COMPOSING NETWORKED VIRTUAL ENVIRONMENTS

BY

DAVID E. PAPE
B.S., Computer Science, Renssdlaer Polytechnic Indtitute, 1988
M.S., Computer Science, Rensselaer Polytechnic Ingtitute, 1990

THESS

Submitted as partid fulfillment of the requirements
for the degree of Doctor of Philosophy in Electrica Engineering and Computer Science
in the Graduate College of the
Universty of Illinois a Chicago, 2001

Chicago, lllinois

ACKNOWLEDGMENTS
I would like to thank al of the countless people who have heped me and made this work possible.
Unfortunatdy, in singling people out for acknowledgment by name, I'm admost bound to forget one, or
many, of them, especidly after dl the yearsit’s taken to get to this point. But, I'll give it a shot, and hope
not to offend anyone.
Thanks go to:
the members of my committees — Tom DeFanti, Dan Sandin, Andy Johnson, Tom Moher, Bob
Kenyon, and Steve Jones— for their support.
Josephine Angtey, Tomoko Imal, and Maria Roussou, for indsting, againgt my better judgment,
on continuing to use ‘the MMB code' in new projects, thus leading to this dissertation.
Carolina Cruz-Neira, Tom, and Dan, for creating the CAVE and then passing on to me the
combined blessing and curse of responghility for some of it.
Maxine Brown, Dana Repys, and Maggie Rawlings, for actudly keeping EVL running and
successful.
Jm Cogtigan, Greg Dawe, Gary Lindahl, Alan Verlo, and other support crew over the years,
for making everything work in the lab and on the road.
Horst Hortner and the folks at Ars Electronica, for supporting many of the projects described
here.

All the students of EVL, present and past, for dways making it an exciting place to work.

DEP

TABLE OF CONTENTS
CHAPTER
1. INTRODUCTION ...ttt e e e e e et e e eae

1.1. Networked Virtua ENVIFONMENESvn et e e e,
12. SCENE GIapNS ...

1.3. S 1011
Framework FEAUMES ..ot e e e e e e e
APPHCAIONS ... ve et e e e e e e e e e

14.
1.5.
1.6.

SIMNET/ NPSNET ...t
VR-DECK ..o

2.1.
2.2.
2.3.
24.
2.5.
2.6.
2.1.
2.8.
2.9.
2.10.

K P e e

4.1.
4.2.
4.3.
4.4,

Virtud Redity Hardwareccocvii i
OpenGL Performer ..o e e e
VanillaSound SEVErouvie
B N e
CAVERNSOft ..o e e e e

Dedgn..............

Implementaion DELalScoini e
NEtWOrKed XP ... e

WorldToolKit / WorldUp / World2World

11
11
12
13
13
14
15
16
17
18
19

23
23
25
27
28
29
30

32
32
33
39

TABLE OF CONTENTS (continued)

CHAPTER

5.

USE AND EVALUATION OF XP ...ttt e e e e e ae e,
5.1. The ThiNg GIOWING ve e e e e e e e e e e e e aeenns
511 TheSorylire ..

5.1.2. ConstructmgtheStorymdtheChara:ter
5.1.3. NetworkedThlngandAutonomousThlng
51.4. Implementingthe ThingiNXP ... e
5.2. Discussonof DesgnProblems ...

YGDRASIL

6.2. Dlstrlbuted SceneGraph ...
6.2.1. Node Structure and Automated Networkingccccoveveviineinnnnns
6.3. USEr MO ... e e e e
6.4. S o (] 011 0o [P
6.5. IMpleMENtationooe i
B.5. 1. SCENEHIES ..
B.5.2. COrE ClaSSBS ... e
6.5.3. EVENtSand MESSA0ES ... v ve et
6.5.4. WOrld and VIBWouuiniiei i e e e
6.5.6. AddINgNOUE ClESSES vvie ettt e e e e e e
6.5.7. Networked Databhaseccoiuiie i e
B.5.8. ULIIHES ...ttt e e

USE AND EVALUATION OF YGDRASIL ..o e e
7.1. Shared Miletus ..

7.11. TheDemo .. :

7.1.2. ImplementetlonDaaIs
7.1.3. ISSUESENCOUNTENEveeie ittt e e e e e
7.2.1. Virtud Harlem..

7.2.1. Contentsowatud Harlem
74. Networking Problems ..o
7.5. Performance Tests .. .

75.1 NormetworkedSceneUpdates
7.5.2. Networked Updates on a Single Host ..
754, Final COMMENES ...t e e e e e e e e e e

PAGE

46
46
47
50
53

59

62
62
65
69
75
77
78
78
79
85
86
88
89
90
91

93
93
95
97
100
102
103
108
109
111
113
118
120

TABLE OF CONTENTS (continued)
CHAPTER PAGE
8. CONCLUSIONc.ooiee et 1241
CITED LITERATURE ...t oot 126
APPENDICES ...t oo, 131

APPENAIX A o 132

TABLE

VI.
VII.

VIII.

LIST OF TABLES

PAGE
DATABASE ORGANIZATION ...ttt e oo 20
PROGRAMMING METHODSvvovieeee e, 21
SIGNIFICANT IDEAS ..ottt 22
XPNODE CLASSEScovettttee ettt 40
CONTENTS OF THE THING GROWINGcovoviieiieeeee e 56
CONTENTS OF SHARED MILETUS ..o vt 98
CONTENTS OF VIRTUAL HARLEMoovviiiieieeeeeee e, 105
NETWORK BANDWIDTH WITH MULTIPLE HOSTScoeoiiiiiee e, 120

Vii

LIST OF FIGURES

FIGURE PAGE
1. Example scene graph and its XP scenefile - atrigger turnsalight on or off A
2. Debugging XP - the wireframe sphere shows the area of anormally invisible trigger 37
3. BNF grammar for an XP SCENE FIl@evueieuiiiiiiiiee e s 39
4. XPNOCE ClaSS INEITACEeveueeriiieieicte ettt sttt sneneas 41
5. Rough flow chart of XP'SMain Prograimcccoceereereriieennieenieseesseessesseesssesssesssseesesns 42
6. A user dances with the Thing iNthe CAVEoooiiiiiiiieeeeee e
7. The cousnswelcomethe user and the Thingcooceeeiiieiniieee e
8. TheThing itself ismodeled very SMplisticallyccoveienneeneeerre e ol
9. TheThing Growing — scene graph structure of the "on the plain” segmentc.cccccvvenee. 57

10. The Thing Growing — scene graph structure of the character of the Thingccccccevviieens 58
11, Theworld-tree Y Qarasilcoo i e

12, Y QOrasil SOftWArE [QYEN'Sueveeiiiesieeeteste ettt resn s 64
13. Example of aglobal SCENE Graphccccviueieiiiiieieie et 66
14. Theglobal scene graph can be broken up and distributed among several computers 67
15, SCENE 1'SSCENE GIaN c.vcveiviieeeete ettt ettt ettt et e be e e b e be s eseebesneneesesreneas 68
16, USEr 1'SSCENE rAPN wouveeiceiieietie ettt sttt sttt b et se s e s e enesbeneneeresaens 68

17. Sharing node data by storing keys in and receiving them from a CAVERNsoft database ... 72

18. Every attribute of every scene graph node is stored in aseparate Keyc.cceevvvvrvreennnn. 73

19. Example of a sub-graph representing a user's controls and avatarcccceeeeveevieenieeniens 76

viii

LIST OF FIGURES (continued)

FGURE PAGE
20. Ygdrasil SCene file QramiMarccuceeiiierieiceceeee et sre s 78

21. Example Ygdrasil scenefile containing a background color, spinning object, and trigger ...~ 79

22. Reationshipsamong the basic Ygdrasil Classesccoveiiiienieiie e 84
23. Shared Miletus— aview inside the DEfiNIOccccvverieiiieiiricese e 95
24. Virtud Harlem running on an ImmersaDesk at iGrid 2000ccccvvereeeneseeseeeseseeessesnenes 103
25. Virtual Harlem scene graph structure of the Cotton Club and trolleycccvvvvveeeveineneee. 106
26. Virtual Harlem scene graph Structure of the Gityccoveveeeierieiieserese e 107
27. Anarray of afew hundred SMUIEEEA USEIScccviiericeeiesieicc e 112
28. Update speed of Ygdrasil vs. straight Performer, with many dynamic avatars..................... 115
29. Breakdown of timing datafor 250 @QVALAI'Scc.eveerierieiiesesee e 116
30. Speed of updates to dynamic transformation NOCESccceueveveeerereieieeserese s 117
31. Update speed of networked vs. standalone Y gdrasilcccevveveeverieiesescccce e 119
32, YQOrasil Class hI€arChYccciviuerieiieceiees ettt ene e s 141

6DOF

AEC

AlFF

AOI

AP

ASCII

ATM

CAVE

CAVERN

COVEN

DIS

DIVE

DSO

EC

EVL

FHW

GMD

GUI

|EEE

IPv4

LIST OF ABBREVIATIONS
Six Degrees-Of-Freedom
Ars Electronica Center
Audio Interchange File Format
Areaof Interest
Application Programming Interface
American Standard Code for Information Interchange
Asynchronous Transfer Mode
CAVE Automatic Virtud Environment ™
CAVE Autométic Virtud Environment Research Network
Collaborative Virtud Environments project
Didributed Interactive Smulation
Didributed Interactive Virtud Environment
Dynamic Shared Object
European Commission
Electronic Visudization Laboratory
Foundation of the Hellenic World
German National Research Center for Information Technology
Graphicd User Interface
Indtitute of Electrica and Electronics Engineers

Internet Protocol, Verson 4

LIST OF ABBREVIATIONS (continued)

IPv6 Internet Protocol, Version 6

IRB Information Resource Broker

NPS Nava Postgraduate School

NSF Nationa Science Foundation

NVE Networked Virtua Environment

Gl Gl (formerly Silicon Graphics, Incorporated)
SIGGRAPH ACM Specid Interest Group in Computer Graphics
STARTAP Science, Technology, And Research Transit Access Point
TCL Tool Command Language

TCP/IP Transmission Control Protocol / Internet Protocol
UDP/IP User Datagram Protocol / Internet Protocol

uiC Univergty of lllinois at Chicago

URL Uniform Resource L ocator

VE Virtua Environment

VR Virtud Redity

VRML Virtud Redlity Modeling Language

VSS VanillaSound Server

WTK WorldToolKit

XP [acronym with no meaning]

SUMMARY

This dissertation describes the design of a framework for condructing shared virtud environments.
Shared virtud environments are of interest in many different gpplication domains. This particular framework
concentrates on applications such as art and education, where the focus is on worlds planned out by an
author, with objects or characters that have their own autonomous behaviors and that can interact with
users.

The framework, Y gdrasll, is built on two primary dements, which are intended to Smplify the crestion of
parts of these shared environments and to make it possble to quickly compose them from those parts.
These dements are a shared scene graph structure, with automeatic data sharing and discovery, and a script-
like method to define a virtud world. As part of this, a sandardized structure for world components is
defined. Furthermore, a collection of basic toolsis provided to handle many common tasks.

Following the description of Ygdras! itsdlf, its use in two testbed applications is presented. The

performance of the framework in these, and in some more basic tests, is eva uated.

Xii

1. INTRODUCTION

In their book Networked Virtual Environments Singha and Zyda describe composability as one of
the chief problems to be solved in creating shared virtud worlds (Singhd and Zyda, 1999).
Composahility refers to the ability to dynamicaly bring objects and their behaviors into a virtua world,
even when these objects were origindly created as part of a completdly different virtual world; the objects
would be automaticdly dble to interact in the new environment without any coding modifications. Thisis
akin to the god of generd re-usability in software engineering. A fully composable system would speed
the creation of significant shared worlds. It would aid the development of very large scae environments
digributed in a massvely padld manner, and dlow many different environments to be seamlesdy
interconnected across the Internet, such that users could easily travel from one world to another.

This thess describes a framework for building networked virtua environments (NVES). The
framework, nicknamed Y gdrasil, takes dements of existing systems for VR programming, but focuses on
enabling rapid and easy developmert of NVES via a scripting language and a shared scene graph. It
alowsworld creatorsto re-use existing work and to combine pieces of virtud worlds a will.

1.1. Networked Virtual Environments

A networked virtud environment is a shared, computer-simulated world. In other words, it is first of
dl aVR world — a real-time smulation of a 3D environment, usudly providing a sense of redism through
viewer-centered, 3D computer graphics and audio, with which a human user can directly interact. A
networked VR world involves multiple client and/or server computers, using the network to share data
about the common world that they are amulating. Some of the hosts may smply smulate the VR world,

without direct user involvement, while other hosts may provide users with interfaces into thisworld. An

NVE that includes multiple users should provide those users with a shared sense of place and of presence;
that is, the users should dl believe that they are in the same virtua world, and they should be aware of
each other and able to communicate. Typicdly, this involves avatar representations of the users, which
are apart of the NVE aong with smulated virtual objects that make up the shared world.

12. SceneGraphs

Most current VR development systems use some form of scene graph representation for their
database. At its most basic, a scene graph isSsmply a hierarchical organization of objectsin the world; the
hierarchy usually encodes the nesting of 3D transformations, as described by Robinett and Holloway
(Robinett and Holloway, 1992). The scene graph is usudly ether a tree or a directed acyclic graph
(DAG); a DAG is vauable when smple re-use (ak.a multiple instancing) of models or other eementsis
desired. In many systems, such as Openinventor or OpenGL Performer, the internal nodes of a scene
graph can aso represent things such as turning a subgraph on or off, or leve-of-detall selection (Strauss
and Carey, 1992; Rohlf and Helman, 1994).

13. Soripting

Scripting languages are an dterndive to systems programming languages for developing gpplications.
They are congdered “higher level” than systems languages, and are typicaly interpreted rather than
compiled. Scripting languages are often used as a sort of glue, to combine powerful tools; shell scripts are
an example of this. They have been used in some existing VR development systems, but not to a wide
degree — most VR programming is till done in C and C++. Ousterhout states that for many tasks (not
soecificdly VR), programmers are moving from systems programming languages, such as C or Java, to

scripting languages, such as Perl or TCL (Ousterhout, 1998). He argues that scripting languages can

provide an order of magnitude improvement in programmer productivity, and that they are the wave of the
future for much of software development.

1.4. Framework Features

The important features of the Ygdrasil framework are a scene graph system with an interface defined
for plugging together virtua world dements, automated networking underlying al dements of the world
database, and a abdracted user representation. The scene graph interface makes it possible for
gpplication developers to independently build modules that can later be combined in a virtud world.
Idedlly, they will be able to create a character and then drop it into aworld without the world having been
specificdly designed for it, or vice-versa. The automated networking makes it possible to run applications
disributed over multiple machines, or have multiple neworked users in an environment, without
application builders having to do any added work. The user representation is necessary in order to make
virtud tools and interactive objects more modular and re-usable.

15. Applications

Ygdras! is not intended to be an al-encompassng solution for any possible networked virtud world.
Rather, | have targeted it toward a specific type of gpplication, dthough this type can apply to many
different uses of VR, including art, entertanment, education, and cultura heritage. The reevant
applications are ones that focus on the behaviors of virtua objects and on interactions between users and
these objects; they primarily involve pre-modeled objects and sounds. These gpplications are also often
meant for the generd public, or otherwise non-technical users. In many cases, they could adso be
described as “plotted” applications. By plotted, | mean that they have some sort of story or script.

Although an application as a whole might not have a narrative storyline, the virtua world's crestor often

has some at least partid plan for how the action in the environment should unfold. At amore micro leve,
there are pre-defined chains of events that will happen, normally in response to user actions. Ygdragl is
not directed at gpplications such as visudizing lrge datasets or steering supercomputer smulations, or
gpplications with complex user interfaces such as 3D menuing systems. Some projects which serve as
examples of the sort of gpplications tha the framework is meant to support are the Semens Mobile
Workshop, The Thing Growing, the Round Earth Project, and Virtud Harlem.

The Mobile Workshop is a demo created for the Ars Electronica Futures Lab, to be shown at the
Siemens 150" anniversary expo. It was not intended as atechnical or educationa environment, but rather
as a flashy, high-tech demo for the generd public; it was to introduce Semens new model of mobile (cell
phone), as well as to show off their ATM networking hardware. The gpplication ran on an ImmersaDesk
at the expo in Berlin, and in the CAVE a the Ars Electronica Center in Linz; the two VR systems were
connected over the ATM network. Users would gtart in a virtua "office of tomorrow" — each user in a
different such office. From there, they traveled to a common workshop space. In the workshop, each
would see an avatar of the other, remote user, and together they could assemble and customize a new
Semens mobile. The mobile started in four separate parts, which the users assembled with a specid
"weding" tool. They could aso choose among different colors and textures, either for the mobile as a
whole or for the individua parts, by dipping the mobile into cubes of the colors and texture maps. Once
the new mobile was completed, it was automaticaly cloned so that each user had ore. They then
returned to their respective offices, and could communicate through the power of their new phones. This
communication was actudly done viaalive video link over the ATM network, with the video displayed on

a large screen in the virtud office. Some of the noteworthy fegtures of this application are that it was

intended for the generd public, it festured relaively smple interaction which could nonetheless produce
impressive results, and the networked users spent part of the time interacting with shared objects and part
of the time with separate, unshared environments.

The Thing Growing is an interactive narrative for VR (Angey et d., 2000). Init, the user finds himsdf
as the protagonist in a story, and encounters and interacts with avirtud character, the Thing. The
interaction in the story conggts of navigating through the world, dancing (the Thing observes the user's
movements via severd CAVE trackers), and picking up and applying objects (a key and a gun). The
majority of the development effort in this project was to define the Thing's behavior a different leves. At
alower, physicd level, most of the Thing's actions consst of playing back recorded motion-tracking data
and sound files. At ahigher leve, the Thing had to respond to the user's actions in way's that were defined
by the generd plot of the story. The gpplication is intended to run sandaone, by a sngle user; however,
during development we aso cregted a networked version. In the networked version, aremote user stood
in for some of the Thing's inteligence, which had not yet been automated. This person would be in the
scene invisbly, watching the Thing and the user's avatar, and using a virtua menu, which only he hed, to
direct parts of the action by sending commands to the Thing.

The Round Earth Project is part of research into using virtud environments for educating young
children; it involves the collaboration of computer science, education, and psychology researchers
(Johnson et al., 1999a; 1999b). The educationd VEs being studied are networked in order to promote
learning, by encouraging the students to collaborate and converse about the subject matter. In this
specific application, children are meant to acquire the concept of the Earth being spherical. Two

approaches are taken to presenting this concept; in one, the students explore a smdl, spherica asteroid,

digtinct from the Earth; in the other, they begin on the Earth’s surface, where it may appear flat, and then
launch upwards into space to explore the Earth from orbit. In both cases, two students, using two
separate VR devices, were involved at atime. One student had the asteroid surface or low-earth orbit
view, while the second had a distant, misson-control view of the whole planetary body, with asmple
avaar representation of the first student on its surface. The two were required to work together in
accomplishing a task of finding 10 objects scattered about the planet’s surface. The environments
conssted of models of the planet, spaceship, avatar, and other objects, which were congtructed in Alias;
recorded sound effects and narration from the environment were mixed with live audio of the two students
communicating; pre-defined animated sequences were used to introduce the environment and to end the
experience. One additiona detail, relaively unique to this environment, was the need to cregate a
navigation system that worked on a spherica surface, rather than the more or less flat surface of typica
virtud worlds. Future work in connection to the Round Earth Project is expected to involve the rapid
cregtion of other VEs to teach children other concepts; these worlds would ideglly be created under the
direction of school teachers, and not require large teams of VR experts.

Virtud Harlem is a cultural heritage project by the Universty of Missouri-Columbia to reconstruct
Harlem of the 1920's and 1930's in VR (Carter, 1999). It was developed for an African American
Literature course, to dlow students to become engaged in an interactive literature course, one where they
can see and better understand the environment which produced some of the works they are studying. The
origina project was written with Paradigm’'s Vega, for the Virtua Environment Ingtruction Lab's curved
screen and stereo displays. Researchers from UIC are now aso contributing to the project, using it in a

amilar UIC literature course, porting it to the CAVE, and adding a networked component so that an

indructor in Missouri can lead students in Chicago and esewhere through the recondruction. In Virtud

Harlem, vigtors are able to navigate the city dreets, examine buildings and people, and hear the sounds of
the city. As the environment grows, they will be able to enter some of the important buildings, seefilm
clips or 3D re-enactments of higtorical performances and events, and possibly interact with historical

characters inhabiting the virtua space. Furthermore, the students themselves will be able to contribute to
the environment. As part of their course, they will reseerch some of the background of the Harlem

Renaissance, and obtain images, texts, and recordings that can then be incorporated into the
recongtruction.

A number of common, important festures can be found in these gpplications. The user’sinteraction
condsts primaily of navigaing around in the environment, directly manipulating objects and
communicating with other users. The direct manipulation takes the form of picking up objects, gpplying
virtua tools, or otherwise activating dynamic objects. The user is dso often an important part of the
virtud world. In contragt, in gpplications such as scientific visudization, athough networked users may
have avatars that appear in the same gpace as the visualized data, the users normally control what happens
in the world, but are not themsdlves affected by it or otherwise redly a part of it. Finaly, no matter how
many tools a particular framework may provide, there will aways be gpplications which need to extend it,
such as the live video in the Mohbile Workshop, the use of many sensors in The Thing Growing, or the
unusud navigation in the Round Earth Project. 1dedlly, for a system to be truly useful, every aspect should

be extendible.

16. Test Cases

I will use culturd heritage gpplications as a particular test case for Ygdrasl. A recent joint EC/NSF
workshop identified cultura heritage as one of the key application domains to drive future research in
virtud environments and user-centered computing (Brown et a., 1999a). An important question then is
what things do these VEs redlly need, and how can they make use of the features of the framework. The
typica cultura heritage VE currently conssts of large, detalled, static models of ancient cities, buildings, or
artifacts that users navigate about in and look &t, usudly with a trained guide to explain everything to the
user. With Ygdrasl, | hope to expand this model, and explore other possbilities for the use of VR in
historical reconstructions.

Networked environments would alow the models involved to be stored, and more importantly
updated, on a host museum's server, and visited remotely, very much like web pages, remote users would
use a standard, basic application, equivaent to aweb browser, that connects to the server and receivesdl
the 3D modd and sound data, as well as behaviora information. Networking of virtua environments
usudly aso implies that many users can share the space. This, however, might not seem so useful in a
cultura heritage gpplication — for example, when visting the Acropolis virtudly, the crowds of other
tourigs there are probably one of the last things that you'd want to reproduce. On the other hand,
providing expert human guides via the network would be valuable. An expert guide can remain a ahost
Ste, and enter the virtua world to assist remote visitors. Besides the public use, networked environments
would alow remotely distributed researchers to meet and examine, discuss, or work on amodd.

In addition to networked human guides, we would like to be able to provide automated guides, ak.a

computer agents. The guides can be implemented as recorded avatars, as in the V-Mail Virtud Trainer

(Imai et d., 1999), or they can be given programmed behaviors. Automated guides could be capable of
supporting different languages and different levels of expertise among vistors, part of the information
needed to implement this would have to be carried by the user's representation, smilar to the idea of
vigtors usng smart cards in red world museums. Pre-recorded and programmed agents could aso be
used as actors, in addition to tour guides. Current cultural heritage applications typicaly consst of just
datic buildings and objects. A more complete historica re-creation should be dynamic — there should be
people inhabiting the buildings, and objects should be functiond.

Adding interaction is dso important. Beyond just exploring a space and looking at buildings or
artifacts, vigtors should be able to actudly try out things. For example, an exhibit of early scientific
ingruments could alow people to use the instruments and learn how they worked — something that’s not
likely to be permitted in a physical exhibit with redl, savera hundred year old artifacts. Besides making it
easer for people to understand more complex objects, interaction would engage users more directly in the
exhibit. This would hopefully increase their immersion in and enjoyment of it, and lead them to get more
out of the experience.

A composable NVE framework such as Ygdrasil can contribute to developing these gpplicationsin a
few ways. Most of the projects envisioned or underway are large and involve groups of contributors, and
the dements they create individualy will need to work together in a common environment. Also, the
framework is intended not smply to make composing worlds possible, but easy, so that contributors
without a computer science background can use it for sgnificant work. A number of common features

will be found repeatedly in these different gpplications, ranging from smple keyframe-animated objects to

10

intelligent guides. If the framework is successful, it will be possible to create such festures once and

quickly bring them into any number of shared environments.

2. PREVIOUSWORK

Many NVE research systems have been created over the years. These systems have been designed
for awide range of gpplication domains, from military smulation to 3D graphics education. This chapter
will review some of the significant projects and their contributions.

Work in NVE systems has generdly focused on implementing different methods of sharing Sate
information between distributed participants. Meanwhile, other researchers have explored dternative,
scripting-based approaches to make developing VR applications eesier. Y gdrasil draws on both of these
areas of work, while deriving its design from a very scene-graph-centric view of gpplication congruction.

21. SIMNET / NPSNET

One of the earliest systems for networked virtud environments is SSIMNET, the US Department of
Defense's networked battlefield smulation program (Calvin et d., 1993; Pope). SSMNET was created to
improve military training capabilities, by supporting smulation exercises that involve hundreds or
(theoreticaly) thousands of heterogeneous units, which are distributed between many distant Sites, but
share a common virtud world. The units may be controlled by humans in tank or airplane smulators, or
they may be computer-controlled semi-automated forces. Each smulator involved has a full copy of the
virtua world database, including information on the location and State of dl other objects. The database is
maintained by broadcast events — each object will inform dl other units whenever its state changes.
Broadcast traffic is reduced by using dead reckoning agorithms; the locations of remote objects are
continually recaculated from their past locations and velocities, update events only need to be sent when
an object determines that the dead reckoned position others have for it is Sgnificantly incorrect. DIS, a

formalization of the SIMNET protocol for broadcasting object data, has been accepted as an |IEEE

12

standard for distributed smulation (IEEE, 1993). SIMNET and DIS have proven very successful within
their application domain. They have been used in large smulations, with up to 300 participating
amulators; limited experiments have been run involving up to 5,000 entities.

NPSNET is an implementation of DIS by the Naval Postgraduate School (Macedonia et d., 1994).
The NPSNET project hes experimented with using multicast networking protocols for object broadcasts.
Multicast groups are used to reduce network traffic, in order to further increase the number of units which
can take part in a Smulation (Macedonia et d, 1995). In this method, the virtual world is divided into
geographic cdls, and a separate multicast group address is assigned to each cell. A unit subscribes only to
the group for the cdll that it is currently in, and nearby cdls. Asaunit moves around in the virtud world, it
will unsubscribe from old groups that it is no longer near, and subscribe to new ones corresponding to its
new location. This restricts communications to be only between objects that are potentidly interested in
each other.

2.2. BrickNet

BrickNet is a client/server networked VR toolkit developed by the Ingtitute of Systems Science a the
Nationa University of Singapore (Singh et d., 1994; 1995). In a BrickNet application, servers maintain
databases of objects; clients request the objects that they're interested in from a server, and deposit their
own new, shared objects with a server. Objects can include behaviors, which are written in the
interpreted, frame-based language Starship. The behaviors are downloaded dong with the objects, and
are run on each client. The owner of an object can send a synchronization message to the server, which

will cause dl the clientsto receive the latest state of the object. Unlike in most other toolkits, the BrickNet

13

database is not necessaxily identica on dl clients; an application can have private objects, which are not
sent to the server to share with others.

2.3. VR-DECK

VR-DECK is a module-based framework for shared virtua worlds from IBM (Codella et a., 1993).
It is an object-oriented system built around event and message passing. An gpplication is congtructed from
a collection of modules. Modules represent objects, as well as trackers, renderers, etc., and are written in
a rule-based system derived from C++. They run in a distributed fashion, produce events, and accept
events from other modules; the distribution and event routing are automated by the syssem. Modules are
linked together in a graphica editor to form an application; connections define which modules share
events. Multi-user gpplications are built by smply adding severd user modules (however, this limits the
ability of people to enter and leave avirtua world dynamically, after it has been Started).

24. DIVE

DIVE, the Didributed Interactive Virtud Environment, is a research platform for multi-user VR,
developed by the Swedish Ingtitute of Computer Science (Carlsson and Hagsand, 1993a; 1993b;
Benford et d., 1995), which runs on awide range of platforms. DIVE is intended as an open platform to
dlow experimentation with many database and user-related abstrections in the design of virtud
environments. It has been used as the basis for a number of research projects, such as COVEN
(Normand, 1999), which have extended the system for their own particular needs. A DIVE world is a
shared database of objects, the database is fully replicated among al participants, and changes are
propagated by reliable multicast network messages. Any participant may modify the database; distributed

object locks are used for concurrency control. Objects are organized in a transformation hierarchy; they

14

can have multiple views (e.g. polygons, pixmaps, and text strings), that a rendering process may sdect
among dynamicdly; they can have smple behaviors attached to them, in the form of finite state machines
which are triggered by messages. The behaviors can be written in plain C, or in DIVE/TCL, a superset of
the TCL scripting language; any node that has a copy of an object may execute the object's TCL script.
Users see and interact with the virtud world through a visudizer, an gpplication that forms an interface to
the world database. The interface adso includes a model of the user — a “person” — to abstract aspects of
the interaction with the database. Finaly, DIVE uses the concept of auras to control network traffic and
object interactions; an object's aura represents its area of interest; two objects will only need to interact
and exchange data if their auras overlap (Hagsand et d., 1997). A hierarchy of Aura Managers monitors
al the objects in the database and determines when auras intersect.
25. dVS/dVISE

dvS and dVISE are commercid VR development packages created by Divison Ltd. (Ghee and
Naughton-Green, 1995; Divison Ltd., 1995). dV'S uses a client/server architecture — the world is stored
in a networked database, accessed by client Actors that form the user's interface to the virtua world.
Individua Actors provide basc VR services such as rendering the virtua world, playing spatidized audio,
tracking the user, or collison detection. The Actors may run in parale on a sngle machine, or be
distributed over alocd area network. Networking among distributed Actors is done using TCP/IP, with
direct connections made between every machine involved.

In the shared dV'S database, every object is assgned a unique instance number, which dlients use to
get copies of itsdata. New data are passed between clients and servers via events, which describe what

data in an object has been changed; events can aso provide notification of the crestion or deletion of

15

objects. Actors must register interest in specific data to receive events associated with it. The objectsin
the database are organized in a hierarchy; objects include both visuas and audio, and the database
hierarchy can dso contain movement congraints, bounding volumes, and collision detection options.

dVISE isadVS Application Actor — it alows one to create gpplications without direct programming.
It builds and uses a script file that represents the virtual environment. The script file contains a description
of the world's object hierarchy, and defines behaviors via events that can be generated or received by
objects. The dVISE environment may aso be extended for an gpplication by code in C or C++. A
dVISE world can be congtructed using a GUI, or directly within the virtua environment usng a specid
virtua toolbox. The virtud toolbox is a 3D menu system that the user can carry around in the VE; it
includes tools for adding objects and lights, setting movement congraints and parenting of objects, and
recording smple keyframe animations of object motions.

2.6. WorldToaKit/WorldUp / World2World

WorldToolKit, WorldUp, and World2World are a suite of commercia VR systems from the Sense8
Corporation (Sense8 Corp., 1998). WorldToolKit is a collection of C functions for driving VR input and
output devices and manipulating the world database. The database is a hierarchica scene graph of
objects, application code can manipulate the objects, or smple behaviors such as path-following can be
used. WorldUp is an object-oriented authoring tool that provides a higher-levd framework for
applications. A world database can be assembled with a GUI, smilar to dVISE. Behaviors are
programmed as Visua Basic scripts, which can be attached to objects in the world to continuoudy update

the object. Events, which are changes in an object property's value, can cause scriptsto run, or be routed

16

to other objects properties. User and Sensor objects provide interfaces for a user to interact with
objects.

WorldToolKit and WorldUp in themselves are not networked systems. World2World is a client/server
networked object toolkit which can be used with WTK or WorldUp (or other systems) to build
distributed environments. World2World servers manage the sharing of object properties. A client joinsa
world by connecting to a server manager, and then receives data from one or more smulation servers.
Properties can be assigned different update rates, to control the amount of network bandwidth used.
Portions of the database can be locked to control updates to the scene.

2.7. Alice

Alice is a programming environment for interactive virtua environments, from the Stage 3 Research
Group a Carnegie Mdlon Univergty (formerly the User Interface Group a the Universty of Virginia)
(UVa User Interface Group, 1995). The objective of Alice is to provide an easy-to-use rapid
prototyping environment for 3D gpplications. It uses Python, an object-oriented scripting language, for
programming object behaviors. The scripts are interpreted, and may be modified while the system is
running, making it easy to experiment and build worlds piece by piece. Objects are stored in a
transformation hierarchy, and standard functions exist for manipulating objects rdative to other coordinate
systems. The publicly distributed version of Alice only functions as a desktop tool and web browser plug-
in. The internd verson supports head-mounted displays, and has been used to creste multi-user

environments, athough this has not been well documented in any publications.

17

2.8. Avango

Avango, formerly known as Avocado, is an object-oriented, shared scene-graph framework
developed at the German Nationad Research Center for Information Technology (GMD) (Tramberend,
1999). It was created to provide a transparent method for building networked VR applications, and to
dlow rapid-prototyping of applications. It is based on IRIS Performer, extending the Performer nodes
with field classes to automate access to node data; the field system supports a streaming interface that can
be used to save and restore objects as well as to share their data over a multicast network connection.
Fields can be connected between nodes in a data-flow graph, where new datain one node s fied will be
automaticaly sent to the linked node's field; this programming method is borrowed from Open Inventor,
and is dso found in the VRML2 format (Strauss and Carey, 1992; 1SO, 1997). When running a
networked application, nodes are added to the shared scene graph by first creating them localy on ahogt,
and then migraing them to a digribution group, which will cause dl hosts sharing that group to
automatically create a copy of that node and recelve any new data for the node's fields. If a new host
joins an dready running world, one of other hosts will take responsibility for aiomicdly transferring the
complete, current state of the shared scene graph to the joining host; the new host then receives field
updates normdly. In addition to scene graph nodes, Avango defines sensor classes that handle input
devices, such as a wand or 6DOF trackers worn by auser. These sensors, however, are not part of the
scene graph, and not shared among networked hosts; they are only used on the loca host to affect the
shared scene.

The second god for Avango, besides smplifying development of networked applications, is to be a

rapid prototyping system, where developers can quickly create and modify applications. It uses the

18

interpreted language Scheme for this purpose. A Scheme interface to Avango exists o that any high-leve
object can be created and manipulated by a Scheme script. Developers create applications by
implementing performance critical features in C++ as new nodes, and then cresting objects, connecting
them, and forming a scene interactively in Scheme.

2.9. Bamboo

Bamboo is a portable system for networked virtud environments, being developed by the Nava
Postgraduate School (Watsen and Zyda, 1998). Bamboo provides a plug-in style architecture for building
gpplications. Individua eements are programmed into modules, which are compiled into dynamicaly
loadable libraries. The Bamboo kerndl loads modules as they are requested, or based on the dependency
requirements of other modules. The modules can be shared over the Internet via HTTP. The use of
dynamicaly loaded modules is intended to promote re-use of code; an gpplication can, in theory, be built
by smply bringing together a set of dready existing modules. Bamboo aso provides a hierarchicdl,
multithreaded callback framework for structuring code execution. New modules can insart themsalvesinto
an environment by attaching their callbacks to other, existing calback loops. Bamboo itself does not
include any graphica or database features; instead, it is meant to build on such systems as X Windows,
OpenGL, and Cosmo3D.

Bamboo is an extremely flexible system, running on a wide range of platforms and languages. On the
other hand, its flexibility makes it very complex to learn and to program. As aresult, its use for teaching

and current development has been dropped (for the time being) even within NPS (Capps et d., 2000).

19

2.10. Comparison of features

The following are comparisons of some of the festures of the above toolkits that specificaly relate to
the design of Ygdragl.

Table | summarizes each toolkit's method of organizing an application’s database. Early VR toolkits
ether did not specify any organization, or used aflat database. A flat database is smply a collection of
objects (such as tanks and terrain in SIMNET), with no hierarchy or other connections among them.
Most modern systems have moved to the use of a scene graph. The core form of thisin 3D graphicsisa
hierarchy of transformations, as in DIVE. Laer sysems tend to build on Performer or smilar toolkits,
and thus aso include concepts such as switching in their scene graphs. For truly large scale, widdy
distributed, shared virtua environments, some form of hierarchy is important to organize the world in a
useful way. That is, a scene graph hierarchy is invauable to adding new eements to an exigting world by
grouping and locdizing information; a sub-graph of a scene forms a sdlf-contained entity that can be

moved about and reused eeslly.

20

TABLE |

DATABASE ORGANIZATION

System Database

DIS fla

BrickNet flat

VR-Deck linked modules

DIVE transformation hierarchy
dvsS scene graph

WTK / WorldUp scene graph

Alice scene graph

Avango scene graph

Bamboo none

Generdly, we say that immersive VR requires high performance, in order to maintain high frame rates
and quick interaction response time, both of which are vitd to the believability of asysem. Consequently,
most VR work is done using system programming languages such as C and C++. However, as seen in
Table I, many toolkits dso provide scripting language interfaces; in fact, Alice and WorldUp are soldly
programmed in scripting languages. Interpreted scripts, which might normaly be regjected as too dow for
the requirements of VR, are in fact quite suitable for the high-level definition of actions and behaviorsin
VR. Thisis because the truly computationaly intensve activities, such as rendering or intersection testing,
can be implemented in a sysem programming language, while activities such as changing an object’s
position in response to a user’s button-dick are actudly fairly lightweight. Alice has further shown that

interpreted scripts make rapid prototyping of environments possible, as object behaviors can be quickly

21

tested and modified in a running application; this has aso made it eesier for novice VR programmers to

create applications. Even for expert programmers, a powerful scripting language can greetly increase their

productivity.
TABLE I
PROGRAMMING METHODS
System programming Scripting Graphica
DIS arbitrary
BrickNet ? Sarship
VR-DECK | C++ based GUI
DIVE C DIVE/TCL
dvsS C GUI, virtud toolbox
WTK C
WorldUp Visud Basc ~ GUI
Alice Python GUI
Avango C++ Scheme
Bamboo C++, Java

Findly, Table 11l summarizes some of the sgnificant ideas from the different sysems — specificaly
those that have nfluenced or been used in the design of Ygdrasl. DIS has been probably the most
successful so far as a composable system — many different smulators from different vendors can be linked
up into asingle shared battle exercise. In part thisis due to the restricted gpplication domain, but it is also

due to the smplified protocol; because each entity controls its own data and smply receives information

22

about other entities in the world through PDUS, the ways that object State can change are well defined and
developers have less to worry about when making a client to work with other, unknown clients. VR-
DECK demonstrated the use of object-oriented design, and programming interaction in VES by events
and messages. Bamboo focuses on the sharing and re-use of code modules through dynamicaly |oaded
plug-ins and the digtribution of these plug-ins over the Internet, rather than requiring monalithic, pre-built
gpplicaions to share an environment.

At its core, Ygdras| atempts to merge the smplicity of Alicegsinterpreted scripting with the power of
Avango's shared scene graph for networking. It explores new territory by binding these two more closely
- the sripting is not a traditiona language, but a description of the scene and connections between
objects. Also, it borrows Bamboo's plug-in method for dynamic expandability, but defines some common
Sructure for world dements, so they can more easlly interact. Findly, rather than taking a'loose," globaly
shared approach to data as in Avango, DIVE, etc., it defines ownership of objects, asin DIS. However,

the scene graph data is more general and extendible that DIS's domain-specific protocol.

TABLE 11

SIGNIFICANT IDEAS

DIS Data owned by entity

BrickNet Private aswdl as shared objects

VR-DECK | Re-usable modules; event-based programming
Alice Interpreted, real-time-modifiable scripts
Avango Shared scene graph

Bamboo A ug_;-ins

3. TOOLS
Ygdrag| isbuilt on top of severa existing tools. The nature of these tools in some cases directly affects
the design of Ygdrasil. In other cases, the tools are used because of the specific features that they
contribute. This chapter reviews the various tools that have been used and their sdient features.

3.1. Virtua Redlity Hardware

Applications created in Ygdrasl may be expected to be run on a wide range of display hardware.
However, the primary platforms are CAVES, ImmersaDesks, and related projection-based VR displays
(Cruz-Neiraet al., 1993; Czernuszenko et a., 1997).

A standard CAVE is a 3 meter by 3 meter “room” consisting of four large projection screens — three
walls and the projected floor. A few CAVES have five or Sx screens to more fully surround the users, but
these are ggnificantly more expensive to build and hence quite rare. Interleaved, active stereoscopic
images are displayed on the screens, and must be viewed with LCD shutter glasses. Sounds are played
from loudspeskers around the edges of the CAVE. An dectro-magnetic (or, in a few cases,
inertial/acoudtic) Sx degree-of-freedom tracking system provides position and orientation detafor asingle
user's head and for awand. In some cases, multiple wands, or the user’s hands, legs, and/or torso may
aso be tracked. The most common wand, which is referred to as the “EVL wand’, has three buttons
and a smdl joydtick that can be used in interacting with programs, however, a number of CAVE gtes
have experimented with using different types of wands, data gloves, or other control devices. Because
there are multiple, active-stereo screens, which must dl be driven precisgly in synch to provide an illuson
of a seamless display, a CAVE's graphics are normaly generated by a large SGI rack Onyx computer

with multiple graphics pipes.

24

An ImmersaDesk is amilar to a CAVE in generd, with the primary dfference being that it has just a
angle, smdler screen, doped at an angle and resembling a drafting table. With only a single display, an
ImmersaDesk often uses a deskside Onyx or Octane workstation rather than arack Onyx.

There are severd ways that the CAVE hardware influences the design of agpplications and of
application-building toolkits. Because of the sze of a CAVE, users are encouraged to move about when
working with virtua objects in an environment; the 10 x 10 area is sufficient for many applicaions
involving smal to medium szed objects. However, it is not big enough to explore spaces such as virtud
buildings or landscapes. In addition, whereas with a head-mounted display a user can smply turn around
to look in any direction, because most CAVES have no back wall display, there is a whole region of the
virtual world that users cannot normally see or reach. As aresult, some sort of navigation mechanism is
often necessary to move the user large distances or to turn him around; the typica form that thistakesisto
conceptualy move the CAVE through the virtud environment like a vehicle, while the user is il able to
move about physicdly within the confines of the CAVE. The only input that a CAVE gpplication can
expect from a user is the 6DOF tracking data and the state of the wand buttons and joystick. Hence,
interaction must normaly be based entirely on the user’s postion and on the wand. This includes the
controls for the navigation, as well as interactions with virtual objects. The data from the eectromagnetic
trackers are subject to a great ded of noise and distortion; athough techniques exist to reduce these
errors, they cannot be entirely diminated, and they are sometimes till very large (Ghazisaedy et d., 1995;
Kindratenko, 1999). Applications that involve direct manipulation of virtual objects must compensate for

this, asit can often be difficult for users to precisdy locate small objects. Methods that help include visud

25

or audio feedback that indicates when the wand is touching an object, and increasing the effective size of
objects such that the user can grab them without having to make direct contact.

3.2. CAVE Library

The CAVE library (ak.a CAVEIib) is the core software toolkit for developing applications thet use
CAVE hardware. It was originally developed to support the particular hardware used in the first CAVE,
but has grown to provide a transparent interface to many different systems, including CAVES,
ImmersaDesks, and HMDs, and the different types of components that they may use (Cruz-Neira, 1995;
Pape et d., 1999). The mgor tasks of the CAVElib are to read data from the input devices (trackers and
wand or other controller), configure the graphics output, and manage the multiple, pardle processesinan
gpplication. It dso usesasmple sartup file that allows users to configure these festures at run-time.

The library and its associated software contain al the device-specific code necessary to handle severa
different types of input devices, such as the Ascension Flock of Birds, Intersense 1S-900, and EVL wand.
Most devices are now handled by tracker daemon software, separate programs that communicate with
the library via shared memory, dlowing new device support to be added without changing the library
itself. The data from the devices is stored in generic (i.e. not device-specific) data structuresthat are then
read by application code. The user sdlects which devices will be used in the configuration file; hence, an
gpplication does not need © hard-code any specific tracker or controller choices and can transparently
adapt to changing hardware. However, athough the exact hardware used does not matter, most CAVE
applications tend to expect the default arrangement of two tracked sensors, three buttons, and two-

dimensiond (X/Y) joystick.

26

The basic graphics setup is dso controlled by options in the configuration file. The user can configure
the library to render one or many views of the virtua environment (e.g. the four screens of a CAVE or
multiple subsections of a single, tiled wall). The exact physicad geometry of the screens for these views
and the layout of the corresponding windows on the graphics workstation can be changed, to alow for
different sysem arrangements. The configuration file can adso be used for details such as setting up
different styles of stereo (active, passive, or anaglyphic), and choosing whether to render a head-tracked
view or aview from afixed location. As with the input, al of these output options are transparent to an
application; the gpplication merely has to provide code for drawing the virtud world, and the CAVElib
will take care of arranging the necessary windows and applying the correct perspective.

Most CAVE systems are based on multi- processor, multi-pipe graphics workstations. Applications
must run multiple, pardld processes to use such workstations optimally. Hence, multi-processing is a
core fegture of the CAVEIib. The library will automatically start a separate process for each graphics
pipe that isin use, as well as distinct processes for application computations and for reading the tracking
hardware. Separating the graphics from the computation process alows the graphics processes to
perform their rendering as fast as possible, which is important to maintaining the high frame rates needed
for interactivity. The CAVEIib stores its data, such as the tracker positions and wand button states, in
shared memory so that it can be accessed from dl of the processes; it dso provides functions for
applications to store their own data in shared memory. The library takes care of synchronizing the
processes when necessary; for example, it causes the rendering processes to wait until dl of them are
finished drawing the current frame before swapping the graphics buffers, so that al of the display screens

will change together, maintaining theilluson that the CAVE isasingle, seamless display.

27

In addition to being an interface to the VR hardware, the CAVElib provides a “smulator” feature for
desktop development of applications (Pape, 1996). The CAVE smulator replaces the tracking and wand
hardware with controls based on the keyboard and mouse. Instead of rendering for an immersive display,
it crestes atraditional desktop window with options for viewing the virtud world from the user’'s smulated
position or viewing the user in the virtua world from an outsde vantage point. These smulated inputs and
outputs are trested the same as regular, physica VR devices within the CAVEIib, and can be sdected
amilarly in the configuration file. Asaresult, their use is again trangparent to the application. This makes
it esier to test and develop applications either a an ordinary workstation or in an actud VR system, and
to quickly switch between the two.

3.3. OpenGL Performer

OpenGL Peformer (formerly known as IRIS Performer), is a toolkit from SGI for high-performance,
real-time 3D graphics (Rohlf and Helman, 1994). It was designed for visua smulation gpplications, and
has become one of the dominant systems for high-end VR development. Performer is divided into two
maor library layers, caled libpr and libpf.

The libpr library is a collection of classes and functions intended to provide a foundetion for fast
rendering of geometric primitives. The primitives are stored in standardized data structures, the GeoSet
for geometry, and the GeoState for drawing state information (e.g. materias and texture images). Libpr
uses the OpenGL graphics library, and is designed to efficiently manage the geometry and state. It
Sueezes as much performance as possible from the graphics pipeline, based in part on the designers

intimate knowledge of the SGI graphics hardware.

28

The libpf library is built on top of libpr, and provides a scene graph APl for building graphics
programs, as well as other higher leve tools such as automatic multi- processing and 3D model loaders. It
contains a collection of node classes that are used to store the world data, including geometry, lights,
transformations, and specia grouping rodes. The nodes are arranged in a hierarchical scene graph —a
directed acyclic graph; the leaf nodes are the geometry and lights that form the visible scene, while the
internal nodes provide organization and nested coordinate transformations for the objects.

Because of the widespread use of Performer in current VR application development, and the tools it
provides, it was chosen to handle the graphics rendering sde of Ygdrasil. It provides a well-known,
common starting point for developers to work from. In addition, its scene grgph layer forms the bas's of
Ygdras!l’s structure of avirtud world and the gpproach to programming worlds.

3.4. Vanilla Sound Server

The Vanilla Sound Server (VSS) is a library and server program for playing audio in CAVE
environments (Das e d., 1994). VSS is implemented in a client-server model because older high-end
SGI workstations did not have their own sound hardware; as a result, the sound and graphics had to be
generated by separate machines. CAVE applications run on the graphics machine and send commands to
the VSS sarver on the audio machine, telling it what sort of soundsto play and how to mix them. Aslow
latency isimportant when sound and images must be closaly synchronized, al communication between the
client and srver is via UDP/IP sockets, rather than TCP/IP. In the case of newer systems that support
both sound and graphics on a single machine, this same model and communication protocol is used,
athough the UDP connection can use Unix’s “loopback” network interface, thus avoiding the overhead of

going out over an actud network.

29

VSS provides a number of powerful sound synthess tools. The most basic way to use it is to play
back pre-recorded sound samples (i.e. AIFF files). It can dso generate sounds agorithmicaly, such as
by frequency modulation or additive synthesis. The client can start and stop sounds at any time, and can
vay each individud sound's amplitude or pitch in red time. Sound “envelopes’ can be used for
additional precise control of the sounds playback. Later versons of VSS have dso included
gpatidization features. With this it is possble to make the a sound seem like it is coming from a particular
direction or 3D postion.

VSS follows a roughly object-oriented programming gpproach. Each individud sound thet isplayed is
cdled asa“note’ object; the notes are controlled by a set of “actors’. The client gpplication controls the
sounds by sending messages to the actors and notes. However, the programming interface for the VSS
library is a plain C API; this was important because most CAVE applications developed at the time that
V SS was designed were written in C.

3.5. Bergen

Bergen is a sound server and library that was created to ded with certain limitations in the VSS
software; however, it was adso intended to be amuch smpler sysem. Overdl, Bergen provides far fewer
cgpabilities than VSS. Its primary use is to play pre-recorded audio sample files, and to control their
amplitude. Asit happens, thisis al that perhaps the large mgority of CAVE applications actudly use for
their sound; hence, Bergen is much smpler to learn and apply in these cases. It follows the same client-

sarver modd, with UDP/IP communications, as VSS.

30

Audio is an important dement for fully immergve virtud worlds, and so Ygdrasl must include it at its
core, dong with support for 3D visuds. Since Performer does not provide any audio festures itsdlf,
Bergen isused for this Sde of things.

3.6. CAVERNSsoft

CAVERNg0ft is a toolkit for building tele-immersve VR gpplications, the current verson is called
CAVERNsoft G2 (Leigh et a., 1997; Park et d., 2000). Tele-immersion is defined as the combination
of collaborative VR with audio and video conferencing, supercomputer Ssmulations, and massve, remote
data-stores, al connected over high-speed, wide area networks. 1t enables people at distant locations to
work together in a common virtud space, particularly on problems in highly compute-intensive areas such
as stientific visudization, computationd steering, and design engineering. CAVERNsoft's purpose is to
enable rapid generation of tele-immersive gpplications, without the application authors needing to worry
about network protocols and architectures.

CAVERNSsoft isa C++ library that provides a wide range of tools at different levels of complexity. It
includes low-level network classes that form interfaces to TCP, UDP, and multicast socket functions, and
other classes for threading and cross-platform data converson. Built on top of these are middle-leve
modules for such things as remote trandfer of very large files, HTTP communicatiions, and remote

procedure cals. Above these are database modules that can be used to emulate a distributed shared

memory system.

31

The CAVERNsoft database module provides a smple two-field database, associating arbitrary
chunks of binary data with character string keys'. The keys are treated like Unix directory paths, so that
ahierarchica arrangement of datais possible. When a client connects to a CAVERNSsoft database, it can
make asynchronous requests to fetch particular keys vaues, and it can store new vaues for keys. Stored
data is automaticaly reflected to al other clients by the database server. The database client class can
aso be used without a server, in which case it operates in a slanda one mode, making it transparent to the
application whether the database is network-shared or not. An additional feature of the database is that
data may be stored using ether a reliable or an unrdiable network connection, under control of the
gpplication. This dlows one to ore state changes, such as a switch being turned on or off, reliably, so
that al clientswill be sure to receive the change, while storing data that may be a continuous stream, such

as avatar pogtions, unrdiably, so that it can be delivered to other clients more quickly.

! 1t’sreally more of an associative array or dictionary than afull-blown database.

4.1. Objectives

Ygdrasil is based in part on the XP system and experiences from that system (Pepe et d., 1998). XP
is a framework for creating CAVE applications, based on Performer, Bergen, and the CAVE library; it
was not designed for networked virtual worlds, athough it has been extended for some basic networked
uses (The Thing Growing and the Siemens Mobile Workshop applications). It wasfirst developed for the
“Multi-MegaBook in the CAVE’ project (Fischnaler and Singh, 1997), and later refined for other
applications. Ygdras| later evolved from XP; it addresses some of the problems that were found in XP's
design after usng it in many gpplications, as well as making some important revisons to this design that are
necessary in order to build networked virtua worlds with multiple users. These issues will be discussd,
aong with an example of the use of XP, in Chapter 5. The important concepts for Ygdrasil that were
introduced in XP are the congtruction of virtua worlds by assembling a scene graph of behaviora nodes,
and the use of a script-like interface to quickly define a scene.

The god for XP was to provide a system that makes it easy for teams of computer artists and
engineers to build large-scde interactive virtud environments. These environments typicaly congst of
pre-modeled worlds containing dynamic, sometimes autonomous objects, users are expected to navigate
through these environments and interact with the objects in them. They can involve hundreds of
megabytes of models, texture maps, and sound clips, they can cover large virtua spaces, and include
multiple scenes. Mogt of the artists involved are experienced with tools such as Softimage, Alias, ad
Photoshop, but are not expert computer graphics programmers. The XP framework contains many

features common to virtud art environments, alows experienced VR programmers to build tools needed

33

for festures unique to a specific application, and dlows the artigts to create the find environments by
assembling the appropriate pieces.
42. Design

XP has two magjor aspects — atext file (scene file) that defines an gpplication as a collection of nodes
and ther atributes, and a set of lower-level C++ classes that implement the nodes. The divison into
these two parts makes sharing the work of world-creation between programmers and non-programmers
possble. The programmers create applicationspecific nodes, adding them to the core classes, while
other team members build the virtud world itsdf by plugging together nodes in the text file. With this
system, it is o easier to re-use code between applications, because the code is al in modular XP nodes
with standardized interfaces.

The scene file is a high-leve description of a world's database. This file originated as Smply a
compact way of representing the Performer scene graph, an dternative to highly repetitive C++ code that
would otherwise be used to create dl of the nodes that make up a world. Encapsulating the scene
cregtion in a text file made it ampler to add and remove objects, and to rearrange them, without
recompiling the program. Basic atributes, such as modd files, transformation data, and colors of lights,
could be specified with the individud nodes. In developing gpplications, we had taken to a mode of
subclassing Performer nodes to encode al behaviors and interaction tools into nodes in the scene graph,
rather than having “sand-alone” code that would be caled from the program’s main loop to manipulate
the database. These nodes, and relevant attributes, were therefore aso specified in the scenefile. In this
way, the file evolved from merely a description of objects in a world to what is effectively a scripting

language that could describe both the composition of aworld and the behaviorsin it.

34

Figure 1 shows a ample example of an XP scene file, containing an object and a trigger that turns a
light source on or off. The scene graph hierarchy 5 defined in a manner Smilar to that of Inventor or
VRML files. User interactions, and behaviors involving multiple nodes, are defined by events and
messages. In XP, an event is loosaly defined as smply something that happens “within” a node; thet is,
something that might happen that a particular node type is interested in. The C++ code implementing a
node will check during each frame' s update whether any events have occurred, and signa when they do.
Messages can then be sent from the node to other rodes in response to the event; messages are o
loosdly defined, being merely text strings that are parsed and reacted to by nodes. In Figure 1's example,
atrigger node detects when a wand button-press event has occurred, and sends the message “toggl€’ to
the light source, to turn it on or off. The association of messages with events is done in the scene file, so
that the actud C++/Performer implementations of nodes may be left fairly generd, and the nodes then

adapted to different uses in different applications.

group ()
{

object (file=LightSwitch.iv)
{
] wandTri gger (event Message=
ObjeCt “buttonil, Lanp, t oggl e”)
}

A

Figure 1. Example scene graph and its XP scene file — atrigger turns alight on or off

i ght (name=Lanp)
}

35

One added feature of the event/message definition that has proven very ussful is ddays. For any
event/message combination in the scene file, the message can be given a ddlay; the message will then be
sent the given number of seconds after the event occurs, rather than ingantaneoudy. In many
applications, especidly a narrative, the author will often have a st of actions, among multiple objects,
which should occur in a particular, scripted order. In The Thing Growing, for ingtance, when the user
clicks on a key, it animates and opens a box, a sound plays, rocks fly out and land at various places on
the plain, and findly the Thing emerges and introduces itsdf to the user. Thisisimplemented by a sngle
trigger that detects when the user clicks the key; a short sequence of messages then queues up dl the
succeeding actions with their pre-planned timing.

The standard, core classes that are part of XP include transform, switch, object, light, sound, and a
st of trigger classes that respond to user actions.

Transform nodes are used to trandate, rotate, and scale the parts of the world that are under themin
the scene graph. By default, they are datic, but subclasses are often defined to create dynamic
transformations, such as playing back key-framed animations.

A switch node is used to turn parts of the virtud world on or off a run-time, such asin atrangtion
between scenes.

Object nodes encapsulate 3D object models, which can be in any modding format supported by
Performer; Performer provides database-loaders for a number of common formats, and new custom:-built
ones can be easly added. Object nodes have a number of options, which include being grabbable (i.e. a

user can pick up and drop the object), being used for collison detection, or being used for terrain

36

following. They can dso be marked as undrawn, in the case of objects theat are soldly intended to control
the user’ s movement.

Sound nodes contain audio clips that can be played in response to messages; being a part of the scene
graph, they have a 3 dimensiona position, and their amplitude can be varied based on the user’ s distance
from the sound source. Many systems that implement 3D sounds, such as VRML, attempt to model such
sounds redigticaly. That is, they define sounds as point sources, whose amplitude decays in a spherica
or dlipsoid pattern around the point. In XP, rather than focusing on gtrict realism, we added fegatures that
are ussful to artigs in creating their environments — a sound can occupy a volume (a sphere or box) within
which its amplitude is congtant; outside the volume, the amplitude decays normaly. Thismakesit Smpler
to create such things as a sound that is emitted uniformly by a large object, or a background sound that
fills an entire room.

The trigger classes detect user actions, and are used for much of the basic interaction in environments.
They detect events such as the user entering or exiting a region, the wand entering or exiting a region, a
button being pressed while the wand is within aregion, or the user pointing at an object.

When a programmer wants to add a new node class to implement specid behavior for an application,
he does this by extending one of the existing classes. For example, to play back keyframed animation
data that may have been created in atraditional 3D animation package, he would create a new sub-class
of the gandard xpTransform. All XP nodes have a few common virtua functions that implement the
scene file parsng, message processng, and per-frame updates. The keyframe animation node could
define these functions to parse its new options, such as the name of the data file and duration of the

animation, to accept start and stop messages, and to caculate new transformation vaues each frame

37

based on its keyframe data. The programmer would then add this new node class to the list of nodes that
the main XP parser knows of, and then auser could place instances of the keyframe node in a scenefile.
Many nodes dso have a debugging dtate, which is used during development and testing. When
debugging is enabled, additional dements are drawn, showing normally invisible aspects of the scene. For
example, triggers will draw their bounding volumes, so that the developer can check ther sze and
placement in the scene; their date changes are indicated by changing colors. Events and significant
messages are printed to the termind, so that the flow of the application can be monitored. Figure 2 shows

aview of the Multi-MegaBook environment in debugging mode.

- ,.
7) A

. .. %

Figure 2. Debugging XP — the wireframe sphere shows the area of anormally invisible trigger

38

In addition to the main scene graph defined by the scene text file, other mgor elements of the XP
framework include the navigator, world, and user nodes, which are automatically created and added to
the scene graph for any environment.

The navigator is used to move the CAVE through the virtua world. It provides tools for both user-
controlled and applicationcontrolled navigation. Typicdly, the user travels through the world under his
own volition, via the wand — he points the wand in the direction to move, and uses the joystick to control
the speed of movement or to turn left or right. In many cases, however, an gpplication needs to take
control of the user’s movement. Pre-defined festures for this include teleporting to a specific location,
following a spline path, or attaching the CAVE to an object in the scene (e.g. a boat to carry the user
somewhere). The navigator node also provides optiona collison-detection, to prevent users from passing
through walls, and terrain following, to keep users waking on the ground of the environment. Further
applicationspecific features can be added by sub-classing the standard navigator node class.

The world node serves as the root of the scene graph, and provides an interface to some globa
attributes. It can be used to change the background sky color, enable or disable fog, and vary the clipping
plane distances. It dso encepsulates dl of the text file parang code, and controls the scene graph
traversals.

Basic user informetion is represented by user and wand nodes. These are available for C++ code to
get access to things such as the user’s head position or the state of the wand buttons. They encapsulate
cdls to CAVE libray functions so that, in theory, one could replace these classes by dternate

implementations that were for non- CAVE interfaces.

39

4.3. Implementation Details

Thefollowing isamore in depth explanation of how XP isimplemented.
A scene file is a plain ASCII text file describing the world as ahierarchica collection of nodes. A

Backus-Naur form definition for the format of thisfileisgivenin Figure 3.

<scene> b <tree>*

<tree> b <singleNode> | (<singleNode> “{* <tree>* “}")
<singleNode> P <className> “(“ [<optionList>] “)”
<optionList> b <tag>“=" <vaue>[“,” <optionList>]

<className> and <tag> are any vdid names
<vaue> is any dring, possibly in quotation marks

Figure 3. BNF grammar for an XP scenefile

The code for the core XP system conssts of 25 C++ classes. The mgority of these classes are
derived from the xpNode class, which is the basic implementation of a scene graph node. The remainder

are smdl utility classes. The node classesareliged in Table V.

40

TABLE IV
XP NODE CLASSES
Class Name Parent Class | Purpose
xpNode grouping node; ancestor of al other node classes
xpLight xpNode light source
xpNavigator xpNode alows user to trave through the environment
xpPath xpNode defines a path that the user or an object can be moved aong
xpPoint xpNode an X/Y[Z postion; useful for ataching aname to a postion
xpTransform xpNode a datic or dynamic 3D transformation — trandation, rotation, and
sding
xpGrabber xpTransdform | atransformation that can be grabbed by the user’ swand
xpObject xpGrabber loads an object moddl; can be grabbable or not grabbable; can
be used for collison detection and terrain following
XpScript xpNode reads a separate file containing collections of messages that are to
be sent as agroup
XpSelector xpNode makes only one of its child nodes active a any time
xpSound xpNode plays asngle audio sample, occupying a particular volume
xpSoundSource xpNode similar to xpSound, but plays any audio sample requested
xpSwitch xpNode makes dl of its child nodes active (on) or inactive (off)
XpScene XpSwitch loads a separate scene file, that can be turned on or off
xpTrigger xpNode generic parent of trigger clases, handles defining a trigger’'s
volume and associating messages with events
XpPointAtTrigger | xpTrigger detects when the user’s wand points at objects below the trigger
in the scene graph
xpUserTrigger XpTrigger detects when the user’ s head enters or leaves avolume
xpWandTrigger xpTrigger detects when the wand enters or leaves a volume, or a button is
pressed while indde the volume
xpUser xpNode encapsulates the tracker data for the user’s head
xpWand xpNode encapsulates the tracker and controller data for the wand
xpWorld xpNode root of the scene graph; parses the scene file, manages message

passing and scene-graph traversal

41

The classes xpNode and xpWorld form the heart of the whole system. xpNode defines the basic
interface of member functions that implement the parsng of nodes in the scere file, run-time traversa
updating, and message passing. xpWorld manages dl of this, providing the overall parser that reads scene
files, keeping track of and traversing the full scene graph, and routing messages.

The basic interface of xpNode, which other node classes inherit and extend to define their specia

behaviors, isshown in Figure 4.

class xpNode
{
xpNode(void);
virtua void parseOption(char * tag, char * vaue);
virtud void postInit(void);
virtud void message(char * msy);
virtua void app(void);
virtua void resgt(void);
virtud void switchOff(void);
}

Figure 4. xpNode class interface

The rough execution flow of an XP gpplication, as managed by the main program and the xpWorld

class, isshownin Fgure 5.

42

-~ | Readnodetype
Parse soenefile Cregtenode

- Read node options, passngthemto parseOgption ()
“~~._ | Add nodeto scenegraph

V

Initizlize Traversescenegrgphonce cdling postinit ()
N for every node
\Vi """ | Pafom CAVEIbupdaes

) 1 If reset key pressed, traverse scene, caling reset

Run main loop fora/e?/rpéde ngrest)
AN Traverse oene, cdling gop() for every active node
" | Pessany queued up messsgeswhosetime hes been

] reeched

Figure 5. Rough flow chart of XP s main program

For each node in the scene file, the parsing loop looks up the node's class name in a table of known
classes, and cdls the corresponding congtructor function given in the table. Each option given for the
node (in the form of gtrings, the tag and value, e.g. ‘name = theTrigger’) is passed to the member function
parseOption() for interpretation. Once the entire scene graph has been created, it is recursively traversed
and the function postinit() is caled for each node. This step is required for certain classes that cannot
complete their initidization until al of their scene file options have been received, or until other nodesin the

scene graph have been created. For example, an xpTransform uses the postinit() to save a copy of its

43

initid trandformation matrix, with any initid translation, rotation, or scaing options, trigger nodes use the
postinit() to locate any other nodes in the scene to which they will be sending messages.

While the program executes, each active node's gpp() function is caled once per frame. An inactive
node is one that is below (in the scene graph hierarchy) a switch that is turned off or a selector thet is
seecting some other child node. The gpp() function performs any smulation or other time-based updates
to the node; for example, thisis where atrigger will determine if any of itstriggering events are true for the
current frame. Inter-node communication can be done with the message() function (in practice thisis used
mostly by triggers when responding to events), which passes a character string to a node; the node parses
the string and reactsto it. Nodes do not actualy cal message() directly; instead, they make a request for
the xpWorld to add their message to a globd queue. This queue is necessary to handle messages with a
time delay, rather then having the individua nodes (which might become inactive before the delay expires)
queue their own messages.

The reset() and switchOff() functions are more specia-purpose. The reset() restores a node to its
initid date; it exists because of the nature of the applications for which XP was developed. CAVE art
gpplications are often run in shows where they need to be started afresh for new groups of vistors.
Having a standard, quick reset command that can do this without having to exit and reload the program is
useful.

The switchOff() function is cdled when a node is below a switch that has just been turned off (or
below a sdector that changes state). It is used by nodes that need to perform specid actions when they

become inective. The initid, motivating case of this was xpSound, which must send a message to the

44

external sound server to stop playing an audio sample, for example when the sound is in a scene that the
user isleaving.

In addition to cregting the main scene graph based on the input scene file, the xpWorld dso
automatically creates the user interface nodes, that is, the xpUser, xpWand, and xpNavigator nodes. The
xpUser contains the user’s head tracking data; it reads the data from the CAVE library, and provides
functions for other rodes to obtain this data, either in world coordinates or relative to a particular node's
locd coordinate sysem. The xpWand smilarly contains the wand's tracking data, and the state of the
buttons and joystick. The xpNavigator performs al navigation operations, moving the user based on the
wand's joystick state and the direction the wand is pointed, and performing tests againgt the scene
database for collisons and terrain following. It also responds to messages to change the navigation speed
or to perform specid actions, such as teleporting to a particular location, moving the user along a pre-
defined path, or enabling flying (i.e. turning off terrain following).

At run time, the mgor jobs for the xpWorld are to perform the app() traversa of the scene graph,
manage the queue of inter-node messages (described previoudy), and to control globa viewing
parameters — the background color, fog state, and near and far clipping planes. The viewing parameters
can be changed by any node, by sending a message to the xpWorld. The xpWorld thus hides the
interface to the actua Performer and CAVE library functions that control these state elements.

4.4. Networked XP

As previoudy mentioned, the Mobile Workshop and The Thing Growing managed to extend the XP
system to support networked use. We accomplished this by first creating a set of network classes, such

as netTransform, which extended corresponding core classes, sharing their data viathe CAVE library’s

45

ample network communication functions. For example, a netTransform, derived from xpTransform,
would check the state of its transformation matrix on each frame. Any time this mairix changed, it would
broadcast the new values on the network. Remote instances of this same netTransform would receive the
new data ad update their matrices with it. All dynamic classes that needed to share data were then
derived from these network classes, and the data sharing was effectively transparent. In generd, we
wanted the intelligence for any particular node to run on only one host, so on that host we would run the
XP program with a scene file containing the “intelligent” node, while on dl other hogts the scene file
contained smply a netTransform that served as a proxy, only receiving updates, not broadcasting new
data. User avatars were implemented smilarly — an avatar tracker node would broadcast the head and
wand data to remote netTransforms, which had the avatar models as children. However, this method was
severdy limited by the fact that the basic XP scene graph is Static; that is, al of the nodes and objects
which will be in the world are defined in the scene file that is read a sartup. Hence, when running a
networked application, one would have to know in advanced that it would be networked and how many
users would be involved; specia scene files would need to be created for each host, dready containing
the avatars for the remote users. Nonetheless, this gpproach was perfectly adequate for the two
gpplications where we usad it, as their networking arrangements were fixed in advance by their story

desgn.

5. USE AND EVALUATION OF XP

XP has been used to develop many different CAVE applications. These include the artigtic
environments “The Multi-MegaBook in the CAVE" (Fischndler and Singh, 1997), “Mitologies’
(Roussos and Bizri, 1998), “Blue Window Pane’ (Dolinsky, 1998), and “CAVE’ (Kogler and Pomasd,
1999), as well as severd industrial demondtrations created at the Ars Electronica Center Futures Lab,
such as the “Virtud Heavy Plate Mill”* and “ Continuous Casting Simulator Environment” (Hortner et dl.,
2001). It has dso been used at Indiana University in teaching a course on building CAVE environments;
students with no previous VR experience created smdl interactive environments using XP, and showed
them at a public, end-of-the-semester exhibitior.

The following sections describe the gpplication “The Thing Growing” in detall, and explain how XP
was used to cregte it. After that is a discusson of the generd problems that have been encountered in
XP, as wel as specific issues rdated to adapting its design to building more genera, networked
applications.

5.1. TheThing Growing

"The Thing Growing" isavirtud redlity Interactive Fiction (Angey et d., 2000). Our goa wasto create
a gory in which the user is the main protagonist in an emotiond journey. Our focus was the construction

of the"Thing", avirtud character. The user engages a an emationd leve with the Thing and its world.

' Virtual Heavy Plate Mill. http://kultur.aec.at/|ab/show_pro.asp?PlD=144

2 CAVE Art Student Exhibition 2000. http://dolinsky.fa.indiana.edu/caveart/index00.html

a7

The impetus for "The Thing Growing" was a short sory by Anstey. The story described areationship
that was cloying and claustrophobic but emotiondly hard to escgpe. An immersve, interactive VR
environment seemed an ideal medium to recreste the tensons and emotions of such a relaionship.
Someone reading a book or viewing a film or video may identify with the protagonis but in VR the
relationship ismore direct — the user isthe protagoni<t.

511 TheSoryline

In the firgt act of "The Thing Growing", the user finds hersdlf on a large plain. A voice-over prompts
her to go to ashed. Insde is a box. If the user opens the box, it bursts open and the Thing legps out. It
dances around and shouts, "I'm free! You freed me! | love you!" The two protagonists, the user and the
Thing are introduced and the Thing declaresits interest in the user.

In the second act the Thing tells the user that it is going to teach her a specia dance; a dance for the
two of them. In this act the interaction is designed to be so naturd as to be invisble, and involves the
user's whole body rather than any interface device. The Thing demonstrates a dance step and asks the
user to copy it. The Thing praises or criticizes the dance. If the user gets fed up and navigates away the

Thing runs after her and coaxes, whines or threatens her into continuing to dance.

Figure 6. A user dances with the Thing in the CAVE

Act One introduces the user to the environment and familiarizes her with the wand. It dso introduces
the Thing. Because the user frees the Thing and is loved for doing o, the ided user dso feds warmth and
a sense of satidfaction for doing good. However, in Act Two the Thing progressively reveds that it is
dominating and controlling. At firdt it praises the user's dancing, later it beginsto nit-pick and complain that
the user isnt redly trying. The user feds increasingly invaded by the Thing, which is dways a little too
closefor comfort, and grows sick of it. When it findly fliesinto atemper and runs off, the user is rlieved.

However, the reief is short-lived. Once the Thing has gone, rocks on the plain come aive and herd
and gtak the user. One of them rears up and traps her. Seconds later the Thing arrives to tell the user that
it will get her out from under the rock if sheis nice to it. If the user shows a willingness to dance, she is
released. The Thing brightly announces that now they can begin the whole dance again. Almost universdly
users groan when they hear this. However, as an added incentive, the Thing will now copy the user's

movements and let her create some of the dance steps.

49

Act Three begins as lightning crackles across the plain and a god-like voice asks what is hagppening. A
bolt of lightning cracks at the user's feet and the earth opens. She and the Thing fal into a new, darker
environment and the user is immediately caged. The two are welcomed by the Thing's four cousins, but
the Thing is frightened and whispers that the cousins are fandtics, furious that it and the user have been

dancing a sacred dance together. Our god in this Act isto put the Thing and the user on one Sde againgt a

common enemy.

Figure 7. The cousns welcome the user and the Thing

The Thing is right to be frightened of the cousins. They best it up and denounce it for engaging in a
relationship with a meat object — the user. They toss the Thing into the cage with the user and exit
mouthing dark threats. The Thing produces a gun, and it becomes the user's job to blast them out of

prison and then to kill the cousins. The user is usudly anly too willing to run about and shoot at the

50

cousins. They are evidently "baddies’, besdes which it is a moment of agency for the user who, up to
now, has merely been trapped and bullied.

Findly al the cousins are killed or have escaped. The Thing and the user are done again. But now the
user has a gun. The entire piece is designed for this moment. The Thing suddenly redlizes that the user
could turn the gun on it. The question for the user is should she kill the Thing or not?

There are two endings, one for each dternative. However, neither alows the user to ultimately escape
the trgp of this dinging rdaionship.

5.1.2. Constructing the Story and the Character

The narrative structure was created with the XP script files. Timed sequences were intercut with the
interactive episodes. The narrdive flow as a whole was dructured using triggers based on time, user
proximity, or the completion of specific events. The script file serves as production manager for the story,
which can therefore be easily edited and changed.

We extended the basic XP system to build the intelligence of the Thing, the main virtud character, and
aso to program speciad behavior for objects such as the rocks that chase the user.

The Thing has a body (motor component) and a brain (cognitive/perceptual component). The body is
composed of multi-colored tranducent pyramids. Arms, head, body and tall are animated with motion
tracking. In this case the pyramids do not connect — the life-like movement that results from the motion
tracking creates a strong illuson of an autonomous being formed from a collection of primitive shapes —

theilluson is not broken by parts of the body joining badly.

51

Figure 8. The Thing itsdf ismodded very smplidicaly

The Thing's voice is pre-recorded. Based on the storyboard, we recorded hundreds of phrases for its
voice. Sometimes its peeches are scripted and do not vary — for example when it is freed from the box.
But mostly it speaks in response to the user — for example when it is teaching the user to dance. For this
section we recorded different versons of words of praise, encouragement, criticism, explanaion. We also
recorded the different types of utterance in different moods; happy, manic, sad and angry. Each phrase
lasts afew seconds.

Body movements are cagptured while the phrases play until we build up alibrary of actions (Action =
Movement + Phrase). This motion capture wasitsdf done usng asmal XP world; the world consisted of
a collection of virtud tools that could play attached sounds and record CAVE tracking datainto files. In
addition to the motion-captured movement for each body part, we aso need to determine a movement for
the body as a whole. Depending on the circumstances the Thing may move relative to the user or relaive

to the environment. Therefore each action aso contains information about what globa body movement

52

goes with the specific body-part movement and phrase (Action = Body Part Movement + Globa
Movement + Phrase). All the actions are stored in the scene and can be accessed by the brain. It isvery
smple to modify, add or remove actions and essentidly edit the Thing's behavior.

The brain's main perceptud input is information from the tracking system about the user's body
movements and use of the wand. It uses this information in conjunction with information about the State of
the world and the passing of time. The main job of the brain is to sdect an gppropriate action from its
dtores, according to the point in the narrative; the user's actions, and the Thing's internd state. As the
program runs, the body interpolates between the end of one action and the beginning of the next, so that
the movement between actionsisfluid.

In order to be quickly able to respond to changing stuations, the brain has several basc srategies.
Certain gtate changes will send it a message to interrupt its current action — the specific state change will
also send an additional message to indicate which kind of action should now be picked. Otherwise the
brain will complete its action, go through a series of checks on the State of the world and the user, and if
none of these trigger dternative actions follow an internd set of rules for selecting the next action.

The narrative becomes a very useful tool for congtraining the kind of action the brain can pick, thus
amplifying the rule structure. For example when the Thing is attempting to teach the user to dance, it hasa
basic routine to follow. It demonstrates each part of the dance, then observes or joins the user as she
copies the movement. Information on whether the user is dancing correctly is recorded so it can be
accessed by the brain's checking sysem. The Thing may admonish, encourage or praise the user
according to her behavior and its own mood. It may repeat a part of the dance that the user is doing

incorrectly or it may teach another step. This routine is interrupted if the user tries to run away and

53

behavior is triggered to make the Thing run after the user and plead with or scold her to continue the
dance. Each type of response —"user_danced well, user_ran_away, new_dance step” — corresponds to
a dore filled with possible actions. The brain can pull an action out of the store sequentialy — for scripted
momentsin the sory — or randomly, or by mood.

5.1.3. Networked Thing and Autonomous Thing

Our intention had aways been to make the Thing entirely autonomous. However, we built the Thing's
body and the basic routine to teach the dance before writing the checking system that would use the
tracking data from the user to judge how well they were dancing. We were aso unsure how to proceed
with changing the Thing's moods. Therefore for SSIGGRAPH 98, as an interim step, we built a networked
verson of the project, which effectively gave us a "Wizard of Oz" brain. A networked user was an
invisble voyeur on the scene between the Thing and an avatar of the participant. This user had a menu to
tell the Thing if the participant was dancing well or not, and aso to control its moods (the Thing can be
happy, angry, sad, or manic).

In this scenario, dthough the Thing had its in-built routines of behavior it was dso getting help from a
much more flexible intdligence sysem, with a wedth of fine-tuned interactive experience. More
importantly, the task d building its intelligence later was gregily smplified by the observations we made
during the shows. We observed both the users reactions to the character, and our own behavior when
we played Wizard of Oz.

Fird, we fell into a fairly sandard way of dtering the Thing's moods. The dancing interaction lasts for
2-3 minutes. The finde is the Thing running off in a huff. Essentidly the mood changes from good to bad

over time. If the user is uncooperative — refuses to dance, runs away a lot - the Thing becomeswhiny or

54

angry quicker. Second, users had afairly standard way of reacting to the Thing. They ether tried to obey
it, or refused to dance and tried to get way from it. Those that tried to dance, varied widely between
people who would copy exactly and those too shy to move very fredly — asthe Wizard of Oz we tended
to treat these dike to encourage the timid.

We built an autonomous dancing Thing based on these observations. Its mood changes based on time
and the levdl of user co-operation. We assume any arm movement that travels more than an arbitrary
minimum distance indicates an attempt to dance. We do not bother to check each dance movement
separatdy and precisely to make sure that the user is doing a specific move. Over time the Thing becomes
randomly pickier, criticizing and regecting movements that earlier it would have praised. In response the
users watch more carefully and refine their dancing. The completely autonomous dancing Thing has run
successtully at the Virtudity and Interactivity show in Florence, May 1999, at SIGGRAPH 99 and at the
Ars Electronica Festivd in Linz, September 1999.

5.1.4. Implementing the Thingin XP

Table V provides a summary of the sze of The Thing Growing, in terms of the amount of code (both
C++ and scene files) written, and the models and other data created. Figure 9 and Figure 10 show
portions of the scene graph; Figure 9 isthefirst scene of the story (on the plain); Figure 10 isthe character
of the Thing itsdf — both its body and itsintelligence nodes.

As can be seen, The Thing Growing is afarly complex virtud environment. That the large mgority of
it was implemented by a VR developer who had very little programming experience prior to beginning the

project is a testament to XP's ability to manage this complexity. The congruction of the Thing's

55

intelligence sub-graph aso demondtrates that it is possible to build advanced behaviors by assembling
modular scene nodes.

Furthermore, the summary in Table V gives an idea of the scae of gpplications that should be expected
to be implemented in Ygdrasl. Future gpplications may grow even larger. These worlds will have large
numbers of models, images, and sounds that need to be loaded by clients. Their scene graphswill include
hundreds of nodes; these nodes will have to be ‘discovered” and replicated locdly by each client for a
user to join, view, and interact with a world thet is dready running. The clients will also need to receive
updates from possibly many dynamic nodes; some of these nodes will be changing state continuoudy (e.g.

the Thing's body), while otherswill only change very infrequently.

TABLEV

CONTENTS OF THE THING GROWING

Scene graph

1435 nodes
11 scenefiles
3588 linesin scenefiles

Dynamic nodes

138 transformations

59 switches

10 geometry interpolators
93 sound sources

68 triggers

Code

38 new classes
11,761 lines of code

Data

308 models 2.8 Mbytes
37 texture images 3.0 Mbytes
658 sound files 208.0 Mbytes
354 motion capture files 13.8 Mbytes

156 motion paths 0.6 Mbytes

total: 228.2 Mbytes

56

[script] x3
[sound | x8

| [|
transform [|switch [

Iobject (plano-multiplain.pfb)

Jobject (plano-sky.pfb) |
I Jtransform transform |—|obj ect (sun.pfb) |
I transform |—|object (beam-lam.pfb) | x3

object (cloudl.pfb

switch mover

avatarDCS|—|object(shedfront.pfb)l

avatarDCS|_|object (Shedside.pfb)l

transform

transform I Iflasher I object (flasher.pfb)
transform |—|0bject (rockApfb)l

x6
avatarDCS|_|object (keyhole.pfb)l

avatarDCS|_|object (boxtop.pfb)l

‘1transform

wandTriggerI Iswitchl IavatarDCS|_|object(key_gold.pfb)

obiect (bing.pfb)

transform geolnterp(rock*.pfb)l

x5
avatarDCS

Figure 9. The Thing Growing — scene graph structure of the “on the plain” segment

57

object (insideHeadGreen.pfb) |

object (outsideHeadGreen.pfb)l

object (outline_headgreen.pfb) |

object (thing-eyes_open.pfb) |

flasher Hobject (thing-head sad.pfb) |

soundSource

object (insideBodyGreen.pfb)l

object (outsideBodyPurple.pfb) |

bodyPart
object (outline_bodypurple.pfb) |
transform ‘ItailSDrianl
object (insideArmBIue.pfb)l
bodyPart

object (outsideArmGreen.pfb)l

object (outline_armgreen.pfb)l

object (insideArmBIue.pfb)l
‘SWi[Ch |—| brain |—| global BodyDCS'_| bodyPart object (outsideArmGreen.pfb)l

object (outline_armgreen.pfb)l

object (insideTaillYellow.pfb) |
tailSpring2

object (insideTail2Y ellow.pfb) |

transform HbodyPart

‘1taiISpringz object (outsideTail2Purple.pfb) |

object (outlineTailZ.pfb)l

object (insideTail2Yellow.pfb) |

‘tailSpringZ object (outsideTail2Purple.pfb) |

actionStore action | x 11

object (outlineTaiIZ.pfb)l

Figure 10. The Thing Growing — scene graph structure of the character of the Thing

59

5.2. Discussion of Design Problems

Despite the successes of the gpplications built with XP, there are a number of problems with its design.
Some of these problems are limitations that affect any use of XP, others arise when attempting to adapt
something that was created for Sngle-user virtua worlds to building shared virtud worlds.

XP is extended by defining new node classes. However, doing this requires recompiling the main XP
program to link in the new class, and aso modifying part of the main program’s code (the xpWorld) to
add the new class to the table of known types. Thus, athough it is possible to share node classes
between applications, it is non-trivid. A dynamic, pug-in architecture, smilar to that used by Bamboo,
would improve this immensdy. The main program’s executable would no longer need to change, and
code could be re-used by smply copying aplug-infile

Asistrue for the underlying CAVE library, and most other non-networked VR development systems,
XP assumes that there is only one user. It provides pointers to objects representing a single head, wand,
and navigator; these objects are effectively fixed globd variables, in that user interaction code dways
knows that they exist, and the objects are only created a program startup and deleted at program exit. In
anetworked gpplication, there can be any arbitrary number of users, and the users may come and go over
time. Therefore, nodes that a user can interact with will have to be able to find al of the current users
whose data must be checked. The locd system ought to maintain a dynamic list of users, rather than
requiring each node to search the entire world database for users on every update. It might also be useful
if this list could be filtered, so that only those which are likely to be important for a particular node are

passed to it —i.e. an aura gpproach, smilar to DIVE, could be used to reduce the amount of calculations.

60

When linking messages to events in a scene file, the single-user assumption also has an effect. A
common use of triggers that detect user actions is to send some command to the user in response to his
action; for example, atrigger may be set up to teleport the user somewhere ese when he enters a specific
area. In amulti-user system, the world-builder will need some way to know who generated an event, in
order to send a command specificaly to that user. One possibility is to add parameters to events; these
parameters could then be used in the arguments of messages connected to that event, eg.
“$user.teleport(0 0 0)” could tell the user who set off atrigger to teleport back to the origin.

XP dso assumes a specific user model, corresponding to the interface common to most CAVEs and
ImmersaDesks. That is, the information available about a user conssts of the position and orientation of a
head and a single wand, and the state of three buttons and joystick from an EVL wand. A generd
purpose distributed system should be able to dedl with many different types of user input interfaces; i.e. a
user should be able to have more than two sensors, and different numbers and types of controls, such as
data gloves or different types of wands. Idedlly, the system should also be cgpable of deding with other
control modes, such as speech recognition or keyboard input. Existing XP input nodes are partidly tied
to the hardware implementation; wandTrigger nodes trigger events based on the state of buttons 1, 2,
and 3; grabber nodes specificaly check the wand's second button to grab and release objects. A better,
generdized interface could have the user-data nodes generating smple but abstracted commands such as
“grab” or “activate’ (or even just “commandl”, “command2’, etc.); a wser would then be alowed to
make arbitrary control mappings to indicate what action (button press, voice command, eic.) will generate
a“grab” or other command. Grabbers, triggers, and so forth will then watch for generdized events from

user nodes, rather than looking at their underlying Sete.

61

Although the individua contents of an XP scene may be very dynamic, the actua structure of the scene
in generd isgtatic. An XP program reads its scenefile or files a startup and creates the scene graph from
them; after that, there is no provison for modifying the world. It is possble at the C++ leve for existing
nodes to creste additional nodes, but there is no way to create or remove nodes at the scripting level, or
to modify many attributes such as evert/message links. The V-Mail gpplication, which was based on XP,
needed to dynamicaly modify its scene in order to add new message objects as they were created. [t
accomplished this by the awkward method of writing out a new scene file, digtributing it to dl hogts via
CAVERNSsOft, and then deleting its existing scene graph and reloading the scene file (Imai et d., 1999).
Obvioudy, a more elegant solution is desirable. In any genera, networked gpplication, a dynamic scene
graph is caled for, a the \ery least to dlow cregting and removing avatars as users enter and leave.
Beyond that, to meet the goa of a composable system where large environments may be implemented by
being digtributed over many hogts, the system must be able to handle new portions of the scene graph

being added at any time, from potentialy any host on the network.

6. YGDRASIL

The system that has resulted from expanding XP to support shared VEs is Ygdrasl The name
Ygdrasl comes from Norse mythology; it is the “World Treg’, a gigantic ash tree that symbolized the
universe (Sturluson, ¢1220).

6.1. Design

The primary features of Ygdrasl are: a digtributed scene graph, a user modd, scripting, and dynamic
loading of code.

These features are intended to yield a composable system, one where VE creators can assemble a
world out of arbitrary existing components and bring new objects into a running world. For components
to be able to “link up” and communicate with each other, a clearly defined sructure for the data thet is
shared is necessary. The scene graph approach provides a basic structure, in the form of data associated
with graph nodes, and o it the sharing automated as much as possble. A defined user modd dlows the
cregtion of reusable interactive objects, as the objects will know how to communicate with any user.
Keeping this modd flexible and somewhat abgiract will il dlow the system to adapt to the many different
VR devices with which it might be used. Given a st of object components which know how to
communicate with each other and with users, a scripting layer provides the glue that makes it possible for
authors to assemble them quickly and easlly. Findly, Ygdras! aso includes support for dynamicaly
loaded code, so that virtual world components (i.e. node classes) can be easily shared and re-used by

world authors.

63

Figure 11. The World-Tree Ygdrasl

64

Figure 12 illugtrates how Y gdrasi| is built up on top of exiding tools. Ygdras| is divided into a core
system, which is the main executable program, and a collection of modules. The modules include
standard classes that are provided aong with the core program, and new ones that are added by virtua
world developers. The core system uses Performer to store the visua database and render it, Bergen to
generate audio, and CAVERNSsoft to handle networking. The add-on modules are then built on the core;
in some cases they may make direct use of Performer, OpenGL, or Unix features. Modules that provide

the CAVE-based interface (e.g. trackersfor an avatar’ s parts) aso use the CAVE library.

Y gdrasil modules

Y gdrasil
CAVEIik
Performer CAVERNSsOft Bergen
OpenGL, Unix

Figure 12. Y gdras| software layers

65

6.2. Disgributed Scene Graph

The Ygdrasl system uses a scene graph structure for its world database. However, it is a distributed
scene graph, which does not require a central server for storage®. 1n most cases, no single machine will
have a complete copy of the true "master” scene. Conceptudly, different subgraphs of the full scene can
exist on different machines, ad be linked over the network. Any particular machine will only have the
parts of the scene graph that it controls, and proxies for any other parts that it needs for its caculations,
rendering, or whatever that machineis doing.

Figure 13 shows an example scene graph for a world that contains two distinct scenes, and that has
three usarsin it. Thisis the theoretica globa scene graph, containing al the objects of the virtua world.
Figure 14 shows how the scene graph might actualy be broken up among multiple hosts. Each box
represents asingle host's subset of the entire scene, that is, the portion of the tota world that is owned and
updated by a particular host. Figures 15 and 16 show the portions of the scene graph of which different
hosts might actudly have copies. These conss of the subgraph for which the host is reponsble, plusthe
other fragments that it requires (bold type indicates nodes owned by that hogt, itaics indicate proxies that
receive data from another host). The data in these additional scene fragments are received from ther

controlling hogts via the automated networking fegture that will be described leater.

! In the current implementation, a UDP reflector that all clients talk to is treated somewhat like a server, but it does
not actually store any dataitself.

@ore) Gre)

CICODOMCIC <D

Figure 13. Example of agloba scene graph

DIC
User 3

(o) g

66

Figure 14. The globa scene graph can be broken up and distributed among several computers

67

Root

(e
Co
(oD (o

Figure 15. Scene 1's scene graph

Fgure 16. User 1's scene graph

68

69

Explicitly including the scene graph dructure in the definition of the framework can adso be ussful for
area of interest (AOl) management. Many networked VR systems, such as NPSNET and DIVE, use
AOI to manage both the network and rendering load for applications. In NPSNET, the world is broken
up into agrid of cdls, and users only need to pay attention to other entities that arein the same or nearby
cdls. DIVE defines auras — areas around users that cover the region that they can see or interact with; a
process continuoudy checks for overlap between the auras of the user and other entities, and then only
receives data for those that do overlap. In Ygdrasil, these and other AOI management schemes can be
built on top of the scene graph. A cell-based system can be created by defining a top layer of scene
nodes that represent the different cdls, an aura-based system can ssmply define aura volumes for each
node and test them, smilar to visble bounding volumes in the rendering stage. However, given the
exigence of the scene graph, ether of these systems may be implemented in a more hierarchica manner
for improved performance and flexibility.

6.2.1. Node Structure and Automated Networking

A scene graph is built of nodes, each node contains data representing one particular element of the
scene. In Performer, a single node can contain geometry data, a light source, a transformation, or one of
various types of switches, or it can Smply be agrouping node. This sort of data is sufficient for the visud
aspects of the gpplication, which Peformer deds with. An gpplication’s audio can amilarly be
represented by nodes containing basic information such as the name of the sound file to play and the
current state (stopped, playing, or paused) of the sound. In Ygdrasl, the overdl system dedls with

behaviora programming as well asthe visud and audio representations of the scene. All datarequired for

70

these aspects will need to be stored in anode, but they are divided into two parts — private data, which is
used grictly by the behaviora functions, and shared data, which is available to other clients for such things
as rendering the scene.

As outlined above in the description of the shared scene graph, for any given node there is a host that
is conddered to own that node; thisis the host that performs caculations to update the node (in the case
of auser avatar, for example, it reads the tracker information). Other hosts that are interested in the node
will dso have copies of it. However, only the owning host is able to change the node's data; al others
have proxy copies, and are in effect only able to read its data. Hence, aremote hogt's proxy for anode
should only contain the data that is needed to render it or otherwise use the node in caculations
performed by the remote host. 1n a purely visua application, this would be the sort of data that Performer
nodes contain. Datathat is used interndly by the code that controls a node is not shared, and only exists
on the owning host. The programming style thus follows an object-oriented modd of separating the public
interface of an object from its implementation; if another node wishes to change the state of a node, it
does not change the data directly, but sends a message to the node, specificaly to the master copy of the
node on the owning host. This distinction dso means that proxy nodes can actudly be of asmpler class
than the master copy. For example, a “Spinner” node class can be defined, derived from the basic
transformation class, with the behavior that it continuoudy spins around a given axis. Remote hosts that
cregte a proxy for this node can smply use the base class (transformation node) for their proxies, snce al
that the proxy has to do is receive updates to the transformation matrix. Thus, clients will not need to
have copies of or know anything about the behavior code being run by the master verson of aworld; they

will only need the core program, and modules for any new nodes that they will add to the world.

71

The digtribution of nodes shared data is done usng a CAVERNsoft networked database. Each
specific piece of data (attribute) in a node is $ared separately; each one has its own database key.
Figure 17 shows an example of atransformation node's matrix being shared among multiple hosts. Host 1
owns node “xform”, o it initidly crestes the node, and adds a key to its CAVERNsoft database for the
matrix; any time that the matrix data in xform is changed, the new mairix will be written to the database.
Host 2 decides that it is interested in xform, and so crestes a copy (xform’), which will then reference the
database entry for the matrix key from host 1; whenever new datais received by the key, it will be copied
to xform'. Other hosts will smilarly connect to the matrix key when they need to know about xform. As
shown in Figure 18, every node attribute has a separate key; different attributes could be shared in
different manners — an array of children pointers could use a reliable connection, while frequently updated
matrix data could use an unrdiable connection.

When a new client wishes to join and see a shared world, it can get a copy of the complete world
scene graph by being given areference to the root node (i.e. a network address for the database, and the
name of the root node). The client will create aloca copy of the root node and begin receiving the root's
data keys, thiswill giveit alist of the root's children nodes; following these node references recursively will

eventually produce a copy of the entire scene.

72

| —»xform/matrix ...
| w

- — — —

[Hostt — — |
| @ | CAVERN database
| [

|

| |

| .

Figure 17. Sharing node data by storing keysin and retrieving them from a CAV ERNsoft database

73

type | r
children

type ——
. CAVERN database
children

[Proot/type
»root/children ...

i

. [type »xform/type

type

children ——————T®xform/children ...
| matrix — o form/matrix ... children[|
. matrix
| —light/type
| —light/status |
| ~__|type type R |

rstatus

| status | | - |

Figure 18. Every attribute of every scene graph node is stored as a separate key

When a new client wishes to add an object to a shared world, it will have to be given a reference to
whatever existing node under which the object should be added. The client will create keys for al the
data attributes that will be shared, and then will send a message to the parent node telling it to add the new
node as a child. The parent node will update its children attribute, and so any other clients that have
copies of the parent will see the reference to the new object. Any clients that are interested in the new
object will subsequently create alocal proxy and request its attribute keys as needed.

Database congstency is often an important issue in networked virtud environments. System designers
include specific features to guarantee that two remote users do not end up with different, conflicting data.

For ingtance, Avango uses process groups and total message ordering to make sure everyone receives the

74

same sequence of date updates. However, database inconsistencies are primarily a problem in systems
that follow a distributed shared memory modd and dlow any dlient to directly modify any data in the
world. In DIS, the only action that is required to guarantee consstency is for an entity’s host to send
regular updates, no one ese is adlowed to change the date of the entity. Ygdrasl smilarly avoids such
problems by having objects owned by the host that creates them. For example, if two userstry to grab an
object smultaneoudy, they will not get inconsstent results, as the object itself will decide who grabbed it.
However, actions that depend on the state of a remote object can encounter problems; performing
collison detection caculaions against a moving object might result in a user passing through the object
because the local navigator didn't get the most recent deta in time. In generd, an Ygdrasl world will

maintain congstency over the long run, in that everyone will see the same world; the only concern is that
there might be logica errors in this world — things happening which should not have happened. In

designing XP, we said that we expect things to go wrong occasionally, and o tried to provide tools to get
out of likely errors — collison detection can be turned off, the user can be ingantly sent back to the
darting point, and if al dse fails the entire world can be reset (without having to exit and re-run). Similar
consderations should probably be taken in Ygdrasil gpplications, dthough this may not be as smple.

Because XP applications are not networked, they are normaly shown in an environment where an expert
guide either leads users through the gpplication or is available to step in and help when the user runs into
trouble. Thus, “secret handshakes™ (special wand button combinations) and keyboard controls could be
used for getting out of problems. In the kinds of networked applications thet Y gdrasl will hopefully be
used for, an expert guide will not necessarily be available locdly to notice when the user has a problem

and solveit. At least two gpproaches to resolving this issue are possible. Oneisto make it possblefor a

75

remotely located expert guide to control another user, for example picking them up and dropping them

back in a safe location. Another is to make it easier to provide virtud tools that users carry with them,

that can perform these specia reset operations in a more “user-friendly” way. Both of these gpproaches

depend on agenerd, flexible modd of the user as an explicit part of the virtua world, as described next.
6.3. User Model

Because user interaction is an essentid component of the target applications, a standardized user
model is necessary. Furthermore, as described in Chapter 1, users need to be treated as part of the
world, rather than distinct from it. Therefore, an Ygdras| user is represented as a scene subgraph, asin
Figure 19. For the physical aspect — the avatar — the “usar” node contains the user’ s navigated position in
the world; the “head tracker”, “wand tracker”, and “body tracker” nodes contain transformations for
individua tracked body parts, the model nodes below them contain the geometric models that make up
the user’savatar.

The precise contents of a user graph are flexible, to meet the god of supporting many different
interfaces rather than the smple “one head and one EVL wand” interface. When a user starts a client
program to join a shared world, he must provide an avatar definition file. Thisfileisan Ygdrasl scenefile,
the same as one that defines a world; in this case, it describes the set of tracking sensors to be used, the
wand(s) or other control devices, and the models for the avatar. In addition to normdl, tracked sensors, it
Is possible to create derived pseudo-sensors, i.e. the body position datain Figure 19 might not come from
an actua sensor, but be calculated based on the head tracker deta. The definition of the avatar aso
defines the user’s interaction controls — how he can navigate in the VE, and which buttons or other

controls will be used for actions such as grabbing objects.

76

Keyboard

Figure 19. Example of a sub-graph representing a user’ s controls and avatar

When a user joins aworld, his avatar is attached to the shared scene graph, and thus becomes visible
to al remote clients. The remote clients will add a reference to the root “user” node to their lists of
current users, which are passed to any loca behavior nodes that require information about users. These
nodes can query this root node to find out further information, such as a pointer to the user’ swand. They
can aso use it to send commands back to the user, such as teleporting him to a new location.

The exact definition of a user’s sub-graph is rdatively free-form, but certain ements are expected in
order to provide a common interface for other nodes that interact with users. All users are assumed to be
navigating through the virtud world, so they will have some sort of ‘navigator’ node as part of their sub-
graphs. This navigator node will perform its update calculations, and pass new position and orientation
data to the base user node, which contains the actud transformation applied to the user. Réative to this

base navigation trandformation are the user’ s body parts — the head, wand, torso, etc. For nodes (such as

77

triggers) that want to know the current state of the user’s parts, the user node kegps alist of its collection
of ‘UserPart’ nodes; these nodes can be queried for their position and orientation. The UserPart nodes
are dso labdled, to dlow disinguishing between a head and a hand, for instance. However, Y gdrasi
itself does not attach any specia meaning to any body parts other than the head, so this [abelling will have
to follow some convention that is defined by the gpplications that use it.
6.4. Scripting

The scripting system of Ygdrasi is based on the scene files of XP, but expands their capabilities and
resolve some of their problems. Its objectiveis to provide a high-leve interface for assembling the shared
scene, one that makes rapid prototyping of worlds possble. The many users, both novice and expert, of
Alice have demondrated that an interpreted, scripting language is a very vauable tool for experimentation
and easy creation of worlds from predefined components. Most current VR development toolkitsincude
a soripting layer. However, a significant difference between them and the approach here is that these
other toolkits use traditiona scripting languages. Obvioudy, this has the advantage of leveraging existing
technology and programmers familiarity with it, but none of these languages was defined with VR in mind.
The Ygdrasil scripting method is oriented specificaly toward the problem of manipulating objects and their
behaviors in a virtua world, and thus operates primarily at a smpler leve than languages that ded with
manipulating data structures and traditiona programming control structures.

A scene file defines the structure of a world, as well as setting atributes of individua nodes and
defining message-based connections between nodes. This approach helps the idea of a behavior being
part of an object, rather than separating the program from the data, and has proved very useful in easily

condructing environments. On the other hand, it is more difficult to make programmatic changes to a

78

running world. It is possble for a programmer to send individual messages, a the command line, to
exiging nodes, but it is not possible to make generd changes to the world structure. This limitation may
need to be addressed in future versions of Ygdrasl.

6.5. Implementation

6.5.1. SceneFiles
The format of an Ygdrasl scene file is roughly the same as that of an XP scene filee. The mogt
sgnificant changes that occurred are in the syntax for node options and messages, the placement of node
names, and the addition of “event arguments’. The basic syntax for a scene file is described by the BNF

grammar in Figure 20. An example sceneis shown in Figure 21.

<scene> b <tree>*
<tree> b <dgngleNode> | (<sngleNode> “{“ <tree>* “}")
<gngleNode> b <className> [<nodeName>] [“(“ [<messageList>] “)” |
<messagelist> P <message> [“,” <messagelist> |
<message> b <messageName> “(“ [<argumentList>] “)" [“+” <ddlay>]
<argumentLig> P <argument>[[“,”] <argumentList>]

<className>, <nodeName>, and <messageName> are any vaid names

<argument> is any gring, possibly in quotation marks
<delay> isafloating point number

Figure 20. Y gdras| scenefile grammar

79

light sun ()
environment (volume(box —1000 -1000 -1000 1000 10 1000),
skyColor(.5.7 1))

trandform (position(-5 2 7))

{

spinner (axig(0 1 0))
{
object (file(carousd.pfb), floor, wall)
}

}

userTrigger (volume(sphere 0 0 0 10), when(enter $user.teleport(1000 0 0)))

Figure 21. Example Y gdrasl scene file containing a background color, spinning object, and trigger

6.5.2. CoreClasses
Most of the important code in Ygdrasil centers around the classes Object' and Node, which
implement the basics of a shared scene greph node. The implementation of a node was split into these
two classes to reduce some of its complexity. Object represents any shared object, and handles the
storing of data in the CAVERNSsoft database; Node, which is a subclass of Object, handles the scene
graph-related functions such as storing pointers to child nodes, and traversing the graph. Closdly tied to

Object are the classes Handle and ObjectDB.

! In the actual C++ code, al Ygdrasil class names begin with the prefix yg (for example, ygObject). However, the
prefixeswill be omitted in thistext, for the sake of readability.

80

The basic attributes of any object, those taken care of by Object, are its name, its class name, and its
st of database keys. Every object must have a unique name <o that this name can be used as a path for
its database keys. For example, a transform node named “foobar” would Store its matrix as
“foobar/matrix”, to keep it distinct from any other transform nodes' matrices. Within the main Y gdrasi|
program, the class name of an object is used for two purposes — debugging flags, and networked proxies.
Debugging flags are described in section 6.5.8. For networked proxies, a remote client must be able to
create a proxy of the appropriate class in order to receive and use dl of the node' s shared data. Hence,
the object records its class name as a string, and stores this gtring in the database for other clients to
request. This, and any other shared database keys, are kept track of from Object in a set of NetKeys,
thisclassisdescribed in section 6.5.7.

The Object class interface dso defines the virtua function ‘message()’, so that dl types of shared
objects may receive messages through a common interface.

A Handleis a stable reference to an Object. It is necessary because of the potentidly dynamic Sate of
the collection of objects that make up a networked application. When an Y gdrasil client first learns about
anew, remote object viaits name (usudly in alist of children of some other node), it requests the object’s
class name in order to create the correct proxy. However, because the round-trip times on wide-area
networks can be significant (on the order of 10s of milliseconds or more), we would prefer not to have the
program wait until it actualy recelves a response before continuing on. So, the client first crestes a
dummy proxy that can be used until the redl proxy is crested and replaces the dummy. However, if in the
meantime other objects (eg. a node's parent node) have gotten pointers to the dummy proxy for later

use, these pointers will be invaid when the dummy is replaced. Similar problems can arise when a user

81

exits aworld — any pointers to the user’s avatar nodes will be bad, assuming the avatar data has been
properly deleted. The Handle class takes care of these issues by providing an intermediate reference to
an object. Each Object has a pointer to its Handle, and vice-versa. When adummy proxy for an object
is replaced by a different proxy, the new proxy uses the old one's handle, and tdlls the handle to now
point to the new proxy object. Objects that need to retain long-term pointers to other objects, such asa
node keeping a list of its children, will use Handles instead of direct pointers, and thus will automaticaly
have references to the correct objects. In the case of an object being deleted, such as when a user exits,
is dedt with by having the Handle creste a dummy, so-cdled “void object” to use when it no longer
references any other object.

All of the Objects that make up aworld are kept track of in the ObjectDB class. Its primary functions
are to create new objects and to find existing objects by name. Any code that wishes to create a new
object does not smply use the C++ new operator, but instead cals ObjectDB::create(). There are two
purposes for this. Oneis to make sure that al objects are recorded, so that they can be found by name
later; the second is to provide an interface to the DSO-loading mechanism for new classes (described in
section 6.5.6). ObjectDB’ s find() function is used in a number of different places throughout the Y gdrasl|
program. The most important uses are to locate objects that are to receive messages as defined in the
scene file, and for the automated CAVERNsoft database layer to locate proxy objects that have received
new data from their remote, master versions.

Data and functions related to the scene graph are in the class Node. Some of the features of Node are
the list of a node's children, the greph traversal, event generation and response, sgnas for smple node

gate or commands, and the corresponding Performer node. All Nodes have functions app() and view(),

82

which are the basis of the scene graph traversal. To update the state of the world, the graph is traversed
and the app() function is caled for every active node (inactive nodes are those below switches that are
turned off, or selectorsthat are currently sdecting a different subgraph). The view() functioniscdledin a
separate traversal, and is intended for updates that are related gtrictly to the viewing of the scene by one
user, as opposed to updates that affect the data seen by dl usersin the shared world. Most nodes do not
require a view() function; the digtinction is important only for afew specia nodes. For example, a specia

level-of-detail node would need to choose which verson of a mode to draw based on the location of the
user who is viewing it — not al the users should see the same detall level a any given moment. The event
generation and response is modlly the same as that in XP; it is described further in section 6.5.3. Signds
are a feature that was added for basic inter-node communication such as when atrigger wants to check a
user's wand for button-presses. Because the master versons of the wand and the trigger may be

executing on different hogts, the button-press information must be shared across the network; this can be
done by setting a particular sgnd, such as “act”, which the trigger node knows to check. The sgnd

mechaniam deds with the event-like nature of sgnds by guaranteeing that any given sgnd will be st for
the duration of one frame in each client’s proxy copy; thisisimportant to avoid timing errors (such as from
clients running a different frame rates) that could cause aclient to either missa signa or believe the sgnd

was st for multiple framesin arow. Findly, the Node class retains a pointer to the Performer node that
corresponds to the Ygdrasil node, and provides functions for getting some basic data about it, such asits

position and orientation relative to any other node.

83

The reationships between these and some of the other classes described below are summarized in
Figure 22. The diagrams use a smplified Object Modding Technique style, based on that of Design

Patterns (Gammaet d., 1995).

ygObject

ygWorld yoNode yaViewer
ygSpace ygTransforn ygUserPart ygNavigator
ygUser
ygObjectDB [___ :_ ygObject [« » ygHandle
ygNetKeys
ygWorld >4 ygUser ygNavigator
ygUserPart

Figure 22. Relationships among the basic Y gdrasi| classes

85

6.5.3. Eventsand M essages

Asin XP, the programming of an Y gdras! virtua world at the scene file leve is done using events and
messages. Events are detected and reported by the behavior code for a node class, and messages can be
sent to any node to change a value or to start some action. Messages are typicaly sent as part of the
initidization of a scene from the scene file, or in response to events. Initidization messages are handled by
the file parser; linking events to messages is handled by the *‘when’ command of the Node class. When
cregting a new dlass, dl that an application programmer has to do is to process the new, class-specific
messages in the message() function, and to signal events using the function Node::eventOccurred().

Events are represented by the Event class; each occurrence generates a separate Event object. At its
most basic, and Event is Smply an arbitrary sring. For example, in the userTrigger node in Figure 21, the
dring “enter” is an event that indicates that a user just entered the trigger region; the C++ code for
usarTrigger tests, in its update function, whether any users have entered, and cals eventOccurred(“ enter”)
IS response. However, as was noted in the evauation of XP, some events will need to have additiona
information associated with them. Thisisimplemented as a collection of event arguments, each of which is
agring, with adring labd. In the case of the usarTrigger “enter” event, the name of the user that entered
the trigger is passed as an argument labeled “user”. The labding is necessary so that scene file messages
have an easy way to make use of these arguments. For example, in Figure 21’ susarTrigger, “$usar” will
be replaced by the value of the argument “user”, and so the message “ $user.teleport(1000 0 0)” is sent to
whichever user generated the enter event. These arguments must be attributes of the event, rather than
samply of the node that generates the event, because a node might conceivably generate severd events,

with different arguments, during the course of asngle frame.

86

Messages are very gmilar to events, in that they have a dring name and a collection of gring
arguments. They are represented by the class Message. A message is sent to anode by passing it to the
node' s function message(). This function parses the message by testing its name, and if the name is
recognized, parsing the arguments as necessary and calling the gppropriate class member function. The
Message class includes a number of utility functions for converting arguments into such things asintegers,
floating point numbers, boolean vaues, and vectors. 1t dso includes functions for trandating a string, such
as “foo.pogtion(1 2 3)”, into a Message object, and for the reverse — writing astring that corresponds to
a particular Message object; these functions are used by the scene parser, and by any new classes that
might want to generate messages on the fly.

The primary structura digtinction between an Event and a Message is how the arguments are defined.
In an Event, each argument has a mnemonic labd, such as “user”, whereas in a Message the arguments
are smply identified by their order (eg. in “pogtion(10 0 7)”, “10” is argument O, etc.). These
approaches were each chosen for their convenience in writing scene files, for ingtance, labeling message
arguments would result in lengthier commands such as “position(x=10 y=0 z=7)", but for events it was felt
that “$user.teleport(1000 0 0)” is preferable to “ $1.teleport(1000 0 0)”. However, these differences are
not necessaxily irreconcilable, and it might be interesting, & some point in the future, to congder merging
the classes Event and Message and making them interchangesble.

6.5.4. World and View

Two classes — World and Viewer — are responsible for managing the overal scene. The World class
keeps a pointer to the scene graph, and performs the *app’ traversa on the graph in order to update

every node each frame. It aso takes care of passing messages to nodes; when one node wants to send a

87

message to another, rather than doing this directly it hands the message to the World' s scheduleM essage()
function. This is done because messages often have delays associated with them, and so they are placed
in a queue maintained by the World; if an individua node tried to take care of its delayed messages, it
might potentially be disabled (e.g. by being under a switch) before the message was sent, thus causing the
message either to be lost or to be sent much later than requested. In addition to these tasks, the World
object keeps pointers to any User nodes that are added to the scene. Thisis provided as a convenience
for the many different nodes (triggers, etc.) that are expected to interact with users; rather than requiring
each of these nodes to search the scene graph for Users, they can smply request the list from the World.
While the World object takes care of smulation updates, and thus must dways exig, the Viewer

object is responsible for view-related updates, and thus only exists when the Y gdragil program is running a
CAVE or other display. Ygdras instances that function strictly as servers do not need a Viewer. The
Viewer object provides an interface to specid Performer functions such as changing the clipping distances
or the background color, which can be used by environmenta nodes in the scene. It aso provides
information about the person viewing the scene — that is, the person’s position and orientation. This
information is needed by nodes that vary their loca behavior based specifically on the locd viewer. Most
nodes behavior will be affected by any user in the shared world, regardiess of whether that user is loca
or networked. But some nodes do need to know about the local user; for instance, 3D sound nodes will
need to know the user’s pogition in order to implement spatidization. The Viewer classis consdered an
abgract class tha may have multiple derived classes to provide different user interfaces. There is a

CAVEViewer class that uses the CAVE library to get the tracked user’s pogition and orientation; a

88

different Viewer class might be crested to provide a smple mouse-based desktop interface that doesn't
require the CAVE library.
6.5.5. User Classes

A user’ s representation in the shared scene is built from three classes — the User node, the Navigator,
and the UserPart.

The User node is the root of the sub-graph forming the user’s avatar. Its purpose is to contain the
avatar and form an interface between it and other objectsin the scene. The User class includes functions
to get pointers to the user’s Navigator node, Head node, and any UserPart nodes. The User classitsdf is
derived from the Transform class, which is a basic transformation node, equivaent to Performer’s pfDCS
(dynamic coordinate system). This particular transformation is the user’'s base navigated postion in the
scene; positions of parts such as a tracked head and wand are then local transformations relative to the
User node.

Navigator is a base class for different nodes that may control the user’s navigation. The basic
Navigator class itsdf does not perform any navigation, but smply defines a sandard interface and
contains the raw navigation data — the user’s pogtion, orientation, and size. A class that implements a
particular type of navigation is then derived from Navigator, and extends its app() function to perform the
appropriate calculations and update the position/orientation/size deta stored in the parent class. The
Navigator class s app() function then passes that data to the User transformation itself.

The UserPart class represents any sort of individua body part of the user, such as the head, the wand,
the torso, etc. All this class actualy does is to provide a common base class for user body parts, and

alow them to be labeled. Labding the parts with strings such as “head” or “wand” will alow other nodes

89

(eg. triggers) to find just the specific parts of the user that they need to check. Specid classes are
derived from UserPart, such as Head, to represent the user’s head position, and CAVEWand, which
checks the CAVE wand for button presses and generates corresponding events. UserPart is not a
transformation node; instead, it is assumed that UserParts will be attached to other transform nodes that
provide the desired avatar movement — e.g. the CAVETracker node class, which gets its data from
CAVElib tracked sensors.

6.5.6. Adding Node Classes

New node classes can be added to Ygdrasil via DSOs (dynamic shared objects), sometimes referred
to as “plug-ins’. Thisisamilar to the approach used by Bamboo (Watsen and Zyda, 1998), and makes
extending Y gdrasil smpler than extending XP, as the main program itself does not need to be recompiled;
DSOs can be easily shared among developers, and new node classes can be added to the environment
even asit isrunning.

The DSOs are managed by the class ConstructorDB. This class keeps a list of dl DSOs that have
been loaded o far, indexed by the name of the node class that they implement. When the ObjectDB
wishes to cregste a new node, it requests a pointer to the appropriate constructor function from the
CongtructorDB. If no DSO has been loaded yet for that class name, the ConstructorDB searches its
directories for a “.s0” file with the same name as the requested class; if it finds the file, it loads it and
returns a pointer to the constructor function.

In the case where a new class is derived from another class defined in a another DSO, the parent class
must be loaded firgt for the system to be able to load the derived class and resolve al its function

addresses. To address this issue, an Ygdrasl DSO may include a list of dependencies — that is, other

90

classes on which the DSO depends. If such alist isfound, the ConstructorDB first searches for and loads
the dependency DSOs. This action is recursve, so it can first load any dependencies of the requested
DSO's dependencies, and so on back through the class hierarchy until it reaches dependencies that are
aready met (i.e. classesthat are aready |oaded).

6.5.7. Networked Database

All networked objects use two classes to handle their shared data— Net and NetKeys.

The Net cdlassisa set of functions that adminigter the networking. They initidize CAVERNsoft and the
shared database, and dtart a separate thread for sending and recelving data updates. The function
Net::requestKey() queues a request to fetch a particular key’svaue. The function Net::storeKey() stores
anew valuefor akey. Net'supdate() function will pass any new key values that have been received from
the CAVERNSsoft database server to the Object responsible for the key. All of the actua writing and
reading of data on the network is done by the separate thread, so that the main application process is not
blocked by these operations.

The NetKeys class is an interface between the shared object classes and the Net functions. Objects
do not directly call Net functions, but instead store their data in NetKeys objects; NetKeys then cdl
Net::storeKey() for those keys that have changed during the current frame. NetKeys adso handles the
trandation of various common data types into packets that can be sent to the shared database. These
types include strings, integers, vectors, and matrices. An object defines a net key to be shared by calling
the function Object::addNetKey(), and passing it a name for the key, a pointer to the variable containing
the key’'s data, and the type of the data. In this way, the NetKeys can not only send new data to the

database, but it can automatically save newly received data from the database into the appropriate object

91

variable. The Object function acceptNetKey() is caled when this automatic receiving is done, o that a
node can check and use the new dataif necessary.
6.5.8. Utilities

There are severa generd utility classes and functions in Ygdrasil. The ones described here are the
Sring, Volume, PFDBase, and DebugFlags classes.

Ygdrasil makes heavy use of text drings, for such things as passing messages, events, and names of
classes and objects. Hence, it includes a String class to smplify handling them. The class dlows easy
comparison, assgnment, and gppending of strings via overloaded C++ operators. It dso has functions for
golitting a sring into tokens, for example, bresking a colon-separated search path into its component
directories. One other important fegture is that it performs case-insendtive comparisons (eg.
“Transform” isequa to “transform”).

Spatid volumes are dso common in Ygdrasl gpplications. They are used to define trigger regions,
areas where sounds are audible, and aress that have certain environmental characteristics (fog, etc.). The
abgract class Volume, and its derived classes Box, Cylinder, InfiniteVolume, Point, and Sphere, are
dandard tools for these uses. The volume classes include functions for testing if a point is ingde the
volume or if aray intersects the volume, and for computing the distance of a point from the volume. There
are dso utility functions to parse a dring message describing a volume and create the corresponding
volume, to create such a string message from an exigting volume, and to creste Performer geometry that
takes the shape of agiven volume.

The PFDBase dass provides functions for loading Performer models asynchronoudy, using

Performer’s DBASE process. Using this separate process is important because of the dynamic nature of

92

shared worlds. New objects may be added to a scene a any time — a the very least, when usersjoin a
world, their avatars must be added. 1f the mode files for these objects were |oaded synchronoudy, within
the main app process, the graphics (and smulation) would freeze any time anew object was added. The
PFDBase class alows anode to request that a modd file be loaded; it is given a PFDBaseRequest object
in response. The node can then check the PFDBaseRequest object’ s state to learn when the modd has
actudly been loaded, in case the node needs to do something with it, such as setting intersection flags.

The debugging features in Ygdrasil are intended to be much more flexible than those in XP. In XP
there was just a single flag, indicating whether “debug mode” was on or off. This meant that if many
objects provided detailed debugging information, the user could be overwhemed and not easly find the
information he wanted. In Ygdrasil, each node class can have a set of debugging flags to turn on or off
multiple debugging options independently. The user can st any of these flags, ether by an environment
variable or by messages to nodes. With the debugging environment variable, wildcards can be used, and
flags can be set for dl nodes of a particular class, or for a specific node. For example, setting
“UsarTrigger.volume® would enable the volume outlines for dl UsaerTrigger nodes, wheress
“triggerl.volume’ would engble the volume outline just for the node names “triggerl”. This is dl
implemented using the DebugH ags class, which is referenced within the Object class. Node classes can
amply cal Object::debugHag() with a string name for the flag and a pointer to a boolean varigble, and

later check the Sate of the variable, which will be automaticaly set when requested by the user.

7. USE AND EVALUATION OF YGDRASIL

As atest of its feadhility for large, shared VESs, Ygdrasil was used to create two culturd heritage
applications shown at iGrid 2000. The International Grid (iGrid) is a series of research demongtrations
highlighting the value of internationa high-speed computer networks in science, media communications,
and education (Brown et a., 1999b). iGrid 2000 took place at the INET 2000 conference in Y okohama,
Japan. It provided a 100 Mbps connection from the conference site to STAR TAP in Chicago; STAR
TAP serves as an international connection point for severd research networks in America, Europe, and
Asa

The two VEs shown were Shared Miletus and the Virtud Harlem Project; both were based on
exiging, non-networked applications. The applications were run in a CAVE in the iGrid booth,
connected to a second CAVE in Chicago a EVL; the Virtud Harlem Project dso connected to the
Virtud Environment Indruction Lab a the Universty of Missouri-Columbia The following sections
describe these gpplications and the work necessary to build them, and discuss some of the Ygdras
design issues that arose as aresult.

The find sections of this chapter present the results of some benchmark tests that were run to evauate
the scalability of Ygdradl and the costs of using it.

7.1. Shared Miletus

Shared Miletus is an environment crested in collaboration with the Foundation of the Hellenic World
(FHW) (Pape et d., 2001). The FHW is a non-profit, privately funded museum and culturd research
inditution in Athens, Greece. Its misson is to preserve and present Hellenic history and culture; it seeks

to use state-of-the-art technology to accomplish these gods. The FHW owns two virtud redity sysems,

94

an ImmersaDesk and a ReaCTor, that are used to present a variety of content created by Foundation
daff (Roussou, 1999). Exhibits using the systems have included 3D recongtructions of ancient cities and
buildings, as wdl as educationd, interactive environments such as the higory of Helenic cosume.
Experienced museum guides lead vigtors through the exhibits; the guides must have both technica skillsto
operate the VR displays and museum education skills to explain the higtory of the city. The guides arean
important part of the exhibits, and any networked version of these exhibits must in some way take into
acocount their role in educeting vigtors.

One of the first gpplications shown in the VR systems at FHW was a recondruction of Miletus, an
ancient aty on the coast of Asa Minor (see Figure 23); the origind application was developed in XP.
Detailed modes of some of the buildings of Miletus were created, and museum visitors can explore the
city asit was in antiquity. The objective of the iGrid verson of Miletus was to take the content that would
normaly be shown in the controlled environment of FHW's museum, and let remote, networked people
vigtit. In particular, we did not want to Smply make it something like a VRML modd that vistors would
download and then play with on their own; insteed, it was to be consdered a dynamic, shared world,

"hosted" by the conference demondrators (or, in the future, the museum).

95

Figure 23. Shared Miletus— aview ingde the Ddfinio

7.1.1. TheDemo
In creating Shared Miletus, we focused on two issues — guiding vistors through the city, and providing
them with information about what they were seeing. These features needed to work in an internationaly
distributed environment, where users could come and go from the space at will.
Many museum-based VR exhibits will lead vistors through the virtual world on a pre-selected path, so

that users do not have to learn any specid controls or know where they should be going. The river

96

metaphor, described in (Gayean, 1995}, extends this model by alowing the users to stray somewhat
from the fixed path, but dways guaranteeing that they continue to progress in the right direction. In our
case, we wanted to give the vistors freedom to explore Miletus at their own pace. They were given a3D
wand used for smple joystick-driven navigation; a recorded introduction when they entered the space
explained how to use the wand. To make it easier to get to places of interest, and to rescue the visitors if
they got logt, we dso gave them a dynamic, virtud map. This map showed the layout of the city, the
user's pogition in it, and also the postions of any other participants in the shared world. This helped them
to drive to particular buildings, or to meet up with other vigtors or guides from the museum. In addition,
the map could be used as a navigation shortcut — dicking on a particular building would summon ameagic
carpet that then automaticaly brought the user to that building's entrance. If avistor were completely log,
a specid reset button would start him back at the entrance to Miletus, and replay the ingtructions on how
to use the wand and map.

Thefirgt stage of providing vistors with information about Miletus was to include expert human guides.
Guides from the actud, "officid" museum could enter the shared world, just like an ordinary vistor.
Through their avatars, and streaming network audio connections, the guides could then interact with the
vigtors, pointing out specia details and answering questions.

Given the internationa scope of the shared space, human guides done are unlikely to be enough —
there could be large numbers of visitors, and they could be exploring the space at any time of day. So, we
placed automated information kiosks within the various buildings of Miletus. These kiosks contained pre-
recorded audio commentary describing each building and its history. In order to support an internationa

audience, this audio was available in multiple bnguages; for the iGrid demo we provided English and

97

Japanese commentaries, but given enough time and trandation personnd, any number of languages could
be supported. The multi-lingua capability was implemented by having eaech vigtor carry their own virtud
audio tool. The tool was effectively a part of the user's avatar, and kept track of his preferred language.
When the user approached a kiosk, a trigger detected the presence of an audio tool and sent the tool

messages informing it of what recordings the kiosk could provide. If the user chose to listen to one of

them, the tool would send a request back to the kiosk, asking for the appropriate sound file for the
desired language. Other toals &t the entrance to the world could be used to switch languages — dicking
on a Japanese flag icon would send a message to the user's audio tool to use Japanese, for example. The
audio tool aso provided the introduction and navigation ingtructions in the appropriate language.

7.1.2. Implementation Details

Table VI summarizes the contents, both data and code, that went in to creating Shared Miletus.
Several new node classes were programmed for Miletus. These include the Visibility, LODObject,
PathFollower, FlyingCarpet, MiletusNavigator, NodeTrigger, AudioTool, SoundNode, Mapper,

and Local Data classes.

98

TABLE VI

CONTENTS OF SHARED MILETUS

Scene graph 1025 nodes
23 scenefiles
2300 linesin scenefiles

Code 18 new classes
2712 lines of code

Data 227 models 17 Mbytes
291 texture images 60 Mbytes
139 sound files 151 Mbytes

total: 228 Mbytes

The Vighility and LODObject classes were created to improve the graphics performance of the
gpplication. The complete mode of Miletus is much too complex to be viewed at acceptable frame rates.
Performer’s culling and other built-in optimizations help, but were till not enough. Vishility nodes were
used to improve culling. They are used around complex models in the scene, and define a region or
regions where the models are vishle, for example, if the user is insde one building, the other buildings
should not be drawn. The LODObject class provides an interface to Performer’s level-of-detail festure,
and dlowed usto include smpler versons of things such as pillars, to be used when the viewer isfar avay
from them.

The PathFollower was created for smple animations of objects. It reads a data file of key frame

information; when activated, it moves itsdf aong the path.

99

The HyingCarpet and MiletusNavigator implement the automatic carrying of the user to sdected
placesin the scene. Each user has his own FHyingCarpet node that is defined along with the user’s avatar.
When the user clicks on a destination on the map, a command is sent to the FyingCarpet; it finds the
user’s current location, starts there, and then moves in a smooth hop to the destination. At the sametime,
an ‘dtach’ message is sent to the user’s navigator. This message is part of MiletusNavigator, being an
extenson to the norma CAVENavigator's fegtures; it causes the user’s navigation to be tied to an object
(in this case, the carpet) and automatically move with it until a‘releass message is recaived.

The NodeTrigger, AudioTool, and SoundNode classes were created for the information kiosks. A
NodeTrigger is Smilar to a UserTrigger, except thet it can detect nodes of any requested type; in the case
of Miletus, we used it to detect AudioTool nodes as they enter a kiosk’s area. Each user’s avatar
includes its own AudioTool node, so that each user can ligen to the commentaries separately, in his
preferred language. The AudioTool receives messages from the kiosks NodeTriggers, informing it of
when there are sounds to play; it receives messages from other triggers, attached to the language flags,
teling it what language to use. It aso recaives messages from aWandTrigger thet is attached to it, so that
the user can click on the tool to start playing a sound. The SoundNodes are interfaces to the different
commentaries in multiple languages. A single SoundNode corresponds to one commentary, and contains
alist of AlFFfiles, one for each supported language. When the AudioTool wantsto play a sound, it asks
the SoundNode for the name of the correct AIFF file to use.

The Mapper class implements part of the user's dynamic map. The only aspect of the map that
needed new code was the display of other users positions. The Mapper gets the locations of al of the

usersin the scene from the ygWorld node. It creates a set of small markers, and positions them according

100

to the users pogtions. This node s attached to amode of the map itself, so that the markers will appear
on it. The control that alows a user to click on the map and be carried to a building Smply uses existing
trigger classes.

The LocaData class was added after initid tests of Miletus. Because Ygdrasil shares its entire scene
graph among al clients, by default users could see each other’s maps and audio tools. This was
considered unnecessary clutter, so we created the LocalData node to hide these objects from other users.
When objects are attached below a LocalData node, their scene graph information is still shared, but on
clientsthat do not own the LocalData, it turnsitsalf off so that everything below it is not rendered.

7.1.3. |Issues Encountered

Congtructing Shared Miletus brought to light afew potentid issues with the design of Y gdragl.

One of the hypotheses behind the design of Y gdrasl’s shared scene graph was that, for any particular
node, one host could hold the master copy and execute its behavior code; dl other hosts would have
ampler proxies that receive new state from the master. 1t was hoped that most of the State that needs to
be shared would be common, Performer and Bergen-related information used to view/hear the nodes. In
other words, proxy nodes would normally be of one of the basc, built-in types, such as Transform,
Switch, or Model, and clients would then not need any new executable code (DSOs) in order to join a
world that is running on another host. This hypothess holds true for the large percentage of actua nodes
in the Miletus scene graph, but it turned out that severa classes (Vighility, AudioTool, SoundNode, and
LocalData) needed to be ‘networked classes'; that is, clients would adso have to have copies of their
DSOs to even use the proxy versons of the nodes. Other Y gdrasil world-authors continue to come up

with new behaviord nodes that smilarly must be networked. Hence, in the future, Ygdrasl should be

101

extended to be able to automatically download new DSOs from a server as needed, smilar to the
approach taken by Bamboo (Watsen and Zyda, 1998). One important thing that should be part of this
feature is security, perhaps in the form of digital signatures, asis currently done in web browsers, to help
ensure that clients do not download malicious code from unknown servers (Bamboo itself does not yet
include any security, but merely notesit as a future addition.)

The need for the LocaData node showed that not everything in the scene graph should be shared
equaly. Thisis amilar to the inclusion of ‘private objectsin BrickNet (Singh et d., 1995). This feature
should probably be incorporated into the core set of classes, but also be expanded to alow sharing
obj ects between restricted groups of users.

Finaly, when nodes whose master copies are on different machines interact, network lag can have an
effect. This can produce visble artifacts with objects that users will interact with directly. For example, if
the flying carpet node had not been included with the user’s avatar, and thus run on the same host, when
the user was attached to the carpet others might see the user and carpet moving at different rates. This
problem will be more important in future applications that contain objects that users can pick up. If a
grabbed object updatesits own position based on the user’ s hand position, network latency will cause the
object to appear to lag behind the user’s hand. A solution to this problem is to smply change the scene
graph hierarchy dynamicdly; when a user attaches himsdf to a vehicde, his avatar will be re-parented
under the vehicle in the scene graph; when a user grabs an object, it will re-parent itsalf under the user’s
hand. One issue that then arises, however, is what to do a when the object is dropped. If a user picks

something up in one areq, travels a long way to some completely unrelated area, and then drops the

102

object, where should it be re-attached in the scene graph? This will require some experimentation and
careful world-design.

7.2. Virtual Harlem

Virtud Harlem is an environment developed in collaboration with the University of Missouri-Columbia
and the UIC English Department (Carter, 1999). It isintended to supplement African American literature
courses a both universties, as wel as potentidly many other schools across the country. It is a
recongtruction of 10 square blocks of New Y ork’s Harlem in the 1920s, the period known as the Harlem
Renaissance. The recongtruction is based on photos, maps, films and recordings of thetime. Theintent is
to alow students to visudize the setting and context of the writings that they are studying, hopefully leading
them to be more directly engaged with and more deeply understand the material. Students can navigate
through the streets and buildings of Harlem, hearing the music and people of the period and visiting some
of the Sites related to the works that they are studying; they can see performances a the Cotton Club and
hear speeches by figures like Marcus Garvey. An ingructor leads the students through the environmert,

explaining things and answering questions.

103

Figure 24. Virtud Harlem running on an ImmersaDesK at iGrid 2000

7.2.1. Contentsof Virtual Harlem

Table VII summarizes the amount of data and code that were created for Virtud Harlem.

The environment conssts of roughly 60 buildings, some of them significant Sites such as the Abyssnian
Church, others ordinary gpartments and shops. The models of the buildings were constructed by students
a the Univerdaty of Missouri. Didtributed throughout the areg, in front of certain buildings, are higtorica
characters — Langston Hughes, Marcus Garvey, a group of women headed to a rent party, etc. These

characters are billboarded, cutout images of the people from 1920s photographs. When a user

104

approaches these characters, recorded speeches or conversations are played. A trolley car moves
automdticaly through the dreets. Vistors can board the car by entering it, a which point they are
‘attached’ to it and move with it; they can exit by stepping outsde of the car. Vistors can dso enter the
Cotton Club; indde is a satic re-cregtion of patrons and gaff in the main hdl, and an interactive movie
screen on the stage. By clicking wand buttons, any visitor can play back QuickTime movies o various
performances that were at the Cotton Club. Figure 25 and Figure 26 summarize the scene-graph layout
of the environment. The complete scenefilesused in Virtua Harlem are provided in Appendix B.

The man new node class that we coded for Virtud Harlem was the movieScreen class. A
movieScreen node takes a QuickTime movie file and displays it on avirtud screen. Thisinvolves reading
individua frames of the movie usng SGI's moviefile library, converting them to texture map images, and
attaching the texture to a square. The movieScreen node used in the Cotton Club accepts messages from
a set of triggers there; the triggers tell it which movie to play and when to gart playing, whenever a user

presses awand button.

105

TABLE VII

CONTENTSOF VIRTUAL HARLEM

Scene graph 220 nodes
5 scenefiles
384 linesin scenefiles

Code 3 new classes
545 lines of code
18 re-used classes

Data 133 models 24 Mbytes
453 texture images 53 Mbytes
25 sound files 110 Mbytes
5 QuickTime movies 25 Mbytes

totd: 212 Mbytes

root

light

light — — — — |

light

%)
ol
D
o
@

extHarlem.yg

_ — —

|
— — — |
| |

Buildings.yg
| |
| _—

CottonClub.yg

wandTrigger |
| object (Cotton_LobbyOnly.pfb) |
|
wandTrigger |
| wandTrigger
wandTrigger |
object (CIubSpIit.O.pfb)l

| object (ClubSplit.1.pfb) |

object (ClubSplit.2.pfb) |

| object(CIubSpIit.3.pfb)|

transform |_| movieScreen |
transform
| sound

|
switch

- = — - - - - - — 4

Trolly.yg
— 2

|

object (trolly-green.pfb) |

| object (trolleyFloor.pfb) |

Figure 25. Virtud Harlem scene graph structure of the Cotton Club and trolley

106

extHarlem.yg _ -

| sound (cityB.aiff) [x 6

,lobjecl (DivineL adies.pfb)

userTrigger

sound (Sister_Divine.aiff) |

userTrigger |

object (HoodooStoryTellers.pfb) l<
sound (check players.aiff)l

userTrigger

sound (Willie Cool.aiff)l

sound (Langston_Hughes.aiff)l

object (joeCool.pfb)

object (LangstonHughs.pfb)

userTrigger

object (MarcusGarvey.pfb)

sound (Marcus_Garvey speaks.aiff)l

sound (3woman_going_to_party.aiff) |

| userTrigger |

sound (edmunds_cellar.aiff)l |

sound (pod_jerrys.aiff) | |

|

sound (connies.aiff) |

| object (RentPartyL adies.pfb)

visibility ‘ |

sound (lafayette.aiff) |

object (lightposts) [x 13 |

object (Clutterl.pfb)l |

object (CrowdClutterl.pfb) |

- - - - - - - - - - - 1

Buildings.yg

| |
object (PitchedRooprartments.pfb)| |

object (EndoftheWorld.pfb) |
|

object (BoringApartmnts.pfb) |

object (BottomShitbuilding.pfb) |

object (g19721.pfb) |
object (g19722.pfb)
|
object (g19501.pfb)
object (g19502.pfh) |
| — object (g11061.pfb)
| object (JacquiesApartmentsAgain.pfb)| |

Fgure 26. Virtud Harlem scene graph structure of the city

107

108

7.3. Composability

The development of Virtud Harlem and Miletus showed the ease of composing new environments in
Ygdragl. In paticular, Virtud Harlem was very easlly assembled. Starting from the dreedy existing raw
materids (the building modds, sounds, and movies), most of the environment was created in a few days
(an exact messure is impossible, as Virtua Harlem was worked on in pardld with the first draft of
Ygdrasl itsdf.) It was built usng some of the specid nodes that were crested for Shared Miletus.
Miletus extended navigator class was used in the avatars for participants. The Vishility node was dso
used, to improve the rendering performance. These, dong with other, standard, ‘added’ node classes
such as WandTrigger and CAVETracker, were al incorporated into Virtud Harlem via DSOs loaded a
run-time, and did not require any specia changes. In current work, the application is being expanded by
adding nodes that use Miletus PathFollower and FlyingCarpet classes.

In total, 209 of te 220 nodes in Virtud Harlem were of exiging types, either the basic Y gdrasl
classes or those taken from Shared Miletus. In the case of Miletus, only 376 of the 1025 nodes were of
the pre-defined Ygdrasl types. However, the mgority of the other nodes were of the Vishility (24
nodes) and LODobject (483 nodes) classes. These are both fairly generd-purpose classes that can be
expected to be re-used in many other applications, and should be included in the collection of standard
Ygdrasil code. Giventhat, only about 20% of the Miletus environment required applicationspecific code.
As the collection of node classes expands with further applications, even more re-use should be possible,
and the large mgority of any new virtud environment will be able to be assembled quickly from existing

classes.

109

As further verificaion of its vdue in composing large worlds, Ygdrasl is currently being used as the
basis of a networked group show for the 2001 Ars Electronica Festival. The overdl VE for this show is
an assembly of deven different environments crested by roughly twenty artists and programmers. Similar
shows have been cregted in the past, but they involved a great ded of struggle to get different pieces of
code, that were developed separately, to work together without serious conflict. In the new show,
composing the total environment has been smooth and involved smply linking together the various pieces
in atop-leve scenefile

7.4. Neworking Problems

In developing and teging the first draft of Ygdrasl for iGrid 2000, two mgor problems were
encountered in the networking implementation.

The first problem was deadlocking that would occur when multiple clients joined a shared world. This
appeared to be due to the use of CAVERNSsoft’'s TCP-based shared database classes. Inthe CAVERN
database, a single TCP/IP stream is used for communications in order to guarantee that al clients receive
al messages, and thus keep their databases consstent. However, an a Ygdras| environment, as a new
client joins, it darts to request and receive many packets describing the scene graph. At the same time,
the other clients, who are broadcasting the data for the existing scene, begin to request the new dient’s
information. In a complex environment (anything more tian a couple avatars and a handful of dtatic
objects), these many requests and data packets would begin to back up, and the clients ended up
deadlocked, waiting for information from each other before they can send out their own new packets.

To resolve this, the CAVERNSoft database was replaced by a smilar one based on UDP/IP. With

this implementation, if any client’s incoming messages get backed up, new ones are logt, but the hogt that

110

sent them is ill able to continue. For data that really needs to be received, such as the type of a
particular node, if it is not received after a certain amount of time, a new request is sent, thus avoiding
most problems due to lost packets. The latest verson of CAVERNSsoft includes unrdigble (i.e. UDP)
updates in its database class, so this may aso solve the problem.

The second problem was smilar to the so-cdled ‘long fat pipe issue in TCP communications
(Stevens, 1998). In TCP, this problem occurs when a network has a high latency and a rlaively small
TCP window. A smadl window means that a computer can only send a smal amount of data (often 64
kilobytes) before it must wait for an acknowledgment that the remote computer has successfully received
the data. If it takes a long time for this to come back acknowledgment (tens of milliseconds or more),
then only afew windows of data can be transmitted each second.

In the first draft of Ygdrasi, athough TCP/IP was not used, the creation of nodes in the scene graph
wes effectively seridized. Whenever the programfirst learned of anew node, usualy when it gppeared in
another node's list of children, that node's loca proxy had to be creasted. To do this, Ygdras! would
send arequest for the node's class name, and wait for the response before being able to create the proxy.
Until the response is recaived, nothing else could happen. If there were many nodes in the scene graph,
and the time to receive a database response was dow, this would add up and result in it taking along time
to build the loca verson of the scene graph.

At iGrid 2000, the round-trip time between Y okohama and Chicago, as measured by the ping utility,
was 150 milliseconds. For actua traffic, such as database requests and responses, the round-trip time

would be greater than that. As a result, starting up the Shared Miletus application, with its 1025 scene

111

graph nodes, took roughly 10 minutes. This is much Sower than was desired’. In the second draft of
Ygdrasil, this issue is being addressed by making the shared scene graph crestion more asynchronous.
Whenever anew nodeis learned of, its type is requested, but a dummy proxy is crested and the program
continues on, usng the dummy proxy until it can be replaced by one of the correct type. This dummy
proxy is still a scene graph node, so it knows to immediatdly request its list of children, so that these nodes
can also start to be crested, even before the crestion of the first node's real proxy has been completed.
This should result in startup times that are proportiona to the depth of the scene graph, rather than the
number of nodes—i.e. an O(log N) time rather than O(N).

7.5. Performance T ests

Miletus and Virtud Harlem demondrated the generd success (and problems) of usng Ygdras! in
creating redl, functiona shared environments. The following are the results of a series of more redtricted
experiments intended to identify the actud performance cods of using the system.

The experiments used a virtual world that conssted of between 1 and 500 smulated user avatars
(Figure 27). Each smulated user was equivaent to a typicd, red user’s avatar; it had a top leve
transformation node for its navigation, three transformations below that, with attached modds for the
head, hand, and body postions. The four transformations were ‘Spinner’ nodes, a new node class
defined in a DSO that continuoudy rotates in place around an axis. In this way, each avatar was
congtantly moving, producing the same amount of database updates and network traffic as an actua user

or a highly dynamic, autonomous object in a world. Because of some of the network limitations

! In an ideal world, the entire 228 Mbyte database could have been sent over the 100 Mbit APAN connection in 19
seconds. In thiscase, the 10 minutes wasjust for the scene graph description, avery small fraction of the full database.

112

encountered with multiple users (as described above in section 7.4 and below in 7.5.3), it is unlikdly that
an actua Ygdrad! gpplication will involve hundreds of usersin the near future. However, these smulated
users can aso represent many dynamic transformation nodes for autonomous objects in a scene; as the
datistics for The Thing Growing (Table V) show, severd hundred dynamic objects can easly occur in

current applications.

Figure 27. An array of afew hundred smulated users

The standaone tests were run on a SGI Onyx/IR with 4 194 MHz R10000 processors and 512
megabytes of memory, running IRIX 6.5.7 and Performer 2.2.7. The distributed test used the Onyx and
3 SGI 0O2s (180 MHz R5000 processor, 128 Mbytes RAM) for the clients, and a SGI Indigo2 Impact
(195 MHz R10000 processor, 288 Mbytes RAM) for the reflector; al hosts had 10BaseT Ethernet

connections.

113

All of the tests used single, 64x64, monoscopic graphics windows, rather than a full CAVE or
ImmersaDesk display, so that the rendering stage of the program took a negligible amount of time and did
not affect the overall speed of the tests — my interest here was in measuring how fast the application stage
could update the world. The application timing information was collected usng Performer’s ddidics
gathering functions; these functions record high-resolution timestamps at the beginning and ending of each
stage's update, S0 that the time spent actudly performing caculations can be measured. Performer’s
update loop is synchronized with the double-buffered graphics, which are in turn synchronized with the
video display; looking at just the frame rate would therefore have given quantized, imprecise timing
information. The network bandwidth was measured with the system utility netstat, which directly
accessss |IRIX kernel memory to report the amount of traffic on each interface during a 1 second sampling
period.

7.5.1. Non-networked Scene Updates

The firgt experiment evauated the basic cost of using Y gdras| without networking. For comparison, a
sample Peformer/CAVElib application was written that crested the same basc environment as the
Ygdrasl test world. This ‘graight Performer’ program constructed an equivaent scene graph, saved
pointers to dl of the transformations pfDCSs in an array, and updated al of these pfDCSs on each
frame. It thus represented the theoretica best possible implementation of this particular world. Figure 28
shows the results of this test, with the average time taken for each frame's update, as the number of

avatars varied from 5 to 500 in steps of 5.

114

As can be seen, the origind Y gdrasil program took about 3.5 times as long as the Performer program
for its update'. The additiona two lines in the plot (labeled “no db” and “datic”) show the results of
modified versons of the Ygdras| tedt, for the purpose of isolating the update costs. The “no db” line
comes from running a modified verson of the program. In the origind program, each Spinner node' s
application update would compute a new angle of rotation, and pass that to the function
Transform::setOrientation; setOrientation would in turn pass the new vaue to the Transform node's
pfDCS, and dso store the new matrix vaue in the shared database (even though the shared database was
not connected to any other networked hosts). In the modified program, the cdl to store the matrix in the
database was diminated. This sgnificantly improved the performance. However, the database cost is il
relevant when running a networked application.

The“datic’ linein Fgure 28 shows the performance of amodified scene. The Spinners that made up
the user avatar were al replaced with ordinary Transform nodes, which do not perform any per-frame
updates. This therefore shows the cost of just traversang the Ygdrasil scene graph and caling the
application-update function for every node. The straight Performer program avoided this cost by storing
pointers to dl its pfDCSs in a smple array. This sort of optimization is not as gpplicable to a generd
purpose program for more redistic applications, and so the traversal cogt, dthough it might be reduced, is

more or less unavoidable.

! One positive note is that at least all of the tests show a linear relationship between the number of nodes and the
update time.

Milliseconds / frame

115

140 |

120

100 ¢

30 |

60 -

40t

Ygdrasil ——
Ygdrasil (no db) —— |
Yedrasil (static) —=—

Performer —— |

il

|1';I F;Js‘n‘
J,J)

200 250 300

Number of avatars

Figure 28. Update speed of Y gdras| vs. straight Performer, with many dynamic avatars

116

Figure 29 shows the exact numbers measured for the case of 250 avatars (1000 transformations).

From these measurements, we can estimate the time spent in the different steps of the Spinner update —

4.1 milliseconds (i.e. 4.1 microseconds per node) for the application traversal, 21.8 ms for computing the

new rotation and passng it to the pfDCS, and 28.4 ms for storing the matrix in the database. The 21.8

ms rotation update is sill not as good as the 15.4 ms that the same operation took in the straight

Performer program, but it is reasonably close. Figure 30 shows the calculated transformation-update time

for Al of the test cases; the results are cons stent with those for the 250 avatar case.

M easured data

Calculated timing

Test Updatetime
Performer 154 ms
Ygdrasi 54.3ms
Y gdrasil (no db) 259 ms
Ygdras| (dtatic) 41ms

Ygdrasil Step Time
App traversal 41ms
Performer setRot 21.8ms
Database update 284 ms

Figure 29.Breskdown of timing datafor 250 avatars

117

Milliseconds / frame
ﬁﬂ T T T T T T

Ygdrasil xform update ——
Performer ——

5”- ; ;f||.

'|
V WT
A | /\
-

40

30

E

10+ ?-«4«’;::,*-"*"

0 50 100 150 200 250 300 350 400 450 500

Number of avatars

Figure 30. Speed of updates to dynamic transformation nodes

118

7.5.2. Networked Updates on a Single Host

The second set of experiments measured the performance of the Ygdras| program when networking
was enabled. In this case, there was only one host in the shared world; dl of its changing transformation
matrices were sent over the network to the reflector machine, but there were no other clients to receive
the data or to send other new data to the host. Hence, the basic difference between this test and the first
test (with the database enabled) is that each node' s update aso causes the new matrix data to be packed
into a UDP message that is then transmitted to the reflector.

Idedlly, the sending and receiving of network packets would be handled by a separate thread, so asto
not affect the performance of the man application process, unless traffic became very heavy.
Unfortunatdly, the implementation of pthreads on SGis is 4ill not completely religble when used with
Performer on multi-processor Onyxes. It can work, hit often requires multiple attempts to get an
gpplicaion to start without Performer immediately dying. This is not acceptable for serious use, and o
the current verson of Y gdrasil runsits networking stage in the main process, ong with the scene updates.
Hopefully, future IRIX releases will solve this problem.

Figure 31 shows the time taken to perform each frame' s update when Y gdrasi| was run in networked
and standal one modes, with the number of avatars ranging from 10 to 100. However, the vdidity of these
results beyond 20 avatars is uncertain; after that point, the numbers reported by netstat indicated that the
10Bas=T network interface was being used at full capacity, and so most of the UDP packets being sent

were actualy dropped, and would not have been received by any other hosts.

119

Milliseconds / frame

100 | |
Networked ——
Standalone ——
.-f"’-'-’-J
80 F .
.-"-’ﬁ‘#-'
o
__.—-"
60 - > .
.-'f.v'-'-'
.-'-'f-.
4[. i _.-'"'":.f 7]
-~
A
2[' i ,«”'?# __W___:
.-'"'Ff.w’ __P___—p—d_‘_—_w_f-d_
" _'_f__dd_-o-——'—"";f
-L—'—"‘;H_
 p—t
ﬂ " 1 1 i 1
20 40 60 80 100

Number of avatars

Figure 31. Update speed of networked vs. standaone Y gdrasil

120

7.5.3. Bandwidth use

The third experiment involved running individuad avatars on multiple hosts, and measuring the amount of
incoming and outgoing bandwidth on the hogt running the reflector with netstat. The results for one to four
hosts (not counting the workstation running the reflector) are shown in Table VIII; after four hogts, the

network was overloaded.

TABLE VIII

NETWORK BANDWIDTH WITH MULTIPLE HOSTS

Number of hosts Incoming bandwidth Outgoing bandwidth
1 66,000 bytes/sec 0

2 127,000 bytes/sec 116,000 bytes/sec
3 158,000 bytes/sec 283,000 bytes/sec
4 400,000 bytes/sec 400,000 bytes/sec

These numbers clearly demondtrate that the smplistic gpproach to the shared database, as currently
used, will need to be improved. Although it makes the implementation of the shared scene graph
sraightforward, it does not scale well a al. The basic problem isthat it involves large numbers of small,
independent updates, sometimes being sent very frequently.

The dient programs in the multi-host test were dl running a 60 — 75 frames per second. On each

frame, dl four of the avatar’ s transformations were updated, and thus caused new matricesto be stored in

121

the database. Storing each matrix results in a UDP packet being broadcast with the new information.
The dze of the matrix itsef is 64 bytes (16 floating point numbers). The packet contains header
information identifying it as a database store operation and the Size of the data; in this implementation the
header is 12 bytes. It aso must contain the database key to indicate where this data is to be stored; the
key is the name of the node, plus the string “matrix”; on average, this can require another 32 bytes.
Furthermore, below the CAVERNsoft leve there is the overhead of UDP/IP itsdf; every 1Pv4 packet
includes a header of at least 20 bytes (Stevens, 1998)*. This adds up to at least 128 bytes per packet.
Each O2 broadcasting 4 matrices a 75 frames per second would then be expected to produce 38,400
bytes/second of traffic or more. The measured traffic was close to twice that, S0 apparently thereis even
more overhead hidden somewhere, but even at 38 Kbytes/sec we could not expect to handle more than 6
hosts on a 10 Mbit network. Thisis because of the unicast nature of the database. For an update, each
client sends a single packet to the reflector, which in turn must send a copy of the packet to every other
client. Sx hosts would thus result in 36 streams of data going in and out of the reflector.

There are severd things that can be done to improve the bandwidth requirements. In short, they are
compressing, aggregeting, and throttling. The actud data that is sent could be compressed in size; thisis
especidly true for transformation nodes, which will rarely make use of a full 4x4 matrix. In abest case
scenario, the matrix data could be replaced by a position and Euler angles, and the individua numbers
could be reduced to 2 bytes each (thisisthe typica resolution of tracking data from devices like the Flock
of Birds it's not likey to be sufficient, however, for navigation data). Rather than sending character

drings for the name of the node and the specific key (“matrix”), integer ID numbers could be used.

! In the future, as systems moveto | Pv6, this overhead will be even larger (at least 40 bytes).

122

Allowing for very large worlds, then, this integer key could be 8 bytes. Aggregating the data would mean
collecting severa database updates into a single packet, in order to reduce the overhead due to the
network protocol. In the smple avatar test case, we would probably want to limit this to collecting al
four matrix updates into one packet, sSince grouping data from more than one frame would not be useful
once the data is recelved by remote hosts. Finaly, the number of updates per second that particularly
dynamic nodes, such as avatar transformations, could be throttled back. In order to maintain reasonably
smooth animation speeds, as seen by the remote clients, we would not want to reduce the update rate to
less than 10 per second. This rate might be reduced even further by using a dead- reckoning approach, as
in DIS. One DIS experiment found that the smulators involved averaged 0.17 updates per second for
tanks, and 1 update per second for aircraft (Pullen and Wood, 1995). However, it's uncertain how well
dead-reckoning would work here; the movements of a person’s head or arm are usualy not as smple and
predictable as the movement of atank. Theoretically, together the various improvements could reduce the
bandwidth needed to about 1 Kbyte/second (from 38.4 Kbytes/second).

The ‘unicast exploson’ of bandwidth will ill be a problem for large-scale shared environments. I
each host produced only 1 Kbyte/second of data, 30 hosts would till saturate a 10 Mbit network. This
caculation assumes nothing but avatar datais being sent. In many red applications, there is adso streaming
audio, so that the people can speak to one another. Audio will require at least 8 Kbytes/second, when
the person istalking. Given that, about 16 hosts, with perhaps 4 people spesking at any one time, would
be the safe limit for a 10 Mbit network. This estimate maiches with the largess CAVERNSoft
collaboration demo reported thus far (Johnson et d., 1998). In order to enable sgnificantly larger

environments in the future, multicast and area- of-interest dgorithms will need to be added.

123

7.5.4. Final Comments

At the root of the overhead in both the application update times and the network useis Y gdrasil’s god
of being a generic sysem. It isintended to flexibly handle many different configurations of virtud worlds
and of users, built on acommon scene graph API. Although the scene graph mechanism makesiit easy to
assemble a world out of small pieces, this dso means that it becomes easy to assemble very large scene
graphs — the Thing Growing and Shared Miletus are both examples of this. In the end, the added
overhead of traversing and updating these large scenes is a trade-off, againgt the work it would otherwise
take to program completely optima versions of the gpplications.

Most of the driving gpplications for CAVERNS0ft are stientific and engineering applications involving
large data. For example, the volume visudizer CIBRview is wsad to examine multi-gigabyte datasets
(Park et d., 2000); besides tranamitting the large, monoalithic volume dices, it only needs to share avatar
data for a handful of users and a very smal amount of state information, such as the current frame number
for a time-sequence playback. Furthermore, most CAVERNsoft avatars assume asimple, fixed mode of
auser — a head and one wand, with position and orientation in world coordinates. As a result, the
network usage of these CAVERNSsoft driving applications is sgnificantly different than thet of the typicd

Y gdrasi| gpplication.

8. CONCLUSION

A fully composable networked virtud redity sysem would make it possble to condruct a virtud
object with programmed behaviors once, to introduce this object into any existing virtud world, and to
have it immediately be able to interact with users and other objects in that world. A good system would
adso make it ample to define the object’s behavior, by describing it a a high leve or usng a set of
powerful tools. The Y gdrasil system introduced in this dissertation is one step toward that ultimate god.

Y gdrasil, and its predecessor XP, have specificaly explored two mgor concepts for composing virtua
worlds — scripting and a shared scene graph. The scripting layer smplifies the quick combining of existing
components into new gpplications. A notable difference between Ygdras!’s scripting and that normaly
found in VR toalkits is its bass in the scene graph; rather than being a collection of procedures, an
Ygdras| script isthought of as a description of the virtual world's scene. The purpose of the shared scene
graph is to provide a standard interface for al components. Further, it provides a programming mode
where every object is controlled by one participant in the shared environment, and al other participants
can interact with the object in a smplified form, without needing to know about the implementation of its
behavior.

The use of Ygdrasl in Shared Miletus and Virtud Harlem has shown that it is useful for congtructing
ggnificant networked worlds. However, it dso showed that developers will aways come up with new
requirements, requirements that sometimes make it not as easy as hoped for remote participants to be
unaware of al objects implementation details, the system will need to remain flexible to dedl with thisfact.
Furthermore, the issue of bandwidth use will have to be addressed before Y gdrasil can be used in widdy

distributed worlds intended for many smultaneous participants.

125

Future work that should be considered includes:
Reducing the amount of network bandwidth used by a client. Prediction dgorithms, smilar to
DIS' s dead-reckoning, should be investigated.
Incorporating area-of-interest and other dgorithms to filter what parts of the shared database a
client recaives. This could eventudly take the form of a subscription interest expresson for each
node or client, amilar to that described in Singha and Zyda
Didiributing new executable code to remote clients automatically, in a secure manner.
Enabling the dynamic replacement of node classes in a running gpplication. This would dlow a
rapid-prototyping style of development, where code can be revised and tested in an otherwise
stable virtua world.

The origin of Ygdrasl's name in the sometimes fatalistic Norse mythology reflects some of the attitude

that should be taken toward the use and development of the sysslem. Many interesting things will be done

with Y gdrasil, but some day it should come to end, to be replaced by something newer and better.

CITED LITERATURE

Angey, J, Pape, D., and Sandin, D:. The Thing Growing: Autonomous Characters in Virtud Redity
Interactive Fiction. In Proceedings of IEEE Virtual Reality 2000, New Brunswick, NJ, March
2000.

Benford, S., Bowers, J, Fahlen, L. E., Greenhadgh, C., Mariani, J., and Rodden, T.: Networked Virtua
Reality and Cooperative Work. Presence: Teleoperators and Virtual Environments4 (4), Fal
1995, 364-386.

Brown, J. R., van Dam, A., Earnshaw, R., Encarnacéo, J., Guedj, R., Preece, J., Shneiderman, B., and
Vince, J.: Human-Centered Computing, Online Communities, and Virtud Environments. |EEE
Computer Graphics and Applications 19 (6), Nov/Dec 1999, 70-74.

Brown, M. D., DeFanti, T. A., McRobbie, M. A., Verlo, A., Plepys, D., McMullen, D. F., Adams, K.,
Leigh, J.,, Johnson, A. E., Fogter, 1., Kesselman, C., Schmidt, A., and Goldstein, S. N.: The
Internationd Grid (iGrid): Empowering Globad Reseerch Community Networking Using High
Performance Internationd Internet Services. In Proceedings of INET *99, San Jose, CA, June
1999, 3-9.

Cavin, J, Dickens, A., Gaines, B., Metzger, P., Miller, D., and Owen, D.: The SIMNET Virtud World
Architecture. In Proceedings of IEEE Virtual Reality Annual International Symposium
(VRAIS'93), Sesattle, WA, Sept 1993, 450-455.

Capps, M., McGregor, D., Brutzman, D., and Zyda, M.: NPSNET-V: A New Beginning for Dynamicaly
Extensble Virtud Environments. IEEE Computer Graphics & Applications, 20 (5), Sep/Oct
2000, 12-15.

Carlsson, C., and Hagsand, O.: DVE - A Multi-User Virtud Redlity Sysem, In Proceedings |EEE
Virtual Reality Annual International Symposium (VRAIS '93), Seattle, WA, Sept 1993, 394-
400.

Carlsson, C., and Hagsand, O.: DIVE - A Ratform for Multi-User Virtud Environments. Computers
and Graphics, 1993, 663-669.

Carter, B. Virtud Harlem. SGGRAPH ’99 Conference Abstracts and Applications, Los Angeles, CA,
Aug 1999, 103.

Coddla, C. F., Hili, R, Koved, L., and Lewis, J. B.: A Toolkit for Developing Multi-User, Distributed
Virtud Environments. In Proceedings of IEEE Virtual Reality Annual International
Symposium (VRAIS '93), Seattle, WA, Sept 1993, 401-407.

127

Cruz-Neira, C., Sandin, D. J,, and DeFanti, T. A.: Surround-Screen Projection-Based Virtud Redlity:
The Design and Implementation of the CAVE. In Proceedings of SGGRAPH '93 Computer
Graphics Conference, Anaheim, CA, August 1993, 135-142.

Cruz-Neira, C.: Virtua Redity Based on Multiple Projection Screens: The CAVE and its Applications to
Computationd Science and Engineering. PhD Dissertation, University of Illinois a Chicago,
Chicago, 1995.

Czernuszenko, M., Pape, D. Sandin, D., DeFanti, T., Dawe, G., and Brown, M.: The ImmersaDesk and
Infinity Wall Projection-Based Virtud Redlity Displays, Computer Graphics, 31 (2), May 1997,
46-49.

Das, S., DeFanti, T. A., and Sandin, D. J.: An Organization for High-Level Interactive Control of Sound.
In Proceedings of the International Conference on Auditory Display '94, Santa Fe, NM,
February 1994.

Divison Ltd.: dVISE for UNIX Workstations — User Guide. 1995.

Dolinsky, M.: Virtuad Environment as Rebus, In Proceedings of Consciousness Reframed,
International CAiiA Research Conference, Newport, Wales, July 1998.

Fischndler, F., and Singh, Y.: Multi Mega Book. FleshFactor: Ars Electronica Festival 97, Springer,
Vienna, 1997.

Gdyean, T.: Guided Navigation of Virtud Environments. In Proceedings of 1995 Symposium on
Interactive 3D Graphics, Monterey, CA, April 1995, 85-92.

Gamma, E., Hdm, R, Johnson, R., and Vlissdes, J.. Design Patterns. Elements of Reusable Object-
Oriented Software, Addison-Wedey, Reading, MA, 1995.

Ghazisaedy, M., Adamczyk, D., Sandin, D. J,, Kenyon, R., and DeFanti, T. A.: Ultrasonic Cdibration of
a Magnetic Tracker in a Virtud Redlity Space. In Proceedings of the IEEE Virtual Reality
Annual International Symposium (VRAIS'95), Research Triangle Park, NC, March 1995.

Ghee, S., and Naughtor+Green, J.: Programming Virtua Worlds. ACM S GGRAPH '95 Course Notes —
Programming Virtual Worlds, Orlando, FL, August 1995, 6-1 — 6-58.

Hagsand, O., Lea, R.,, and Stenius, M.: Using Spatid Techniques to Decrease Message Passing in a
Digributed VE System. In Proceedings VRML 97 - Second Symposium on the Virtual Reality
Modeling Language, Monterey, CA, Feb 1997, 7-16.

Hortner, H., Maresch, P., Lindinger, C., Pomberger, G., and Pinger, H.: 3D Smulation of Industria
Production Processes in a Virtud Continuous Cadting Environment. Laval Virtual 2001 -
Virtual Reality International Conference, Laval, France, May 2001.

128

Ima, T., Johnson, A. E., Legh, J, Pape, D. E., and DeFanti, T. A.: The Virtud Mail System, In
Proceedings of |EEE Virtual Reality '99, Houston, TX, March 1999.

|IEEE (Indtitute of Electrica and Electronics Enginears): Internationd Standard, ANSI/IEEE Std 1278-
1993. Standard for Information Technology, Protocols for Didtributed Interactive Simulation.
1993.

ISO (Internationd Standards Organization): The Virtua Redity Modeing Language. Internationd
Standard 1SO/IEC 14772-1:1997.

Johnson, A., Leigh, J, and Codigan, J:. Multiway Tde-Immerdon a Supercomputing 97. |EEE
Computer Graphics & Applications, 18 (4), Jul/Aug 1998, 6-9.

Johnson, A., Moher, T., Ohlsson, S, and Gillingham, M.: The Round Earth Project: Deep Learning in a
Collaborative Virtud World, In Proceedings of IEEE Virtual Reality ‘99, Houston, TX, March
1999.

Johnson, A., Moher, T., Ohlsson, S, and Gillingham, M.: The Round Earth Project - Collaborative VR
for Conceptud Learning, IEEE Computer Graphics and Applications 19 (6), Nov/Dec 1999,
60-69.

Kindratenko, V.: Cdibration of Electromagnetic Tracking Devices, Virtual Reality: Research,
Development, and Applications, Vol. 4, 1999, 139-150.

Kogler, P., and Pomasd, F.. CAVE. LifeScience: Ars Electronica 99, Springer, Vienna, 1999, 364-
369.

Leigh, J, Johnson, A. E., and DeFanti, T. A.: CAVERN: A Didributed Architecture for Supporting
Scdable Persgtence and Interoperability in Collaborative Virtud Environments, Journal of
Virtual Reality Research, Development and Applications, 2 (2), Dec 1997, 217-237.

Macedonia, M. R, Zyda, M. J,, Pratt, D. R., Barham, P. T., and Zeswitz, S.: NPSNET: A Network
Software Architecture for Large-Scde Virtud Environments, Presence: Teleoperators and
Virtual Environments 3 (4), Fall 1994, 265-287.

Macedonia, M. R., Zyda, M. J, Pratt, D. R., Brutzman, D. P., and Barham, P. T.: Exploiting Redlity with
Multicass Groups A Network Architecture for Large-Scde Virtud Environments, In
Proceedings |EEE Virtual Reality Annual International Symposium (VRAIS '95), Research
Triangle Park, NC, March 1995, 2-10.

Normand, V.. The COVEN Project: Exploring Applicative, Technicad, and Usage Dimensions of
Collaborative Virtud Environments, Presence: Teleoperators and Virtual Environments8 (2),
April 1999, 218-236.

129

Ousterhout, J. K.: Scripting: Higher-Level Programming for the 21st Century. IEEE Computer, 31 (3),
March 1998, 23-30.

Pape, D. A Hardware-Independent Virtua Redity Development System, |IEEE Computer Graphics
and Applications, 16 (4), July 1996, 44-47.

Pape, D., Imai, T., Angey, J., Roussou, M., and DeFanti, T.: XP. An Authoring System for Immersive
Art Exhibitions. In Proceedings of the International Conference on Virtual Systems and
Multimedia (VSMM '98), Gifu, Japan, November 1998, 528-533.

Pape, D., Sandin, D., and DeFanti, T.: Transparently Supporting a Wide Range of VR and Stereoscopic
Display Devices, In Proceedings of SPIE Vol. 3639 Stereoscopic Displays and Virtual Reality
Systems VI (The Engineering Reality of Virtual Reality 1999), San Jose, CA, Jan 1999, 346-
353.

Pape, D., D' Souza, S., Angtey, J., DeFanti, T., Roussou, M., and Gaitatzes, A. Shared Miletus. Towards
a Networked Virtud History Museum. In Proceedings of the International Conference on
Augmented, Virtual Environments and Three-Dimensional Imaging, Mykonos, Greece, May
2001.

Park, K., Cho, Y., Krishnaprasad, N., Scharver, C., Lewis, M., Leigh, J, and Johnson, A.:
CAVERNsOft G2 A Toolkit for High Peformance Tee-Immersve Collaboration, In
Proceedings of the Symposium on Virtual Reality Software and Technology 2000, Seoul,
Korea, Oct 2000.

Pausch, R., Snoddy, J,, Taylor, R., Watson, S., and Hasdtine, E.. Disney's Aladdin: First Steps Toward
Sorytdling in Virtua Redlity, In Proceedings of SSGGRAPH ‘96, New Orleans, LA, Aug 1996,
193-203.

Pope, A. BBN Report No. 7102. The SIMNET Network and Protocols. BBN Systems and
Technologies, Cambridge, Massachusetts.

Pullen, J. M., and Wood, D. C.: Networking Technology and DIS. In Proceedings of the |EEE, 83 (8),
August 1995, 1156-1167.

Robinett, W., and Holloway, R.: Implementation of Flying, Scaing, and Grabbing in Virtud Worlds.
Computer Graphics 25 (2), 1992, 189-192.

Rohlf, J,, and Heman, J.: IRIS Performer: A High Performance Multiprocessing Toolkit for Red-Time
3D Graphics, In Proceedings of SGGRAPH '94 Computer Graphics Conference, Orlando,
FL, August 1994, 381-395.

Roussos, M., and Bizri, H. Mitologies Medieva Labyrinth Narratives in Virtud Redlity. In Proceedings
of the 1st International Conference on Virtual Worlds, Paris, France, July 1998.

130

Roussou, M. Incorporating Immersive Projection-based Virtua Redity in Public Spaces. In Proceedings
of the 3rd International Immersive Projection Technology Workshop, Stuttgart, Germany,
May 1999, 33-39.

Sense8 Corporation. WorldToolKit Reference Manual, Release 8. 1998.
Sense8 Corporation. WorldUp Users Guide, Release 4. 1998.
Sense8 Corporation. World2World Release 1 Technical Overview. 1998.

Singh, G, Searra, L., Png, W., Wong, A., and Ng, H.: BrickNet: A Software Toolkit for Network-Based
Virtud Worlds. Presence: Teleoperators and Virtual Environments 3 (1), Winter 1994. 19-
34.

Singh, G, Serra, L., Png, W., Wong, A., and Ng, H.: BrickNet: Sharing Object Behaviors on the Net, In
Proceedings |EEE Virtual Reality Annual International Symposium (VRAIS '95), Research
Triangle Park, NC, March 1995, 19-25

Snghd, S, and Zyda, M.: Networked Virtual Environments: Design and Implementation, ACM
Press, New York, New York, July 1999.

Stevens, W. R.: Unix Network Programming, Volume 1: Networking APIs: Sockets and XTI,
Prentice Hall PTR, Upper Saddle River, NJ, 1998.

Strauss, P. S, and Carey, R.: An object-oriented 3D graphics toolkit, In Proceedings of S GGRAPH
'92 Computer Graphics Conference, Chicago, IL, August 1992, 341-349.

Sturluson, S.: Prose Edda, Icdand, circa 1220.

Tramberend, H.: Avocado: A Didributed Virtud Redity Framework, In Proceedings of IEEE Virtual
Reality 99, Houston, TX, March 1999.

UVaUs Interface Group: Alice: Rapid Prototyping for Virtud Redlity. |EEE Computer Graphics and
Applications, 15 (3), May 1995. 8-11.

Watsen, K., and Zyda, M.: Bamboo - A Portable Sysem for Dynamicaly Extensble, Red-time,
Networked Virtua Environments. In Proceedings IEEE Virtual Reality Annual International
Symposium (VRAIS '98), Atlanta, GA, March 1998, 252-259.

APPENDICES

132

APPENDIX A

Ygdrasil Node Class Reference

CAVEKeyboard

Derived from: Node

| Messages | none

Events

keyA ... keyZ, keyO ... key9

occur whenever the user presses the
corresponding key

CAVENavigator

Derived from: Navigator

Messages | teleport (xy 2) ingtantly trangports the user to world coordinates
(xy2)
speed () setsthe user’s maximum trandation speed to s
feet/sec
rotspeed (r) sets the user’s maximum rotation speed to r

degrees/sec

collide ([boolean])

turns collison detection on or off. if no argument
isgiven, true (on) is assumed

collideRadius (r) sets the radius used by the collison-detection
dgorithmtor feet

toggleCallide toggles collison detection between on and off

fly ([boolean]) turns flying on or off. if no argument is given, true
(on) is assumed

toggleFly toggles flying mode between on and off

printNav prints the current navigation position and

orientation to standard-output

133

APPENDIX A (continued)

CAVETracker

Derived from: Transform

Messages | sensor (num) tells the node to read CAVElib sensor number
num for its pogtion and orientation data. sensor
0 is the head, 1 is the wand, 2+ are any other

SENsOrs.
CAVEWand
Derived from: UserPart
| Messages | none |
Events buttonl, button2, button3, etc. generated when the corresponding CAVE wand
button is pressed
Environment
Derived from: Space
Messages | dip (near far) sets the near and far clipping distances
skyColor (r g b) sets the background color. r, g, and b are
floating point numbers between 0 and 1
fog (off) turns off fog
fog (typer g b onset opaque) tuns on fog. type should be ether “linear”,

“exp”, or “exp2’. r g bisthe color of the fog
(floating point numbers between 0 and 1). onset
and opague are the fog equation arguments for
the gtarting distance of the fog and distance at
which it isfully opaque

Head

Derived from: UserPart

| Messages | none

Light

134

APPENDIX A (continued)

Derived from: Node

Messages | on turnsthe light on

off turnsthe light off

toggle toggles the light between on and off

position (X y z w) sets the light source' s position / direction. if wiis
0 (or is omitted), the light is an infinite, directiond
light; otherwisg, itisalocd light

diffuse (r g b) ststhe diffuse color of the light

ambient (r g b) sets the ambient color of the light

specular (r g b) sets the specular color of the light

atenuation (c 1)

sts the coefficients for the light's attenuation
function

spotDirection (X y 2) sets the direction for a spotlight
spotCone (exponent spread) sets the cone fdloff and spread-angle parameters
for aspotlight
Events lightOn generated when the light isturned on
lightOff generated when the light is turned off
Model

Derived from: Transform

Messages

file (filename)

|loads Performer modd filename

wadl ([boolean])

sets‘wdl’ flag (for collison detection) true or
fdse. if no argument isgiven, trueis assumed

floor ([boolean])

sets ‘floor’ flag (for ground-following) true or
fdse. if no argument is given, trueis assumed

draw ([boolean])

sets ‘drawable flag true or fdse. if no argument is
given, trueis assumed

Navigator

Derived from: Node

| Messages | none

Node

135

APPENDIX A (continued)

Messages

reset

resats nodeto itsinitid state

resetTree

resets node and everything below it

when (event message [message? ...])

tells node to send message whenever event
oCcurs

addChild (node)

makes node a child of the caling node

removeChild (node)

removes node from calling node's children

debug (flag) turns on debugging flag flag
print (string) prints string to standard output
event (eventName) tells node to generate event eventName

dgnd (signalName)

tellsnode to set Sgnd signalName

PointAtTrigger

Derived from: Node

Messages

distance (d)

sts the maximum digance from a wand to the
trigger that will generate an event

BEvents

start part=wandName user=user Name

generated when a user’s wand begins pointing
a the trigger. $part is the name of the wand
node that generated the event, $user is the
name of the user node that owns the wand

act part=wandName user=user Name

generated when a user’s wand is pointing a
the trigger and thewand's ‘act’ Sgnd is set

stop part=wandName user=user Name

generated when a user’s wand stops pointing
a the trigger

Selector

Derived from Node

Messages

select (name)

sdects the child node named name

selectNum (num)

sects child node number num. the first child of
anode is number O, the second is 1, etc.

136

APPENDIX A (continued)

SimpleBodyTracker

Derived from: Transform

Messages | doRotation ([boolean]) tells the body tracker to set its rotation around Z
to the same as the user's head; if fdse the
rotation will be 0. if no argument is given, ‘true
IS assumed

Sound

Derived from: Space

Messages | file (filename) tells the sound to use the samplefile filename
fdloffDistance (d) sisthe faloff disancetod
amplitude (a) sets the maximum amplitude to a

loop ([boolean])

sets whether the sound sample will loop infinitely
when it is played. if no argument is given, ‘true’ is
assumed

play ([filename[amplitude]])

darts playing the sound. if filenameisgiven, that
samplefilewill beusad. if amplitude isgiven, the
maximum amplitude is set to that vaue

stop stops playing the sound
Events datPlaying generated when the sound darts playing, in
response to a‘play’ message
stopPlaying generated when the sound stops playing, ether in

response to a‘stop’ message, or because the end
of the samplefileis reached

&ace

137

APPENDIX A (continued)

Derived from: Node

Messages

volume (infinite)

mekes the space an infinite volume

volume (point X y z)

makes the space apoint a position (X y 2)

volume (box minX minY minZ
maxX maxyY maxZ)

makes the space an axis-digned box, ranging
from the pogtions (MinX minY minZ) to (maxX
maxyY maxZ)

volume (spherexy zr)

makes the space a sphere, centered at X y 2),
with radiusr

volume (cylinder bottomX bottomY
bottomZ topX topY topZ r)

makes the space a cylinder, with a center axis
running from (bottomX bottomY bottomZ) to
(topX topY topZ), and radiusr

StaticM odel

Derived from: Node

Messages

file (filename)

loads Parformer modd filename

wadl ([boolean])

sets‘wdl’ flag (for collison detection) true or
fdse if no argument isgiven, ‘true’ is assumed

floor ([boolean])

sets ‘floor’ flag (for ground-following) true or
fdse. if no asgument isgiven, ‘tru€’ isassumed

draw ([boolean])

sets ‘drawable flag true or fdse. if no argument is
given, ‘trué is assumed

Switch

Derived from: Node

Messages | on turns the switch on
off turns the switch off
toggle toggles the switch between off and on
Events switchOn generated when the switch is turned on
switchOff generated when the switch is turned off

Transgorm

138

APPENDIX A (continued)

Derived from: Node

Messages | postion (XY 2) sistrandaiontoxy z
orientation (X y 2) setsrotation around x-, y-, and z-axesto Xy z
gze (3ze) sets uniform scale factor to size
gze(xy 2) sets nontuniform scale factor tox y z

User

Derived from: Transform

Messages | hideLocd ([boolean]) if true, everything below the node (such as the
user’s avatar) will not be drawn by the loca client
(the one that owns the User node). if no argument
isgiven, ‘true is assumed
NB: al other messages will be passed to the
User’s Navigator node
User Part

Derived from: Node

| Messages | none

139

APPENDIX A (continued)

UserPartTrigoer

Derived from: Space

Messages | checkSignd (signal [event])

tells the trigger to check user parts for the sgnd
sgnal. if event is given, this event name is
generated in response to the signa; otherwise, the
event generated uses the same name as the Signa

checkPart (label [label2 ..])

tells the trigger to only check user parts labelled
label (and label2, e, if given)

Events enter part=partName user=user Name

generated when a user part (with alabd given to
checkPart) enters the trigger

exit part=partName user=user Name

generated when auser part exits the trigger

event part=partName user=user Name

generated when a user part is insde the trigger
and sets a 9gnd that was given to checkSignd.
the event name will be the one given to

checkSignd for this particular Sgna

User Trigger

Derived from: Space

| Messages | none

Events enter user=user Name

generated when a User node enters the trigger

exit usar=user Name

generated when a User exitsthe trigger

firdEnter user=user Name

generated when a User enters the trigger and the
trigger space was previoudy empty

empty

generated when a User exits the trigger and there
are no more User’sin the space

140

APPENDIX A (continued)

WandTrigger

Derived from: Space

| Messages | none

Events

enter part=partName user=user Name

generated when a user’ swand enters the trigger

exit part=partName user=user Name

generated when a user’ s wand exits the trigger

act part=partName user=user Name

generated when a user’ swand is ingde the trigger
and setsits ‘act’ sgnd

APPENDIX A (continued)

Object

141

World Node Viewel
Transform UserPart Navigator Light
User [| Model [| CAVETracker | [SimpleBodyTracker| [Head| |CAVEWanc| |CAVENavigator
Node
Space Switch | | Selector | | CAVEKeyboard| | PointAtTrigger StaticModel
Sound | | Environment| | UserTrigger| | WandTrigger || UserPartTrigger

Fgure 32. Ygdras| class hierarchy

142

APPENDIX B

Virtual Harlem Scene Files

All.yg

Envi ronment (skyColor(.3 .3 .3), clip(1l 10000))
light (color(1 1 1), position(-1 0 1))
light (color(1 1 1), position(0 -1 .5))
light (color(1 1 1), position(l .5 .5))

space CottonCl ubSpace (vol ume(box 167 55 -20 240 120 48))
space CottonCl ubLobbySpace (vol unme(box 195 35 -20 223 55 48))
space CottonCl ubEntrySpace (volume(box 165 -35 -20 240 35 48))

Visibility (outside, space(CottonCl ubSpace))
{
#i ncl ude "extHarl emyg"
#i ncl ude "Buil di ngs. yg"

}

Visibility (inside, space(CottonCl ubLobbySpace), space(CottonCl ubSpace),
space(Cott onCl ubEnt rySpace))
{
#i ncl ude "CottonC ub.yg"

}

#i nclude "Trolly.yg"
#i ncl ude "User.yg"

143

APPENDI X B (continued)

extHarlem.yg

//***************************** anbient Sound EE IR R I R I R O I R R I O I

user Tri gger (vol une(box -1070 -561 0 1070 -483 20),
when(enter, 122stresound. pl ay))

sound 122stresound (file(cityB.aiff), volume(box -1070 -561 0 1070 -483 20),

I oop(1))

user Tri gger (vol une(box -1070 -300 0 1070 -225 20),
when(ent er, 123street sound. pl ay))

sound 123streetsound (file(cityB.aiff), volunme(box -1070 -300 0 1070 -225 20),
loop(1))

user Tri gger (vol ume(box -1070 -40 0 1070 40 20),
when(ent er, 124street sound. pl ay))

sound 124streetsound (file(cityB.aiff), volunme(box -1070 -35 0 1070 35 20),

I oop(1))

user Tri gger (volune(box -1070 229 0 1070 301 20),
when(ent er, 125street sound. pl ay))

sound 125streetsound (file(cityD.aiff), volunme(box -1070 224 0 1070 296 20),
loop(1))

user Tri gger (vol une(box -1070 485 0 1070 564 20),
when(ent er, 126street sound. pl ay))

sound 126streetsound (file(cityB.aiff), volunme(box -1070 483 0 1070 564 20),
loop(1))

user Tri gger (volume(box -110 -750 0 100 760 20),
when(ent er, | ennoxAvesound. pl ay))

sound | ennoxAvesound (file(cityB.aiff), volunme(box -110 -750 0 90 760 20),

l'oop(1))

//************************** Specific SOUHdS kkhkhkkhkkhkkhkkhkkhhkkhhkkhhkkhkhkkhkhkkhkhkkhkkikkhkkhk*k
obj ect DivineLadies (file(DivineLadiesl.pfb))
{
user Tri gger (vol une(sphere -66 290.5 0 20),
when(ent er, Di vi neLadi essound. pl ay))
sound Di vi neLadi essound (file(Sister_Divine.aiff), anplitude(2),
vol une(sphere -66 290.5 0 15), falloffDistance(30))
}

obj ect Hoodoo (fil e(HoodooStoryTellersl. pfhb))
{
user Tri gger (vol une(sphere 66.5 127.85 0 20),
when(ent er, Hoodoosound. pl ay))
sound Hoodoosound (file(checker_players2.aiff), anplitude(2),
vol une(sphere 66.5 127.85 0 15), fall of fDi stance(30))

}

obj ect cool (file(joeCooll 0.pfb))

{
user Tri gger (vol une(sphere 214.019 -29.766 0 20),

when(ent er, cool sound. pl ay))

144

APPENDI X B (continued)

sound cool sound (file(WIllie_Cool.aiff), anplitude(2), volunme(sphere
214.019 -29.766 0 15), falloffDistance(30))

}

obj ect langston (fil e(LangstonHughsl. pfb))
{
user Tri gger (vol ume(sphere 59.118 -440.54 0 30),
when(ent er, | angst onsound. pl ay))
sound | angstonsound (file(Langston_Hughes.aiff), anplitude(1.5),
vol une(sphere 59.118 -440.54 0 15), falloffDistance(30))

}

object marcus (file(MarcusGarveyl. pfb))
{
user Tri gger (vol une(sphere 61.85 -167.84 0 20),
when(ent er, mar cussound. pl ay))
sound marcussound (file(Marcus_Garvey_speaks.aiff), anplitude(l.8),
vol une(sphere 61.85 -167.84 0 15), falloffDi stance(30))

}

object rentladies (file(RentPartyLadiesl. pfb))
{
user Tri gger (vol unme(sphere -61.113 -389 0 20),
when(ent er, rent sound. pl ay))
sound rentsound (file(3worman_going to _party.aiff), volunme(sphere -61.113
-389 0 15), falloffDistance(30))

}

user Tri gger (vol une(sphere 279 50 0 40), when(enter, cellarsound. play))
sound cel l arsound (file(ednunds_cellar.aiff), volume(sphere 279 50 0 25),
fall of f Di stance(50))

user Tri gger (vol une(sphere 148.161 47.5 0 50), when(enter,JellyRoll sound. pl ay))
sound Jell yRol | sound (file(pod_jerrys.aiff), volune(sphere 148.161 47.5 0 30),
fall of f Di stance(70))

user Tri gger (volume(sphere 78.464 -37.6 0 40),
when(ent er, t apdanci ngsound. pl ay))

sound tapdanci ngsound (file(connies.aiff), volune(sphere 78.464 -33.515 0 20),
fall of f Di stance(70))

user Tri gger (vol une(sphere -78.5 178.933 0 45),

when(enter, | af ayett esound. pl ay))

sound | afayettesound (file(lafayette.aiff), volunme(sphere -78.5 178.933 0 30),
fall of f Di stance(70))

object (file(Vehicles2l. pfb))

145

APPENDI X B (continued)

Buildings.yg

space space-12 (vol une(box -10000 385 -1000 -90 10000 1000))
space space02 (volunme(box -90 385 -1000 90 10000 1000))

space spacel2 (volunme(box 90 385 -1000 10000 10000 1000))
space space-11 (vol une(box -10000 130 -1000 -90 385 1000))
space space0l (volunme(box -90 130 -1000 90 385 1000))

space spacell (volunme(box 90 130 -1000 10000 385 1000))

space space-10 (vol une(box -10000 -130 -1000 -90 130 1000))
space space00 (volune(box -90 -130 -1000 90 130 1000))

space spacelO (volunme(box 90 -130 -1000 10000 130 1000))
space space-1-1 (volunme(box -10000 -390 -1000 -90 -130 1000))
space spaceO-1 (vol une(box -90 -390 -1000 90 -130 1000))
space spacel-1 (vol une(box 90 -390 -1000 10000 -130 1000))
space space-1-2 (volunme(box -10000 -10000 -1000 -90 -390 1000))
space space0-2 (vol une(box -90 -10000 -1000 90 -390 1000))
space spacel-2 (vol une(box 90 -10000 -1000 10000 -390 1000))

Visibility blockO (inside,space(space-12), space(space02), space(spacel?),
space(space0l), space(space00))

{
[* 1 */ object (file(PitchedRoof Apartnentsl.pfb), floor(1l), wall (1))
[* 2 *] object (file(EndoftheWwdrldl. pfb), floor(1), wall (1))
[* 3 *| object (file(BoringApartmtsl.pfb), floor(1), wall (1))
[* 4 *] object (file(Bottonthitbuilding2. pfb), floor(1), wall (1))
}

Visibility blockl (inside, space(space-12), space(space02), space(spacel?),
space(space-11), space(space0l), space(spacell), space(space00))

{
/[* 5 *] object (file(gl9721.pfb), floor(1l), wall (1))
/[* 6 */ object (file(gl9722.pfb), floor(1l), wall (1))
[* 7 *] object (file(gl9501.pfb), floor(1l), wall (1))
/[* 8 */ object (file(gl9502.pfb), floor(1l), wall (1))
}

Visibility block2 (inside,space(space-12), space(space02), space(spacel?),
space(space0l), space(space00))
{
[* 9 *] object (file(gll061.pfb), floor(1l), wall (1))
/[* 10 */ object (file(JacquiesApartnentsAgainl.pfb), floor(1), wall (1))
}
Visibility block3 (inside, space(space-12), space(space02), space(spacel?),
space(space-11), space(space0l), space(spacell))
{
/[* 11 */ object (file(GeyApartnentsA-21.pfb), floor(1), wall (1))
[* 14 *] object (file(SmallsParadisel.pfb), floor(1l), wall (1))
}

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

sibility bl
{
/*
/*
/*
}
sibility bl
{
/*
}
sibility bl
{
/*
}
sibility bl
{
/*
/*
}
sibility bl
{
/* 20
1% 22
1% 24
}
sibility bl
{
[* 21
/* 23
/* 25
}
sibility bl
{
1% 26
/* 28
}
sibility bl
{
1% 27
[* 29
/* 30
/* 31
[* 32
}
sibility bl
{
/* 33
}

12
13
15

16

17

18
19

APPENDI X B (continued)

ock4 ()

*/ object (file(G antApartnent Conpl exl.pfb), floor(1), wall (1))
*/ object (file(FatherDivinesl.pfb), floor(1), wall (1))

*/ object (file(ApolloTheatrel.pfb), floor(1l), wall (1))

ock5 ()

*/ object (file(Savoysl.pfb), floor(1), wall (1))

ock6 ()

*/ object (file(PhatApartnentsl.pfb), floor(1), wall (1))
ock7 ()

*/ object (file(GoldDustl.pfb), floor(1), wall (1))

*/ object (file(ConstructionFencel.pfb), floor(1), wall (1))
ock8 ()

*/ object (file(g21661.pfb), floor(1l), wall (1))

*/ object (file(Buildingl03Conplexl.pfb), floor(1l), wall (1))
*/ object (file(g23231.pfb), floor(1l), wall (1))

ock9 ()

*/ [/object (file(Buildingsl1011.pfb), floor(1), wall (1))

*/ object (file(AbyssianChurchl.pfb), floor(1), wall (1))

*/ object (file(Rennaissancel.pfb), floor(1), wall (1))

ock1l0 ()

*/ object (file(Banbool.pfb), floor(1), wall (1))

*/ object (file(Apartnmentsl2l.pfb), floor(1), wall (1))

ockll ()

*/ object (file(CornerBuildingl.pfb), floor(1), wall (1))

*/ object (file(CottonC ubl.pfb), floor(1), wall (1))

*/ object (file(AfterHoursApartnentsl. pfb), floor(1), wall (1))
*/ object (file(Apartnmentsl. pfb), floor(1), wall (1))

*/ object (file(School 1l.pfb), floor(1), wall (1))

ockl2 ()

*/ object (file(Apartmentsll.pfb), floor(1l), wall (1))

146

Vi

Vi

Vi

Vi

Vi

Vi

Vi

Vi

sibility blockl3 ()

{

}

/* 34 *| object
/* 35 */ object

sibility block14 ()

{
}

/* 36 */ object

sibility blockl5 ()

{

}

[* 37 *| object
/* 38 */ object
/[* 39 */ object

sibility blockl6 ()

{

}

sibility bl

{

}

sibility bl

{

}

sibility bl

{

}

sibility bl

{

/*
/*
/*
/*

/*
/*
/*
/*

/*
/*
/*

/*
/*

/*
/*
/*
/*
/*

40
43
46
47

41
42
44
45

48
49
50

51
52

53
54
57
58
59

*/
*/
*/
*/

obj ect
obj ect
obj ect
obj ect

ockl7 ()

*/
*/
*/
*/

obj ect
obj ect
obj ect
obj ect

ockl18 ()

*/
*/
*/

obj ect
obj ect
obj ect

ock19 ()

*/
*/

obj ect
obj ect

ock20 ()

*/
*/
*/
*/
*/

obj ect
obj ect
obj ect
obj ect
obj ect

APPENDI X B (continued)

(file(BunchoPhatsl. pfb), floor(1),

(file(gl0341. pfb), floor(1),

(file(gl5311. pfb), floor(1),

(file(Jacqui esApartnentsl. pfb),
(file(Billiardsl.pfb), floor(1),

(file(g23261.pfb), floor(1),

(file(RedUgl yBui |l di ngl. pfb),

(file(AnotherBuilding _391. pfb),
(file(Kai sersnApartnentsl. pfb),
(file(Building301.pfb), floor(1),

(file(Negrowrldl. pfb), floor(1),
(file(Look-a-likel.pfb), floor(1),

(file(g7751. pfb), floor(1),
(file(g7771. pfb), floor(1),

(file(gl7281. pfb), floor(1),
(file(g20161. pfb), floor(1),

wal | (1))

wal | (1))

wal | (1))

floor(1), wall (1))

wal | (1))
wal | (1))
floor(1), wall (1))

floor(1), wall(
floor(1), wall(

1))
1))

wal I (1))
wal | (1))
wal I (1))
wal I (1))
wal I (1))
wal | (1))
wal I (1))

(file(End_of the_LineApartnentsl. pfb),

wal I (1))

(file(Buildingsl1021. pfb), fl
(file(TheresaHotel 1. pfb), fl

(file(building 391.pfb), floor(1),

(file(building_3921.pfb), fl
(file(gl5791. pfb), floor(1),
(file(gl5792. pfb), floor(1),
(file(Fl am ngBui |l di ngl. pfb),

floor (1),
oor(1), wall (1))
oor(1), wall (1))
wal | (1))

oor(1), wall (1))

wal | (1))
wal | (1))
floor (1),

wal | (1))

147

Visibility block21l ()
{/* 55 */ object
/* 56 */ object

Visibiiity bl ock22 ()
{/* 60 */ object

Visibiiity bl ock23 ()
{/* 61 */ object

Visibiiity bl ock24 ()
{

148

APPENDI X B (continued)

(file(gl6082.pfb), floor(1l), wall (1))
(file(gl6081l. pfb), floor(1), wall (1))
(file(LongFlatsl. pfb), floor(1), wall (1))
(file(A-61.pfb), floor(1l), wall (1))

[* 62 */ object (file(BrownCornerBuildingl.pfb), floor(1), wall (1))
/* 63 */ object (file(AnotherBrownCornerBuildingl.pfb), floor(1),
wal | (1))
}
Visibility block25 ()
{
/* 64 *] [/object (file(LongApartnentsOnel.pfb), floor(1), wall (1))
/* 65 */ [/object (file(LongApartnentsOnel 1.pfb), floor(1), wall (1))
/* 66 */ [/object (file(LongerApartnentsTwol.pfb), floor(1), wall (1))
}
/* 67 */ [/object (file(EndCapsl. pfb))
/* 68 */ object (file(Streetsl.pfb), floor(1l))
/* 69 */ object (file(Mediansl.pfb), floor(1l))
object (file(BlockBottonsl.pfb), floor(1))

CottonClub.yqg

149

APPENDI X B (continued)

space CottonC ubVi ewSpace (vol ume(box 165 -35 -20 240 120 48))
object (file(Cotton_LobbyOnlyl.pfb), floor(1l), wall (1))
Visibility clubSwitch (space(CottonCl ubVi ewSpace))

{

sel ect

obj ect
obj ect
obj ect
obj ect

or movi eSel ect

{

wandTri gger

wandTri gger

wandTri gger

wandTri gger

wandTri gger

wandTri gger

}

movi e0 (vol unme(box 165 60 -10 240 120 48),
when(buttonl, novie.show(CottonCl ubMovi e. nov)
nmovi eSound. pl ay(Cott onCl ubMovi e. ai ff)
cottoncl ubsound. stop
cottoncl ubsoundSwi t ch. of f
nmovi eSel ect . sel ect (novi el)))
movi el (volunme(box 165 60 -10 240 120 48),
when(buttonl, novie.show calloway. mov)
nmovi eSound. pl ay(cal | oway. ai ff)
cottoncl ubsound. stop
cottoncl ubsoundSwi t ch. of f
nmovi eSel ect . sel ect (novi e2)))
nmovi e2 (vol unme(box 165 60 -10 240 120 48),
when(buttonl, novie.show(billy_ eckstein. mv)
nmovi eSound. pl ay(billy_eckstein. aiff)
cottoncl ubsound. stop
cottoncl ubsoundSwi t ch. of f
nmovi eSel ect . sel ect (novi e3)))
nmovi e3 (vol unme(box 165 60 -10 240 120 48),
when(buttonl, novie.show(Li ndy_hoppers. nov)
nmovi eSound. pl ay(Li ndy_hoppers. ai ff)
cottoncl ubsound. stop
cottoncl ubsoundSwi t ch. of f
nmovi eSel ect . sel ect (novi e4)))
nmovi e4 (vol unme(box 165 60 -10 240 120 48),
when(buttonl, novie.show(nicholas_brothers. nov)
nmovi eSound. pl ay(ni chol as_brot hers. ai ff)
cottoncl ubsound. stop
cottoncl ubsoundSwi t ch. of f
nmovi eSel ect . sel ect (noMovie)))
noMovi e (vol une(box 165 60 -10 240 120 48),
when(buttonl, novie.hide
nmovi eSound. st op
cottoncl ubsoundSwi t ch. on
cottoncl ubsound. pl ay+2
nmovi eSel ect . sel ect (novi e0)))

(file(d ubSplit.o0.pfb))
(file(d ubSplit.1.pfb))

(file(CubSplit.2.pfb), floor(1), wall
(file(CubSplit.3.pfb), floor(1), wall

(1))
(1))

150

APPENDI X B (continued)

transform (position(195 111 -2))
{
transform (size(20 1 15))
{
nmovi eScreen novie ()

}
sound movi eSound (vol une(sphere 0 0 0 40))
}
}

swi tch cottoncl ubsoundSwi t ch
{
user Tri gger (vol une(sphere 212 61.5 0 60),
when(ent er, cottoncl ubsound. pl ay))
sound cottoncl ubsound (file(cotton_club.aiff),
vol une(sphere 212 61.5 0 33))

151

APPENDI X B (continued)

Trally.yg

si npl eMover trolleyRide (start(-20 0 0), end(212 0 0), time(9))
{
userTrigger TrolleyAttachTrigger (volunme(box -13 -4 0 13 4 10),
when(ent er, $user. attach(troll eyRide)))
userTrigger TrolleyAttachTrigger (volunme(box -20 -8 0 20 8 10),
when(exit, $user.rel ease))
switch Trol |l eyMoveTriggerSwitch (on)
{
userTrigger Troll eyMveTrigger (volune(box -13 -4 0 13 4 10),
when(enter,troll eyRi de. go+. 25),
when(enter, Trol | eyMoveTri gger Swi tch. of f),
when(enter, Trol | eyMoveTri gger Swi t ch. on+9. 5)

)
}
object (file(trolly-green.pfb))
object (file(trolleyFloorl.pfb), floor(1), draw(0))
}

152

APPENDI X B (continued)

User.yg

User Userl (show ocal (no))
{
M | et usNavi gator (fly(off), speed(20), teleport(0 -10 0),
col I i deRadi us(0.5))
caveHead ()

{
object (file(ThaddeusHeadl. pfb), size(2))

}

caveTracker (sensor(1l))
{
caveWand ()
object (file(ThaddeusArml. pfb), size(2))
}
body ()
{
object (file(ThaddeusAv. pfb), size(2),position(0 0 3))
}
keyboard (when(nkey, Userl. printnav),
when(fkey, Userl.toggl eFly),
when(ckey, Userl.toggleCollide),
when(rkey, Userl.rel ease))

NAME:

EDUCATION:

TEACHING
EXPERIENCE:

EMPLOYMENT:

PROFESSIONAL
MEMBERSHIP:

HONORS:

153

VITA

David Eric Pape

B.S., Computer Science, Renssdlaer Polytechnic Ingtitute, Troy, New Y ork,
1988 (summa cum laude)

M.S., Computer Science, Rensselaer Polytechnic Ingtitute, Troy, New Y ork,
1990

Ph.D., Electricad Engineering and Computer Science, University of lllinois a
Chicago, Chicago, Illinois, 2001

Department of Electricad Engineering and Computer Science, University of
[llinois at Chicago, Chicago, Illinois: Introductionto Programming Languages,
August 1993 — May 1994

Department of Computer Science, Renssdlaer Polytechnic Ingtitute, Troy, New
Y ork: Compiler Design, and Fundamenta Structures of Computer Science,
September 1988 — May 1990

Electronic Visudization Laboratory, University of Illinois a Chicago, Chicago,
[llinois Research Assgtant, August 1994 — May 2001

Ars Electronica Center, Linz, Audria Artist in Residence, August — September
1997

NASA/Goddard Space Hight Center, Greenbelt, Maryland: Computer
Engineer, September 1986 — August 1993

Generd Electric, Syracuse, New Y ork: Software Engineering Summer Intern,
June — August 1986

Association for Computing Machinery
SIGGRAPH
|EEE Computer Society

Foreign Title Award in Theater and Exhibition, Multimedia Grand Prix '97,
Tokyo, Japan.

PUBLICATIONS:

154

Universty Felowship, Universty of Illinois a Chicago, Chicago, Illinois.
1993,1994,1995.

NASA/GSFC Exceptiona Achievement Award. 1993.
NASA/GSFC Space Data and Computing Divison Peer Award. 1993.
Pi Mu Epsilon mathematics honorary society

Pape, D., Angtey, J., Carter, B., Leigh, J., Roussou, M., and Portlock, T.:
Virtud Heritage at iGrid 2000, Proceedings of INET 2001, Stockholm,
Sweden, 5-8 June 2001.

Pape, D., D' Souza, S., Angtey, J., DeFanti, T., Roussou, M., and Gaitatzes, A.:
Shared Miletus: Towards a Networked Virtual History Museum, Proceedings
of the International Conference on Augmented, Virtual Environments and
Three-Dimensional Imaging, Mykonos, Greece, 30 May — 1 June 2001.

Angey, J,, and Pepe, D.: Being There: Interactive Fiction in Virtua Redlity,
Consciousness Reframed 3, Newport, Wales, UK, August 2000.

Pape, D., and Sandin, D.: Quality Evaluation of Projection-Based VR Displays,
4th International Immersive Projection Technology Workshop, Ames, lowa,
19-20 June 2000.

He, D., Liu, F., Pape, D., Dawe, G., and Sandin, D.: Video-Based
Measurement of Tracker Latency, 4th International |mmersive Projection
Technology Workshop, Ames, lowa, 19-20 June 2000.

Johnson, A., Sandin, D., Dawe, G., Pape, D., Qiu, Z., Thongrong, S., and
Pepys, D.: Developing the PARIS: Using the CAVE to Prototype aNew VR
Display, 4th International Immersive Projection Technology Workshop,
Ames, lowa, 19-20 June 2000.

Angey, J., Pape, D., and Sandin, D.: The Thing Growing: Autonomous
Charactersin Virtua Redity Interactive Fiction, Proceedings of |EEE Virtual
Reality 2000, New Brunswick, NJ, 18-22 March 2000.

Angey, J,, Pape, D., and Sandin, D.: Building aVVR Narrative, Proceedings of
SPIE Vol. 3957 Sereoscopic Displays and Virtual Reality Systems VII (The
Engineering Reality of Virtual Reality 2000), San Jose, CA, Jan 2000.

Imai, T., Johnson, A., Leigh, J., Pape, D., and DeFanti, T.: Supporting

155

Transoceanic Collaborationsin Virtua Environment, Asia-Pacific Conference
on Communications / OptoElectronics and Communications Conference
(APCC/OECC) '99, Beijing, China, 18-22 October 1999.

Imai, T., Johnson, A., Leigh, J., Pape, D., and DeFanti, T.: VR Mail System,
Correspondences on Human Interface, Vol. 1 No. 4, September 1999.

DeFanti, T., Sandin, D., Brown, M., Pape, D., Angtey, J., Bogucki, M., Dawe,
G., Johnson, A., and Huang, T.: Technologiesfor Virtua Redlity/Tele-lmmerson
Applications. Issues of Research in Image Display and Globa Networking,
EC/NSF Workshop on Research Frontiersin Virtual Environments and
Human-Centered Computing, Chateau de Bonas, France, 1 - 4 June 1999.

Pape, D., Anstey, J., Bogucki, M., Dawe, G., DeFanti, T., Johnson, A., and
Sandin, D.: The ImmersaDesk3 - Experiences With A Hat Pand Display for
Virtud Redity, 3rd International Immersive Projection Technology
Workshop. Stuttgart, Germany, 10 - 11 May 1999.

Imai, T., Johnson, A., Leigh, J.,, Pape, D., and DeFanti, T.: The Virtud Mall
System, |EEE Virtual Reality '99, Houston, TX, March 13 - 17, 1999.

Pape, D., Sandin, D., and DeFanti, T.: Trangparently Supporting a Wide Range
of VR and Stereoscopic Display Devices, Proceedings of SPIE Vol. 3639
Sereoscopic Displays and Virtual Reality Systems VI (The Engineering
Reality of Virtual Reality 1999), San Jose, CA, Jan 28, 1999.

Pape, D., Imai, T., Angtey, J., Roussou, M., and DeFanti, T.: XP: An Authoring
Sysem for Immersive Art Exhibitions, Proceedings Fourth International
Conference on Virtual Systems and Multimedia, Gifu, Japan, Nov 18-20,
1998.

Czernuszenko, M., Pape, D. Sandin, D., DeFanti, T., Dawe, G., Brown, M.
The ImmersaDesk and Infinity Wall Projection-Based Virtud Redlity Displays,
Computer Graphics, Vol. 31 No. 2, May 1997.

Pape, D.: A Hardware-Independent Virtua Redlity Development System, |EEE
Computer Graphics and Applications, Vol. 16.4, July 1996.

Krishnamoorthy, M. S., Oxadl, F., Dogrusoz, U., Pape, D., Robayo, A.,
Koyanagi, R., Hay, Y., Hollinger, D., and Hashimi, A.: GrgphPack: Design and
features, Software Visualization: Series on Software Engineering and
Knowledge Engineering, Vol. 7, World Scientific, 1996.

156

Krishnamoorthy, M. S., Oxadl, F., Dogrusoz, U., Pape, D., Robayo, A.,
Koyanagi, R., Hsu, Y., Hollinger, D., and Hashimi, A.: Further improvements to
GraphPack, Graph Drawing 94 Poster Gallery, DIMACS Workshop on
Graph Drawing, Princeton, New Jersey, October 1994.

