Ygdrasil - a framework for composing shared
virtual worlds

Dave Pape? Josephine Anstey ® Margaret Dolinsky P
Edward J. Dambik ¢

2 Department of Media Study, University at Buffalo, Buffalo, NY
bHenry Radford Hope School of Fine Arts, Indiana University, Bloomington, IN

¢Knowledge Acquisition and Projection Lab, Indiana University, Bloomington, IN

Abstract

Ygdrasil is a programming framework for creating networked, multi-user virtual
worlds, especially interactive artistic worlds. It provides a shared scene graph, a
plug-in system for adding new behaviors, and a high-level script interface for com-
posing these worlds. We describe the architecture of Ygdrasil, and its use in creating
two applications that were demonstrated at the iGrid 2002 workshop.

Key words: Virtual reality, Shared virtual environments, Computer art

1 Introduction

In their book Networked Virtual Environments, Singhal and Zyda describe
composability as one of the chief problems to be solved in creating shared
virtual worlds [6]. Composability refers to the ability to dynamically bring
objects and their behaviors into a virtual world, even when these objects were
originally created as part of a completely different virtual world; the objects
would be automatically able to interact in the new environment without any
coding modifications. A fully composable system would speed the creation of
significant shared worlds. It would aid the development of very large scale
environments distributed in a massively parallel manner, and allow many dif-
ferent environments to be seamlessly interconnected across the Internet, such
that users could easily travel from one world to another.

Email address: dave.pape@acm.org (Dave Pape).
URL: http://resumbrae.com (Dave Pape).

Preprint submitted to Elsevier Science 27 January 2003

This paper describes Ygdrasil, a framework for building networked virtual
environments. The framework takes elements of existing systems for virtual
reality programming, but focuses on enabling rapid and easy development of
environments via a scripting language and a shared scene graph. It allows
world creators to re-use existing work and to combine pieces of virtual worlds
at will. A specific focus in the development of Ygdrasil has been for creating
artistic environments for the CAVE VR system [1]. These applications are
often built by groups of developers with a wide range of programming skills;
hence, we want a system that is easy for non-expert programmers to work
with, but that still provides the sort of power expected by more advanced
programimers.

1.1 Previous Work

Alice is a programming environment for interactive virtual environments, from
the Stage 3 Research Group at Carnegie Mellon University [8]. The objective
of Alice is to provide an easy-to-use rapid prototyping environment for 3D
applications. It uses Python, an object-oriented scripting language, for pro-
gramming object behaviors. The scripts are interpreted, and may be modified
while the system is running, making it easy to experiment and build worlds
piece by piece. Objects are stored in a transformation hierarchy, and standard
functions exist for manipulating objects relative to other coordinate systems.
Alice’s use in undergraduate courses has demonstrated that it is very possible
for beginning programmers to create interesting VR worlds when given the
right tool.

Avango, formerly known as Avocado, is an object-oriented, shared scene-graph
framework [7]. It was created to provide a transparent method for building
networked VR applications. It is based on OpenGL Performer, extending the
Performer nodes with field classes to automate access to node data; the field
system supports a streaming interface that can be used to save and restore
objects as well as to share their data over a multicast network connection.
When running a networked application, nodes are added to the shared scene
graph by first creating them locally on a host, and then migrating them to
a distribution group, which will cause all hosts sharing that group to auto-
matically create a copy of that node and receive any new data for the node’s
fields. In addition to scene graph nodes, Avango defines sensor classes that
handle input devices, such as a wand or 6DOF trackers worn by a user. These
sensors, however, are neither part of the scene graph, nor shared among net-
worked hosts; they are only used on the local host to affect the shared scene.
The second goal for Avango, besides simplifying development of networked ap-
plications, is to be a rapid prototyping system, where developers can quickly
create and modify applications. It uses the interpreted language Scheme for

this purpose. A Scheme interface to Avango exists so that any high-level object
can be created and manipulated by a Scheme script. Developers create appli-
cations by implementing performance critical features in C++ as new nodes,
and then creating objects, connecting them, and forming a scene interactively
in Scheme.

Bamboo is a portable system that uses a plug-in architecture for building
networked virtual environments [9]. Individual elements are programmed into
modules, which are compiled into dynamically loadable libraries. The Bam-
boo kernel loads modules as they are requested, or based on the dependency
requirements of other modules. The modules can be shared over the Internet
via HTTP. The use of dynamically loaded modules is intended to promote
re-use of code; an application can, in theory, be built by simply bringing to-
gether a set of already existing modules. Bamboo also provides a hierarchical,
multithreaded callback framework for structuring code execution. New mod-
ules can insert themselves into an environment by attaching their callbacks to
other, existing callback loops. Bamboo itself does not include any graphical or
database features; instead, it is meant to build on such systems as X Windows,
OpenGL, and Cosmo3D. Bamboo is an extremely flexible system, running on
a wide range of platforms and languages. On the other hand, its flexibility
makes it very complex to learn and to program.

2 Architecture

The primary features of Ygdrasil are: a distributed scene graph, dynamically
loaded extensions, and scripting. These features are intended to yield a com-
posable system, one where VE creators can assemble a world out of arbitrary
existing components and bring new objects into a running world. For com-
ponents to be able to ”link up” and communicate with each other, a clearly
defined structure for the data that is shared is necessary. The scene graph
approach provides a basic structure, in the form of data associated with graph
nodes, and so the networking can be automated. Dynamic loading of new
code, and the script interface for defining a virtual world, make it possible for
components (node classes) to be easily shared and re-used by world authors.

Ygdrasil is built around SGI's OpenGL Performer visual simulation toolkit [4]
and the CAVERNSsoft G2 networking library [3]. Performer provides the basis
for a hierarchical scene graph representation of the virtual world database.
Necessary data, such as lists of nodes’ children, transformation matrices, and
model information, are automatically distributed among participants in the
application via CAVERNsoft. CAVERNsoft is a networking toolkit for VR
that emphasizes integrating VR with high-performance and data-intensive
computing over high-speed networks.

Fig. 1. A distributed scene graph

2.1 Scene Graph

We use a scene graph structure for the Ygdrasil world database. However, it is
a distributed scene graph, which does not require a central server for storage.
In most cases, no single machine will have a complete copy of the true ”master”
scene. Conceptually, different subgraphs of the full scene can exist on different
machines, and be linked over the network. Any particular machine will only
have the parts of the scene graph that it controls, and proxies for any other
parts that it needs for its calculations, rendering, or whatever that machine
is doing. Figure 1 shows an example scene graph for a world that contains
two distinct scenes and a user, and shows how it might actually be broken up
among multiple hosts. Each box represents a single host’s subset of the entire
scene, that is, the portion of the total world that is owned and updated by a
particular host. Each host will have its own version of the overall scene graph,
consisting of those parts that it owns, and proxies of the other parts.

In Ygdrasil, in addition to the basic graphical data used in Performer, any
scene graph node can have behaviors added to it. Each particular node is
considered to be owned by the host that creates it. This host executes any
behavior associated with the node. All other hosts will create proxy versions
of the node, and only receive data for it; they do not directly modify the node,
except by sending messages to the master copy to request changes. Because
the basic scene graph data — that which is sufficient to render the scene —
is shared automatically, new behavioral components generally do not have to
include any networking themselves.

light sun (position(-1 0 1), color(l .5 .2))
spinner (period(5))
{
object (file(top.iv))
}
UserTrigger trigl (volume(sphere 0 0 0 100),
when (enter, $user.teleport(1000 0 0)))

Fig. 2. Example scene file
2.2 Node Programming

Most behaviors in Ygdrasil applications are built as simple components in
C++. They are new node classes that extend other, existing classes. The
individual node classes are compiled into dynamically loaded objects (DSOs)
(sometimes referred to as ”plug-ins”). Included with each DSO is a list of other
classes that it is derived from or depends on. DSOs for these dependencies are
automatically, and recursively, loaded prior to loading a requested DSO.

Because they are dynamically loaded, classes can be rapidly added to a world
or modified. New DSOs can also be shared among developers and re-used in
different applications. The system includes a number of pre-made classes (also
DSOs) that implement common virtual world interactions; these include such
things as users’ avatars, navigation controls, and triggers that detect when
a user enters an area. We have further begun maintaining a web-accessible
archive of new classes created by various people, containing about 70 different
classes so far. These standard tools simplify the quick construction of many
applications.

2.8 Scripting

The actual composition of a virtual world in Ygdrasil is done using a higher
level, scripting-like layer. Other toolkits have used traditional procedural or
object-oriented scripting languages, such as Scheme in Avango, or VisualBasic
in WorldUpl[5]. The scripting layer in Ygdrasil is a simple textual representa-
tion of the scene graph layout (or a fragment of a scene graph), similar to an
Openlnventor object file; figure 2 is an example of a partial scene. It tells the
system what kinds of nodes to create, and includes commands with each node
to control its behavior.

Besides laying out the scene graph, programming an Ygdrasil virtual world
at the scene file level is done using events and messages. Events are detected
and reported by the behavior code for a node class; for example, a UserTrig-
ger node will generate an event any time that a user enters its area. In the

scene graph script, the “when” command is used to send messages in response
to these events. The messages can be sent to any node to change a value or
to start some action. When creating a new C++ class, all that an applica-
tion programmer has to do is to process the new, class-specific messages in
a message() function, and to signal events using the eventOccurred() func-
tion; the connection between the events and messages is done separately, by
the scene author. This has made it possible for experienced programmers and
non-programming designers to work together in creating a world — experi-
enced programmers create new behavior components when necessary, while
others can create a world by simply plugging together the components.

Events are represented by an Event class; each occurrence generates a separate
Event object. At its most basic, an Event is simply an arbitrary string. For
example, in the UserTrigger node, the string "enter” is an event that indicates
that a user just entered the trigger region. However, some events need to
have additional information associated with them. This is implemented as a
collection of event arguments, each of which is a string, with a string label.
Scene file messages can then make use of these arguments through their labels.
For example, the UserTrigger command ”when(enter, $user.teleport(1000 0
0))” will cause any user entering the trigger space to be teleported to the
location (1000 0 0).

2.4 Networking

For any given node there is a host that owns that node; this is the host that
performs calculations to update it (in the case of a user avatar, for example,
it reads the tracker information). Other hosts that are interested in the node
will also have copies of it. However, only the owning host is able to change the
node’s data; all others have proxy copies, and are in effect only able to read
its data. Hence, a remote host’s proxy for a node only contains the data that
are needed to render it or otherwise use the node in calculations performed by
the remote host. In a purely visual application, this would be the sort of data
that Performer nodes contain. Data that are used internally by the code that
controls a node are not shared, and only exist on the owning host. If another
node wishes to change the state of a node, it does not change the data directly,
but sends a message to the master copy of the node on the owning host. This
distinction also means that proxy nodes can actually be of a simpler class than
the master copy. For example, a ”Spinner” node class can be defined, derived
from the basic transformation class, with the behavior that it continuously
spins around a given axis. Remote hosts that create a proxy for this node can
simply use the base class (transformation node) for their proxies, since all that
the proxy has to do is receive updates to the transformation matrix. Thus,
clients will not need to have copies of, or know anything about, the behavior

r CAVERN database
[»root/type
root/children ...

»xform/type ...
B-xform/children ...
Pxform/matrix ...

Fig. 3. Ygdrasil scene graph database

code being run by the master version of a world; they will only need the core
program, and modules for any new nodes that they will add to the world.

The distribution of nodes’ shared data is done using a CAVERNSsoft networked
database. Each specific piece of data (attribute) in a node is shared separately;
each one has its own database key. Figure 3 shows an example of the attributes
that are shared for a group and a transformation node. The host running the
master scene owns the nodes, so it initially adds keys to its CAVERNSsoft
database for their attributes; any time that the data changes, it will be written
to the database. The client hosts registers their interest in this data, and create
a local copy; whenever new data is received for a key, it will be stored in the
local scene graph. Every node attribute has a separate key; different keys can
be shared in different manners — an array of children pointers could use a
reliable (TCP) connection, while frequently updated matrix data could use an
unreliable (UDP) connection.

When a new client wishes to join and see a shared world, it can get a copy
of the complete world scene graph by being given a network address for the
database, and the name of the root node. In earlier versions of Ygdrasil, the
client would create a local copy of the root node and begin receiving the root’s
data keys; this would give it a list of the root’s children nodes; following these
node references recursively eventually produced a copy of the entire scene.
However, in large environments (with hundreds or thousands of nodes), if
network latency was large this process was unacceptably slow, since as the
client learned of each new node, a separate round-trip communication with
the database server was necessary to register interest and receive that new
node’s data. Hence, we modified the design so that when a client starts up,

the server will send it a complete copy of the current state of the database
in one initial transfer. In typical applications, this has improved the startup
time from several minutes to a few seconds.

3 iGrid 2002 Applications

At the iGrid 2002 event, we demonstrated two applications built on Ygdrasil -
“Beat Box” and “PAAPAB”. These two environments were originally created
as part of “EVL: Alive on the Grid,” a networked virtual reality art show that
premiered at the Ars Electronica Festival in September 2001 [2].

For iGrid 2002 we networked the applications between CAVEs and other VR
systems at SARA in Amsterdam, NYSCEDII at the University at Buffalo, In-
diana University Bloomington, the Electronic Visualization Laboratory (EVL)
at the University of Illinois at Chicago, and NCSA at the University of Illi-
nois at Champaign Urbana. The network connections from Amsterdam to the
four US sites all went through iGrid’s SurfNet connection between Amster-
dam and Chicago, and then either through the STAR TAP connection point
or the Abilene (Internet 2) network. Prior to the conference, we measured
raw bandwidths between the computers at the various sites of roughly 20
to 35 megabits/second, with round-trip latencies of 120 milliseconds between
Amsterdam and the US and 10 to 15 milliseconds between US sites.

3.1 Beat Box

“Beat Box” presents collaborative CAVE participants with a playful interac-
tive audio environment. The entry scene is a grassy jungle area with colored
spotlights over three virtual machines which control percussion sounds, ambi-
ent loops and bass sounds (figures 4 and 5). A fourth area provides a variety of
drums. The machines act as sequencers, each with a unique periodic duration.
Visually the machines are constructed of rows of thoroughly odd indigenous
heads, some with long necks, some with musical instruments. Each head rep-
resents a “beat” on the sequencer. Users can generate a sound-scape by a
graphically scheduling selected sound events on particular heads.

For example, at the drumming machine, using the wand interface, participants
cycle through audio samples which are represented graphically by brightly
colored rings. The participant can place the rings around the long necks of
the heads on the machine. The sound ring takes the appearance of a necklace.
The participant chooses at what interval to put the rings and can put multiple
rings on one neck. Then the samples are played in sequence while the heads

Fig. 4. Beat Box drumming machine

react graphically. The bass and ambient sound machines play sounds of longer
duration, which can be “mixed and matched” in order to create interesting
sonic compositions that may or may not be traditionally musical. In order to
keep the instructions simple, all sound tasks at the machines are performed
with one button on the wand. This offers a consistency in action and keeps
the movement dynamic. The drums are played by beating on them with the
wand.

At iGrid, the resulting compositions varied greatly depending on the individ-
uals involved at any specific time and appeared to be affected by their initial
knowledge of music and rhythm; the time they spent learning how to ma-
nipulate the sound machines and understanding how this changed the sonic
composition; and how closely users cooperated with their remote counterparts.
The environment contained a reset switch in front of each machine that cleared
all the sound selections and reset the machine to silence. If new arrivals did
not reset the scene upon entry, they were able to explore the rhythm patterns
persisting from other participants. This afforded an opportunity to understand
the environment and how the machines work.

In this exhibitions users joined from multiples sites in Europe and the US, but
had no real sense of the other locations, how many people were in the audience,
what the mood of the audience was. However, throughout the collaborative
event particular avatars consistently represented each location. For example,
each day we knew that Indiana was the woman in the green dress. The avatars
began to take on a character of their own, as voices became identities linked
to their visual, complete with head and hand gestures and individual quirky
comments and movements. Typically one person, usually the most gregarious,
led the pack in adventure and conversation. “Beat Box’s” graphics are appeal-
ing and having others to converse with and manipulate the machines made
the exploration fun and exciting.

“Beat Box” contains custom Ygdrasil code for the control and precise tim-
ing of sound events. “Beat Box’s” custom code creates a matrix of sound

Fig. 5. Beat Box bass machine

events which are triggered in realtime in the server and client applications.
Each sound event causes a specific sound file to be played by the server and
clients’ sound server. The drumming machine uses percussive sounds of much
shorter duration and actually breaks up each beat into four subdivisions for
the creation of more interesting timing rhythms. Due to this, the drumming
machine requires updates much quicker than the other sound machines at 100
beats per minute, it generates a timing event every 150 milliseconds, which is
transmitted to all active clients. Graphical updates indicating beats as well as
active drum machine sound events are transmitted at this rate.

Musically, randomly missed or delayed timing events can be greatly detri-
mental to a sonic composition’s thythm and can even destroy it completely.
Also, latency can make collaborating on a musical piece across a network in
realtime quite challenging (although the significance of latency was minimized
to a great extent by using sound machines which use discrete timing events).
The overall results at iGrid proved quite excellent and satisfying. The net-
work appeared to handle “Beat Box” sound events and graphics updates quite
smoothly and without noticeable missed or delayed sounds or updates. The
drums and drumming machine, the most sensitive components due to their
timing requirements, kept steady beats when required and behaved almost as
well as in a non-networked environment.

In virtual environments, the scene and its three-dimensional elements act as
navigational icons to lead participants in a direction or signal an upcoming
event. Audio has a significant influence on the level of immersion. The audio
can influence the participants’ direction and elevate the significance of the
imagery. Visuals, such as an indigenous head, act as markers or signs pointing
a way to explore the world. The audio envelops the environment and carries
the participants along towards successive events. This intimate coupling of
visuals to audio becomes a powerful concept for exploration in virtual reality.

10

Fig. 6. The PAAPAB dance floor environment

3.2 PAAPAB

PAAPAB (Pick An Avatar, Pick A Beat) is a shared virtual reality dance club
inhabited by life-size puppets that are animated by the users. The environ-
ment comprises a dance floor with raised semi-transparent platforms where
the animated puppets and avatars of remotely located users can dance (figure
6). At iGrid 2002 the music was a combination of original compositions by
Dan Neveu and compilations of house, techno and trance tracks from his vinyl
collection.

On one platform there are are four booths where users can record their own
motions and see them imitated by one of the life-size puppets. The VR dis-
play’s tracking system is used for this process. The position and orientation in-
formation from the tracking sensors on the user’s head and hand(s), is mapped
onto the puppet’s body parts. The recording lasts for 15 seconds. After the
motion is recorded the puppet leaves the recording area and heads downstairs
to the dance floor. There it continues dancing, continuously looping the motion
information that the user has recorded. The user can go down and discover
the puppets s/he has recorded.

Each booth has a different type of puppet. At iGrid the four types were a
skeleton, a sex kitten, a dragon-like being and a winged puppet (figure 7).
The puppets’ body parts are not attached to one another, which avoids the
problem of body parts joining up badly when the puppet moves. But the life-
like movement that results from the motion tracking creates a strong illusion
of a concrete being formed from a collection of shapes. If the puppet has more
body parts than the user has tracking sensors, a system of offsets and time-
lags is used to animate the extra parts. For example the sex kitten puppet
has a head, two breasts, a skirt and two legs. If the user has a sensor on each
hand, his hands will animate the legs, while his head movements will animate

11

Fig. 7. A winged puppet

the puppet’s head and, with offset and timelag, her breasts and skirt.

Much of our research focuses on creating interactive drama in virtual reality
— immersive stories. Because access to the VR hardware needed for these
projects is limited, we generally show them in a standalone form, with a sin-
gle participant. However, the growth of networks and systems to support tele-
immersion could provide the possibility for large-scale VR dramas featuring
numerous live participants at widely distributed locations. PAAPAB is a sim-
ple demonstration/testbed of the software technology needed to achieve this.
We also use intelligent agents as actors within our dramas. The design and
implementation of the puppets in PAAPAB are experiments for the embod-
ied aspect of these agents. We are interested to discover how many agents
and avatars we can have running around in the networked environment. In
PAAPAB users were not immediately distinguishable from the agents as their
avatars were very similar to the life-size puppets - some had wings, some
were skeleton-like. In the environment, users danced with both puppets and
avatars, they tried to figure out which was which, they watched each other
record motions.

3.2.1 Networking PAAPAB

For both the Ars Electronica show and the iGrid demonstrations all remote
sites stored data such as models and textures locally. But the much larger
bandwidth available at iGrid 2002, and the fact that all participating sites had
Internet2 connectivity, meant that we could make some significant alterations
to the application.

Typically transformation data from the tracking system, which is used to
position and orient remote avatars, is sent over the network over UDP. At first
we imagined that we would similarly stream the transformation data for our
puppets. However at Ars Electronica we did not have the bandwidth to send all
the transformation information for all the puppets over the network. Since we
have 40 puppets each with at least four body parts and some with additional

12

spring calculations to make, the transformation data can grow quite large.
Therefore for the Ars Electronica show, we used a file server to supplement the
networking built into Ygdrasil. When a user recorded a dance, we packed the
data in files. The file server sent the file out to all connected clients via TCP.
Each client had to unpack the data, use code modules on the local machine to
interpret it, and further local modules to make the spring calculations locally.
This conflicted with the original design objective to have the more complex
behavior modules only at the master site, while the clients would only need
transformation nodes to alter the position and orientation of objects in their
local graphics. At iGrid, in contrast, the master machine saved the recorded
motion data of the forty puppets, and streamed it continuously (via UDP) to
the client machines.

For the Ars Electronica show, each remote site also has all the sound files and
played them locally — the only information that was networked was messages
about what should be played when. For iGrid we were able to stream the music
from a computer in Chicago at CD-quality (44.1 kHz, 16 bits). For both shows
we used aconf, an audio conferencing tool written by the CAVERN group at
EVL, to do audio-conferencing. We experienced some initial problems with
aconf because it did not have a large enough buffer to accommodate the 44.1
kHz stream, and had to rewrite a small part of the code.

During the iGrid demonstrations, we observed the network traffic on the dif-
ferent computers using the “netstat” utility. The computer at SARA, which
controlled the master scene and broadcast all puppet data, generated contin-
uous traffic of roughly 3.5 megabits/second. The computer in Chicago, which
streamed the music as well as avatar data for the local user, generated be-
tween 1.5 and 3 megabits/second of traffic. This amount of network use was
well within the capability of the network set up for iGrid, but was in fact near
to the limits of our software. We intentionally restricted the speed of updates
of the puppets to 5 frames per second (even though the graphics rendering
runs at about 24 frames per second), because when we initially tried to send
more data to multiple clients, the database server was not able to keep up,
and most of the UDP data packets were lost.

4 Conclusion

In Ygdrasil we have explored two major concepts for composing virtual worlds
— scripting and a shared scene graph. The scripting layer simplifies the quick
combining of existing components into new applications. A notable difference
between Ygdrasil’s scripting and that normally found in VR toolkits is its basis
in the scene graph; rather than being a collection of procedures, an Ygdrasil
script is thought of as a description of the virtual world’s scene. The purpose of

13

the shared scene graph is to provide a standard interface for all components.
Further, it provides a programming model where every object is controlled
by one participant in the shared environment, and all other participants can
interact with the object in a simplified form, without needing to know about
the implementation of its behavior.

With Beat Box and PAAPAB, we demonstrated some of the possibilities for
the use of high-speed networks and immersive displays in interactive art. The
bandwidth requirements currently limit them to high-end computers and re-
search networks, such as those that were available at the iGrid conference.
Although the capabilities of mainstream computers and networks will con-
tinue to increase, further work will be needed to make the software useable in
such an environment while still providing the flexibility and power that has
made it possible to create these applications.

5 Acknowledgments

CAVE is a registered trademark, and STAR TAP is a service mark, of the
Board of Trustees of the University of Illinois.

References

[1] C. CruzNeira, D. Sandin, T. DeFanti, Surround-Screen Projection-Based
Virtual Reality: The Design and Implementation of the CAVE, in: Proceedings
of SIGGRAPH 93 Computer Graphics Conference, 1993, pp. 135-142.

[2] D. Pape, D. Sandin, Alive on the Grid, in: Proceedings of 6th World
Multiconference on Systemics, Cybernetics and Informatics 12, 2002, pp. 485-
490.

[3] K. Park, Y. Cho, N. Krishnaprasad, C. Scharver, M. Lewis, J. Leigh, A.
Johnson, CAVERNsoft G2: A Toolkit for High Performance Tele-Immersive
Collaboration, in: Proceedings of the ACM Symposium on Virtual Reality
Software and Technology 2000, pp. 8-15, 2000.

[4] J. Rohlf, J. Helman, IRIS Performer: A High Performance Multiprocessing
Toolkit for Real-Time 3D Graphics, in: Proceedings of SIGGRAPH 94
Computer Graphics Conference, pp. 381-395, 1994.

[5] Sense8 Corporation, WorldUp Users Guide, Release 4, 1998.

[6] S. Singhal, M. Zyda, Networked Virtual Environments: Design and
Implementation, New York: ACM Press, 1999.

14

[7] H. Tramberend, Avocado: A Distributed Virtual Reality Framework, in:
Proceedings of IEEE Virtual Reality "99, Houston, TX, March 1999.

[8] UVa User Interface Group, Alice: Rapid Prototyping for Virtual Reality, IEEE
Computer Graphics and Applications, 15 (3) (1995) 8-11.

[9] K. Watsen, M. Zyda, Bamboo - A Portable System for Dynamically Extensible,
Real-time, Networked Virtual Environments, in: Proceedings IEEE Virtual
Reality Annual International Symposium, Atlanta, GA, 1998, pp. 252-259.

: “?' Dave Pape is a Research Professor in the Department of Me-
dia Study of the University at Buffalo. He received a BS and MS in Computer
Science from Rensselaer Polytechnic Institute, and a PhD in Computer Sci-
ence from the University of Illinois at Chicago. His research interests include
tools for and applications of virtual reality and computer graphics in the arts
and sciences.

Josephine Anstey is an Assistant Professor in the Depart-
ment of Media Study of the University at Buffalo. She received an MA in
American Studies from the University at Buffalo, and an MFA in Electronic
Visualization from the University of Illinois at Chicago. Her research interests
are interactive VR drama, networked VR and low-cost VR solutions.

* Margaret Dolinsky is an Assistant Professor and Research
Scientist at Indiana University, Bloomington’s HR Hope School of Fine Arts.
She received her MFA from the University of Illinois at Chicago and is cur-
rently a postgraduate researcher at the University College of Wales. Her work
concentrates on collaborative CAVE art environments, visual metaphors for
navigation, and the participants’ role in the experience.

15

Edward J. Dambik is a Research Associate/Software De-
veloper with the Pervasive Technology Knowledge Acquisition and Projection
Laboratory at Indiana University, Bloomington. Prior to Indiana University,
Dambik was at Fermi National Accelerator Laboratory where he developed
networked data acquisition servers and clients. His other interests include col-
laborative CAVE environments, human video tracking, and musical applica-
tions.

16

