
Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 1

Views
View Hierarchy

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

World Trotter app

2

A view

• An instance of UIView
• Knows how to draw itself
• Can handle events (touch)
• Exists within a hierarchy of views whose root is the
apps window

View

View objects make an app UI

Buttons
Text fields
Sliders

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Serves as a container for all views
Created then app launches
Other views can be added to it

3

UIView

Subview of the window

UIWindow

UIVIew UIView

UIButton

SubviewSubview

UITextField UIButton UITextField UIButton UITextField

The View Hierarchy

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Each view in hierarchy renders
itself as a layer
The layers of all the views are
composited on the screen

4

UIView

Layer

UIWindow

UIView UIView

UIButtonc

layerlayer

UITextField UIButton UITextField UIButton UITextField
Layer Layer Layer Layer Layer Layer

The View Hierarchy

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

The View Hierarchy

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 6

World Trotter Example

Designing Apps

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Single View app
WorldTrotter
Swift
Universal
Include Unit Tests
Include UI Tests

7

The app which convert values
between degrees Fahrenheit
and degrees Celsius

World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Init (frame)

CGRect – a property of UIView

var frame: CGRect

let firstFrame = CGRect(x: 160,
y: 240, width: 100, height: 150)

When app is launched, the
view of the initil view controller
is added to the root level
window. View controller has a
view and it is associated with
the main view controller for the
application is added as a
subview

8

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Open ViewController.swift
Delete any methods
Import UIKit

import UIKit

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

}
}

9

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Open ViewController.swift
Delete any methods
Import UIKit

import UIKit

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

}
}

10

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Values are given in points (not pixels!)
If values would be given in px they would not be consistent across the
different resolutions.
Any instance of UIView
has a superview property.

11

UIWindow

UIView

UIView

superview

superview

ViewController view

blue view

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Add another instance of UIView:

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green
view.addSubview(secondView)

}
} 12

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Add another instance of UIView:

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green
view.addSubview(secondView)

}
} 13

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 14

UIWindow

UIVIew

UIView

superview

superview

ViewController view

blue view
UIView

green view

superview

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Add another instance of UIView:

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green
//view.addSubview(secondView)
firstView.addSubview(secondView)

}
}

15

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 16

UIWindow

UIVIew

UIView

superview

superview

ViewController view

blue view

UIView
green view

superview

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 17

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

View’s frame is relative to its superview, so the top-left corner of secondView
is now inset (20, 30) from the top –left corner of the firstView.
Start Building the Interface of the WorldTrotter – remove the code with
rectangles

class ViewController: UIViewController {

override func viewDidLoad()
{

super.viewDidLoad()

let firstFrame = CGRect(x: 160, y: 240, width: 100, height: 150)
let firstView = UIView(frame: firstFrame)
firstView.backgroundColor = UIColor.blue
view.addSubview(firstView)

let secondFrame = CGRect(x: 20, y: 30, width: 50, height: 50)
let secondView = UIView(frame: secondFrame)
secondView.backgroundColor = UIColor.green
//view.addSubview(secondView)
firstView.addSubview(secondView)

}
} 18

Programmatically Initializing the views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Open Main. Storyboard. Create 5 UILabels, center them horizontally on top.

19

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

View Frame values, test on simulator- should look identical.

20

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Customize the view properties. Select bg in the storyboard. Attributes
Inspector> Background color> RGB sliders > Hex F5F4F1

21

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Select top two and bottom two labels >Color>E15829

22

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

212 and 100 labels > Font Size > 70. Degrees F and Degrees C > Font>Size > 36

23

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Select all labels > Scale to fit using (Command -=) Arrange vertically. Test in simulator

24

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

The labels will appear slightly shifted to the left.

Absolute Frames have major problems:

• When content is resized, the frames do no update automatically.
• The view does not look equally good on different screen sizes

Do not use absolute frame for views.
Use Auto Layout which flexibly computes frames based on the
constraints specified for each view.

Label should remain the same distance from the top of the screen;
and horizontally centered within their superview. They should update
If font or text or labels change.

25

Customizing labels in World Trotter

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Auto Layout describes the layout of your views in a relative way that enables
their frames to be determined at a runtime, so that the frames’ definitions
can take into account the screen of the device that the app is running on.

Auto Layout allows Responsive design

The Auto Layout system is based on the alignment rectangle. This rectangle
is defined by several layout attributes

26

Using Auto Layout system

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

determine the alignment rectangle’s size.

determine the spacing between the given edge of the alignment rectangle and the
alignment rectangle of another view in the hierarchy.

Determine the center point of the alignment rectangle.

This value is the same as the bottom attribute for most, but not all, views. For
example, UITextField defines its baseline as the bottom of the text it displays rather than
the bottom of the alignment rectangle. This keeps “descenders” (letters like ‘g’ and ‘p’
that descend below the baseline) from being obscured by a view right below the text
field. e the center point of the alignment rectangle.

These values are language-specific attributes. If the device is set to a language that reads
left to right (e.g., English), then the leading attribute is the same as the left attribute and
the trailing attribute is the same as the right attribute. If the language reads right to left
(e.g., Arabic), then the leading attribute is on the right and the trailing attribute is on the
left. Interface Builderautomatically prefers leading and trailing over left and right, and, in
general, you should as well.

27

Width / height

Top/Bottom/Left/Right

CenterX/CenterY

Baseline

Leading/Trailing

Using Auto Layout system

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

By default, every view has an alignment rectangle, and every view hierarchy
uses Auto Layout.

The alignment rectangle is very similar to the frame. In fact, these two
rectangles are often the same. Whereas the frame encompasses the entire
view, the alignment rectangle only encompasses the content that you wish
to use for alignment purposes. Frame vs. alignment rectangle:

28

Using Auto Layout system

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

You cannot define a view’s alignment rectangle directly. You do not have enough information
(like screen size) to do that. Instead, you provide a set of constraints. Taken together, these
constraints enable the system to determine the layout attributes, and thus the alignment
rectangle, for each view in the view hierarchy.

A constraint defines a specific relationship in a view hierarchy that can be used to determine a
layout attribute for one or more views. For example, you might add a constraint like, “The vertical
space between these two views should always be 8 points,” or, “These views must always have
the same width.” A constraint can also be used to give a view a fixed size, like, “This view’s height
should always be 44 points.”

You do not need a constraint for every layout attribute. Some values may come directly from a
constraint; others will be computed by the values of related layout attributes. For example, if a
view’s constraints set its left edge and its width, then the right edge is already determined (left
edge + width = right edge, always). As a general rule of thumb, you need at least two constraints
per dimension (horizontal and vertical).

29

Constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

If, after all of the constraints have been considered, there is still an ambiguous or missing value
for a layout attribute, then there will be errors and warnings from Auto Layout and your interface
will not look as you expect on all devices. Debugging these problems is important/

First, describe what you want the view to look like independent of screen size. For example, you
might say that you want the top label to be:

• 8 points from the top of the screen
• centered horizontally in its superview
• as wide and as tall as its text

30

Constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

To turn this description into constraints in Interface Builder, it will help to understand how to
find a view’s nearest neighbor. The nearest neighbor is the closest sibling view in the specified
direction.
If a view does not have any siblings in the specified direction, then the nearest neighbor is its
superview, also known as its container.

31

Constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

the constraints for the label:
• The label’s top edge should be 8 points away from its nearest neighbor (which is its container
– the view of the ViewController).
• The label’s center should be the same as its superview’s center.
• The label’s width should be equal to the width of its text rendered at its font size.
• The label’s height should be equal to the height of its text rendered at its font size.

If you consider the first and fourth constraints, you can see that there is no need to explicitly
constrain the label’s bottom edge. It will be determined from the constraints on the label’s top
edge and the label’s height. Similarly, the second and third constraints together determine the
label’s right and left edges.

Constraints can be added using Interface Builder or in code. Apple recommends that you add
constraints using Interface Builder whenever possible, and that is what you will do here.
However, if your views are created and configured programmatically, then you can add
constraints in code.

32

Constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Select the top label on the canvas. In the bottom righthand corner of the canvas, find the Auto
Layout constraint menu

33

Adding Constraints in Interface Builder

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

At the top of the Pin menu are four values that describe the
label’s current spacing from its nearest neighbor on the canvas.
For this label, you are only interested in the top value.
To turn this value into a constraint, click the top red strut
separating the value from the square in the middle. The strut will
become a solid red line.

In the middle of the menu, find the label’s Width and Height.
The values next to Width and Height indicate the current
canvas values. To constrain the label’s width and height to the
current canvas values, check the boxes next
to Width and Height.
Click button Add 3 Constraints.

34

Adding Constraints in Interface Builder

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 35

Adding Constraints in Interface Builder

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

At this point, you have not specified enough constraints to fully
determine the alignment rectangle. Interface Builder will help
you determine what the problem is.

In the top right corner of Interface Builder, notice the yellow
warning sign. Click on this icon to reveal the issue: “Horizontal
position is ambiguous for "212".”

36

Adding Constraints in Interface Builder

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

With the top label still selected, click the align_. icon (the second from the left in the Auto
Layout constraints menu) to reveal the Align menu. If you have multiple views selected, this
menu will allow you to align attributes among the views. Since you have only selected one label,
the only options you are given are to align the view within its container.

select Horizontally in Container (do not click Add 1 Constraint yet). Once you add this constraint,
there will be enough constraints to fully determine the alignment rectangle. To ensure that the
frame of the label matches the constraints specified, open the Update Frames pop-up menu
from the Align menu and select Items of New Constraints. This will reposition the label to
match the constraints that have been added. Now click on Add 1 Constraint to add the
centering constraint and reposition the label.

The label’s constraints are all blue now that the alignment rectangle for the label is fully
specified. Additionally, the warning at the top right corner of Interface Builder is now gone.

37

Adding Constraints in Interface Builder

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

To fix the fixed-width warnings in your app - change the width of the object spacings from fixed
width to greater than or equal or less than or equal. (<=. Or >=) select the object in interface
builder > go to the size inspector > constraints > width>changing to <=

38

“Fixed Width Constraints May Cause Clipping” Warning

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Because we added explicit width and height constraints to the label, its size is not flexible.
If the text or font were to change, the label will not look centered.

The intrinsic content size is the size that a view “wants” to naturally be.
For labels, this size is the size of the text rendered at the given font. For images, this is the size of
the image itself. A view’s intrinsic content size acts as implicit width and height constraints.
If you do not specify constraints that explicitly determine the width, the view will be its intrinsic
width. The same goes for the height.

To remove the explicit width and height constraints:
select the width constraint on the label, press the Delete key. Do the same for the height
constraint.

39

Intrinsic content size — flexible size

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Blue constraints indicate that the alignment rectangle for a view is fully specified.
Orange constraints often indicate a misplaced view. This means that the frame for the view in
Interface Builder is different than the frame that Auto Layout has computed.

Resize the top label on the canvas using the resize controls and look for the yellow warning in
the top right corner of the canvas. Click on this warning icon to reveal the problem: “Frame for
"212" will be different at run time”

40

Misplaced views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

As the warning says, the frame at runtime will not be the same as the frame specified on the
canvas.
an orange dotted line that indicates what the runtime frame will be.

Build and run the application. Notice that the label is still centered despite the new frame that
you gave it in Interface Builder. However the disconnect between what you have specified in
Interface Builder and the constraints computed by Auto Layout will cause problems down the
line as you continue to build your views.

Ro fix the misplaced view:
• select the top label on the canvas
• click Update Frames icon. This will update the frame of the label to match the frame that
the constraints will compute.

Word of caution: if you try to update the frames for a view that does not have enough
constraints, you will almost certainly get unexpected results. If that happens, undo the change
and inspect the constraints to see what is missing.

41

Misplaced views

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Select the top label on the canvas. Open the Resolve Auto Layout Issues menu and select Clear
Constraints from the Selected Views section.

42

Removing and adding more constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

to add the constraints to all of the views in two steps:
1. center the top label horizontally within the superview.
2. add constraints that pin the top of each label to its nearest neighbor while aligning the
centers of all of the labels.

43

Removing and adding more constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Select the top label. Open the Align menu and choose
Horizontally in Container with a constant of 0. Make sure that
Update Frames has None selected; remember that you do not
want to update the frame of a view that does not have enough
constraints, and this one constraint will certainly not provide
enough information to compute the alignment rectangle.
Add 1 Constraint.

select all five labels on the canvas to add constraints to multiple
views simultaneously.
Open Add Constraints menu :
• Select the top strut and make sure it has a constant of 8.
• From the Align menu, choose Horizontal Centers.
• From the Update Frames menu, choose Items of New

Constraints.

44

Removing and adding more constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 45

Removing and adding more constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421

Assignment 1

Chapter 4 “Text Input and Delegation”
pp. 69-85

Add keyboard functionality to you app

46

Removing and adding more constraints

Daria Tsoupikova
Sabine Krauss

Professional Practice II
Spring 2019Mobile App Development — DES 421 47

Good Code is as little
code as possible.

