which lets the views lay out their content based on their intrinsic
content size.
Change the value to Fill Equally.
This will resize the labels so that they all have the same height, ignoring the intrinsic content
size. Be sure to read the documentation for the other distribution values that a stack view can
have.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 15

Nested Stack Views

Change the Distribution of the stack view back to Fill to continue with this example.

You can nest horizontal stack views within the larger vertical stack view.

Select the Name label on the canvas.
“Click the rightmost icon in the Auto Layout constraints menu () and then select Stack View
from the Embed In View section. This will embed the selected view in a stack view.”

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 16

Stack Views

Change the Distribution of the stack view back to Fill to continue with this example.

You can nest horizontal stack views within the larger vertical stack view.

Select the Name label on the canvas.
Click the second icon from the left in the Auto Layout constraints menu.
This will embed the selected view in a stack view.
Select the new stack view and open its attributes inspector. The stack view is currently a
vertical stack view, but you want it to be a horizontal stack view.
Change the Axis to Horizontal.

Now drag a Text Field from the object library to the right of the Name label. Because labels, by
default, have a greater content hugging priority than text fields, the label hugs to its intrinsic
content width and the text field stretches. The label and the text field currently have the same
content compression resistance priorities, which would result in an ambiguous layout if the
text field’s text was too long.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 17

Stack Views

Select the new stack view and open its attributes inspector. The stack view is currently a
vertical stack view, but you want it to be a horizontal stack view.

Change the Axis to Horizontal.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 18

Stack Views

Select the new stack view and open its attributes inspector. The stack view is currently a
vertical stack view, but you want it to be a horizontal stack view.

Change the Axis to Horizontal.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 19

Stack Views

Drag a Text Field from the object library to the right of the Name label.
Because labels, by default, have a greater content hugging priority than text fields, the label
hugs to its intrinsic content width and the text field stretches.

The label and the text field currently have the same content compression resistance priorities,
which would result in an ambiguous layout if the text field’s text was too long.

Open the size inspector for the text field and set its Horizontal Content Compression
Resistance Priority to 749.
This will ensure that the text field’s text will be truncated if necessary, rather than the label.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 20

Stack Views

Drag a Text Field from the object library to the right of the Name label.
Because labels, by default, have a greater content hugging priority than text fields, the label
hugs to its intrinsic content width and the text field stretches.

The label and the text field currently have the same content compression resistance priorities,
which would result in an ambiguous layout if the text field’s text was too long.

Open the size inspector for the text field and set its Horizontal Content Compression
Resistance Priority to 749.
This will ensure that the text field’s text will be truncated if necessary, rather than the label.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 21

Stack Views

The label and text field look a little squished because there is no spacing between them.

Stack views allow you to customize the spacing between items.
Select the horizontal stack view and open its attributes inspector.
Change the Spacing to be 8points.
Notice that the text field shrinks to accommodate the spacing, because it is less resistant to
compression than the label.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 22

Stack Views

Repeat these steps for the Serial and Value labels:

1. Select the label and click the icon.
2. Change the stack view to be a horizontal stack view.
3. Drag a text field onto the horizontal stack view and change its horizontal content
compression resistance priority to be 749.
4. Update the stack view to have a spacing of 8 points.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 23

Stack Views

Select the vertical stack view, open its attributes inspector, and update the Spacing to be 8
points.

Then select the Date Created label, open its attributes inspector, and change the Alignment
to be centered.

The text fields do not align on their leading edge due to the difference in the widths of the
labels. To solve this, you will add leading edge constraints between the three text fields.

Control-drag from the Name text field to the Serial text field and select Leading.
Then do the same for the Serial text field and the Value text field.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 24

Stack Views

Stack views allow you to create very rich interfaces in a fraction of the time it would take to
configure them manually using constraints.

Stack views allow you to have very dynamic interfaces at runtime.

You can add and remove views from stack views by using addArrangedSubview(_:),
insertArrangedSubview(_:at:), and removeArrangedSubview(_:).

You can also toggle the hidden property on a view in a stack view. The stack view will
automatically lay out its content to reflect that value.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 25

Segues

Most iOS applications have a number of view controllers that users navigate between.

Storyboards allow you to set up these interactions as segues without having to write code.

A segue moves another view controller’s view onto the screen and is represented by an
instance of UIStoryboardSegue.

Each segue has a style, an action item, and an identifier.
The style of a segue determines how the view controller will be presented.
The action item is the view object in the storyboard file that triggers the segue, like a button, a
table view cell, or some other UIControl.

The identifier is used to programmatically access the segue.
This is useful when you want to trigger a segue that does not come from an action item, like a
shake or some other interface element that cannot be set up in the storyboard file.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 26

Stack Views

In Main.storyboard, select the ItemCell prototype cell on the Items View Controller.

Control-drag from the cell to the new view controller that you set up in the previous section.

(Make sure you are Control-dragging from the cell and not the table view!)

A black panel will appear that lists the possible styles for this segue.

Select Show from the Selection Segue section.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 27

Stack Views

A show segue displays a view controller depending on the context in which it is displayed.
The segue will be between the table view controller and the new view controller.
The action items will be the table view’s cells; tapping a cell will show the view controller
modally.

In Main.storyboard, select the ItemCell prototype cell on the Items View Controller.

Control-drag from the cell to the new view controller that you set up in the previous section.

(Make sure you are Control-dragging from the cell and not the table view!)

A black panel will appear that lists the possible styles for this segue.

Select Show from the Selection Segue section.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 28

Stack Views

Notice the arrow that goes from the table view controller to the new view controller.

This is a segue. The icon in the circle tells you that this segue is a show segue – each segue has
a unique icon.

Build and run the application.
Tap a cell and the new view controller will slide up from the bottom of the screen.
Use Option key to simulate tap.
(Sliding up from the bottom is the default behavior when presenting a view controller
modally.)

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 29

Stack Views

Notice the arrow that goes from the table view controller to the new view controller.

This is a segue. The icon in the circle tells you that this segue is a show segue – each segue has
a unique icon.

Build and run the application.
Tap a cell and the new view controller will slide up from the bottomof the screen.
(Sliding up from the bottom is the default behavior when presenting a view controller
modally.)

So far, so good! But there are two problems at the moment: The view controller is not
displaying the information for the Item that was selected, and there is no way to dismiss the
view controller to return to the ItemsViewController.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 30

Stack Views

So far, so good! But there are two problems at the moment:
1. The view controller is not displaying the information for the
Item that was selected,

2. there is no way to dismiss the view controller to return
to the ItemsViewController.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 31

Stack Views

To display the information for the selected Item, you will need to create a new
UIViewController subclass.

Create a new Swift file and name it DetailViewController.

Open DetailViewController.swift and declare a new UIViewController subclass named
DetailViewController.

import UIKit

class DetailViewController: UIViewController {

}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 32

Stack Views

Because you need to be able to access the subviews you created during runtime,
DetailViewController needs outlets for them.

The plan is to add four new outlets to DetailViewController and then make the connections.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 33

Stack Views

Because you need to be able to access the subviews you created during runtime,
DetailViewController needs outlets for them.

The plan is to add four new outlets to DetailViewController and then make the connections.

With DetailViewController.swift open, Option-click on Main.storyboard in the project
navigator.
This will open the file in the assistant editor right next to DetailViewController.swift.
(You can toggle the assistant editor by clicking the middle button from the Editor control at
the top of the workspace. The shortcut to display the assistant editor is Command-Option-
Return, and the shortcut to return to the standard editor is Command-Return.)

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 34

Stack Views

Your window has become a little cluttered.
To make some temporary space:
Hide the navigator area by clicking the left button in the View control at the top of the
workspace (the shortcut for this is Command-0).
Then, hide the document outline in Interface Builder by clicking the toggle button in the
lower-left corner of the editor.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 35

Stack Views

Your window has become a little cluttered.
To make some temporary space:
Hide the navigator area by clicking the left button in the View control at the top of the
workspace (the shortcut for this is Command-0).
Then, hide the document outline in Interface Builder by clicking the toggle button in the
lower-left corner of the editor.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 36

Stack Views

Before you connect the outlets, you need to tell the detail interface that it should be
associated with the DetailViewController.

Select the View Controller on the canvas and open its identity inspector. Change the Class to
be DetailViewController .

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 37

Stack Views

The three instances of UITextField and bottom instance of UILabel will be outlets in
DetailViewController.

Control-drag from the UITextField next to the Name label to the top of
DetailViewController.swift.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 38

Stack Views

Let go and a pop-up window will appear. Enter nameField into the Name field, make sure the
Storage is set to Strong, and click Connect .

This will create an @IBOutlet property of type UITextField named nameField in
DetailViewController.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 39

Stack Views

Let go and a pop-up window will appear. Enter nameField into the Name field, make sure the
Storage is set to Strong, and click Connect .

This will create an @IBOutlet property of type UITextField named nameField in
DetailViewController.

Create the other three outlets the same way
and name them:

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 40

Stack Views

Let go and a pop-up window will appear. Enter nameField into the Name field, make sure the
Storage is set to Strong, and click Connect .

This will create an @IBOutlet property of type UITextField named nameField in
DetailViewController.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 41

Stack Views

“After you make the connections, DetailViewController.swift should look like below. “If your file
looks different, then your outlets are not connected correctly.

import UIKit

class DetailViewController: UIViewController {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField!
@IBOutlet var dateLabel: UILabel!

}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 42

Stack Views

No bad connections – debugger could be used to fix them.

A bad connection typically happens when you change the name of a property but do not
update the connection in the interface file or when you completely remove a property but do
not remove it from the interface file.
A bad connection will cause your application to crash when the interface file is loaded.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 43

Stack Views

In DetailViewController.swift, add a property for an Item instance:

class DetailViewController: UIViewController {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField! @IBOutlet var dateLabel: UILabel!

var item: Item!
override func viewWillAppear(_ animated: Bool) {

super.viewWillAppear(animated)
nameField.text = item.name
serialNumberField.text = item.serialNumber
valueField.text = "\(item.valueInDollars)"
dateLabel.text = "\(item.dateCreated)”
}
}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 44

Stack Views

DetailViewController will hold on to a reference to the Item that is being displayed. When its
view is loaded, you will set the text on each text field to the appropriate value from the Item
instance. In DetailViewController.swift, add a property for an Item instance:

class DetailViewController: UIViewController {

@IBOutlet var nameField: UITextField!
@IBOutlet var serialNumberField: UITextField!
@IBOutlet var valueField: UITextField! @IBOutlet var dateLabel: UILabel!

var item: Item!
override func viewWillAppear(_ animated: Bool) {

super.viewWillAppear(animated)
nameField.text = item.name
serialNumberField.text = item.serialNumber
valueField.text = "\(item.valueInDollars)"
dateLabel.text = "\(item.dateCreated)”
}
}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 45

Stack Views

instead of using string interpolation to print out the valueInDollars and dateCreated, it would
be better to use a formatter. Add an instance of NumberFormatter and DateFormatter to the
DetailViewController. Use these formatters in viewWillAppear(_:) to format the valueInDollars
and dateCreated.

var item: Item!
let numberFormatter: NumberFormatter = {
let formatter = NumberFormatter()
formatter.numberStyle = .decimal
formatter.minimumFractionDigits = 2
formatter.maximumFractionDigits = 2
return formatter
}()

let dateFormatter: DateFormatter = {
let formatter = DateFormatter()
formatter.dateStyle = .medium
formatter.timeStyle = .none
return formatter
}()

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 46

Stack Views

let dateFormatter: DateFormatter = {
let formatter = DateFormatter()
formatter.dateStyle = .medium
formatter.timeStyle = .none
return formatter
}()

valueField.text = "\(item.valueInDollars)"
dateLabel.text = "\(item.dateCreated)"
valueField.text =
numberFormatter.string(from: NSNumber(value: item.valueInDollars)) dateLabel.text =
dateFormatter.string(from: item.dateCreated)

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 47

Stack Views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 48

Stack Views

let dateFormatter: DateFormatter = {
let formatter = DateFormatter()
formatter.dateStyle = .medium
formatter.timeStyle = .none
return formatter
}()

valueField.text = "\(item.valueInDollars)"
dateLabel.text = "\(item.dateCreated)"
valueField.text =
numberFormatter.string(from: NSNumber(value: item.valueInDollars)) dateLabel.text =
dateFormatter.string(from: item.dateCreated)

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 49

Passing Data Around

When a row in the table view is tapped, you need a way of telling the DetailViewController
which item was selected.

Whenever a segue is triggered, the prepare(for:sender:) method is called on the view
controller initiating the segue.

This method has two arguments: the UIStoryboardSegue, which gives you information about
which segue is happening, and the sender, which is the object that triggered the segue (a
UITableViewCell or a UIButton, for example).

The UIStoryboardSegue gives you three pieces of information:
1. the source view controller (where the segue originates),
2. the destination view controller (where the segue ends),
3. the identifier of the segue. The identifier lets you differentiate segues.

The identifier is missing now

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 50

Stack Views

Open Main.storyboard again.
Select the show segue by clicking on the arrow between the two view controllers and open
the attributes inspector. For the identifier, enter showItem.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 51

Stack Views

Open ItemsViewController.swift and implement prepare(for:sender:).

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// If the triggered segue is the "showItem" segue
switch segue.identifier {
case "showItem"?:

// Figure out which row was just tapped
if let row = tableView.indexPathForSelectedRow?.row {

// Get the item associated with this row and pass it along
let item = itemStore.allItems[row]
let detailViewController
= segue.destination as! DetailViewController
detailViewController.item = item
{
default:
preconditionFailure("Unexpected segue identifier.")
}
}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 52

Stack Views

Open ItemsViewController.swift and implement prepare(for:sender:).

override func prepare(for segue: UIStoryboardSegue, sender: Any?) {
// If the triggered segue is the "showItem" segue
switch segue.identifier {
case "showItem"?:

// Figure out which row was just tapped
if let row = tableView.indexPathForSelectedRow?.row {

// Get the item associated with this row and pass it along
let item = itemStore.allItems[row]
let detailViewController
= segue.destination as! DetailViewController
detailViewController.item = item
{
default:
preconditionFailure("Unexpected segue identifier.")
}
}

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 53

Stack Views

Build and run the application. Tap a row and the DetailViewController will slide onscreen,
displaying the details for that item. And you can dismiss the detail screen by swiping down on
the interface – that makes two points in the plus column.

But there is still work to be done. One issue is that any changes that you make to the item’s
details will not persist. And, in terms of style, there is a more conventional way to present and
dismiss detail screens.

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 54

Stack Views

Build and run the application.
Tap on a row and the DetailViewController will slide onscreen, displaying the details for that
item.

