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• Future Directions

Overview



• 2006–2008: Early Adoption of GPGPU - NVIDIA launches CUDA, enabling GPUs for 
general-purpose computing (molecular dynamics, astrophysics)

• 2012: Breakthrough at Scale - Titan (OLCF) supercomputer pioneer's hybrid CPU-GPU 
architecture (climate, materials science)

• 2015–2017: AI and Deep Learning Revolution - GPUs become central to AI and 
machine learning. NVIDIA’s Volta GPUs (V100) drive AI-accelerated research (genomics, 
climate modeling)

• 2018–2020: Widespread GPU Adoption - Summit (OLCF) and other top systems use 
GPUs for AI and traditional HPC tasks (healthcare, energy, and materials science)

• 2023–2024: Exascale Era and Democratization of AI - Systems like Aurora (ALCF) and 
Frontier (ORNL) leverage GPUs for exascale computing, supporting large-scale 
simulations, AI, and data-driven research

GPU Integration into Data Centers for Science
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Aurora Specifications

Compute Fabric Memory 

Storage 
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• Fastest machines in the world, according to HPL

• Fastest machines in the world, according to HPL-MxP

  Supercomputers

OpenAI

NVIDIA



• AI Model Scaling: HPC enables the training of larger, more complex AI models 

that would not be feasible on traditional systems

• Infrastructure Support: Specialized hardware (like GPUs) and high-speed 

networks at scale tailored for optimizing AI workflows

• Collaboration and Accessibility: Open up AI research by democratizing access 

to resources for diverse and underfunded research communities

Role of HPC Facilities in Advancing AI
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• Foundation models are broad, versatile models pre-trained on large datasets, 

which can be adapted (fine-tuned) for specific tasks [GPT-4 (OpenAI), PaLM 2 (Google), Claude 

(Anthropic), Gemini (Google DeepMind), LLaMA 3 (Meta), Mistral, Falcon]

• Frontier models push the cutting edge of technology and AI capabilities, often 

built on new architectures or techniques, such as exascale computing systems

A frontier model can be a foundation model if it’s at the cutting edge! 

Frontier versus Foundation



Cost* of Compute Power to Train Frontier AI 

The cost of the computational power required to train the most powerful AI systems has doubled every nine months

Source: Will Henshall for Time, Data Source: Epoch AI

*Cost includes amortized hardware acquisition and energy consumption

https://time.com/6984292/cost-artificial-intelligence-compute-epoch-report/


Source: Can AI Scaling Continue Through 2030? Data Source: EPOCH AI

Constraints to Scaling Training Runs by 2030

https://epochai.org/blog/can-ai-scaling-continue-through-2030


Source: Rick Stevens – Argonne National Laboratory



• “A day-long run without a system failure would be outstanding,” ... “Our goal is still 

hours but longer than Frontier’s current failure rate”, ... “we’re not super far off our 

goal. The issues span lots of different categories, the GPUs are just one.” - Dan 

Swinhoe, Frontier supercomputer suffering ‘daily hardware failures’ during testing 

in Data Centre Dynamics, October 10, 2022

• Faulty Nvidia H100 GPUs and HBM3 memory caused half of failures during LLama

3 training — one failure every three hours for Meta's 16,384 GPU training cluster - 

Anton Shilov, tom's Hardware, July 27, 2024

Real World Experience

https://www.datacenterdynamics.com/en/news/frontier-supercomputer-suffering-daily-hardware-failures-during-testing/
https://www.tomshardware.com/tech-industry/artificial-intelligence/faulty-nvidia-h100-gpus-and-hbm3-memory-caused-half-of-the-failures-during-llama-3-training-one-failure-every-three-hours-for-metas-16384-gpu-training-cluster
https://www.tomshardware.com/tech-industry/artificial-intelligence/faulty-nvidia-h100-gpus-and-hbm3-memory-caused-half-of-the-failures-during-llama-3-training-one-failure-every-three-hours-for-metas-16384-gpu-training-cluster


Llama 3 405B Interruptions (54 days)

419 unexpected interruptions:

• 148 (30.1%) various GPU 
failures (including NVLink failures)

• 72 (17.2%) were caused by 
HBM3 memory failures

• 2 CPUs failed

Tom’s HARDWARE, July 27, 2024

https://www.tomshardware.com/tech-industry/artificial-intelligence/faulty-nvidia-h100-gpus-and-hbm3-memory-caused-half-of-the-failures-during-llama-3-training-one-failure-every-three-hours-for-metas-16384-gpu-training-cluster


Headlines of 2024

• Tesla bought 50K, planning 100K 

upgraded 300K GPU systems

• Meta bought 350K GPUs 

Scaling of Systems

Number of GPUs
MTBF 

(hours)

50,000 13.58
100,000 7.05
500,000 1.87
1,000,000 1.28



Aurora Mean Time Between Failures (exercise)



Feasibility of Training Models on Aurora/Polaris
AuroraGPT set of models (1.5B, 7B, 13B, 70B, 200B, 1T, …)

Aurora BFP16 HGEMM ~ 180 TF per tile x (127,488 tiles) ⟹ 22.9 EF/s

We are assuming about 40% efficiency for LLM BFP16 flops utilization relative to HGEMM measurements

Will every domain build its own model? Need their own system?
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AURORA ESP Data and Learning Projects and Methods 

Classification

Regression

Reinforment learning

Clustering

Uncertainty Quantification

Dimensionality Reduction

Reduced  / Surrogate Models

Advanced Statistics

Image and Signal Processing

Graph Analytics

Databases

Advanced Workflows

In Situ Viz & Analysis

Virtual Drug Response Prediction

Enabling Connectomics at Exascale to
Facilitate Discoveries in Neuroscience

Machine Learning for Lattice Quantum
Chromodynamics

Accelerated Deep Learning Discovery in
Fusion Energy Science

Many-Body Perturbation Theory Meets
Machine Learning

Exascale Computational Catalysis

Dark Sky Mining

Data Analytics and Machine Learning for
Exascale CFD

In Situ Visualization and Analysis of Fluid-
Structure-Interaction Simulations

Simulating and Learning in the ATLAS
detector at the Exascale



ALCF AI Testbeds • Infrastructure of next-

generation machines with 

hardware accelerators 

customized for artificial 

intelligence (AI) applications.

• Provide a platform to evaluate 

usability and performance of 

machine learning based HPC 

applications running on these 

accelerators.

• The goal is to better understand 

how to integrate AI accelerators 

with ALCF’s existing and 

upcoming supercomputers to 

accelerate science insights

Cerebras (CS-2) SambaNova

Graphcore GroqHabana



Cerebras CS2
SambaNova 

Cardinal SN10
Groq GroqCard

GraphCore 
GC200 IPU

Habana
Gaudi1

NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector ALUs 1472 IPUs
8 TPC + GEMM 

engine
6912 CUDA 

Cores

On-Chip 
Memory

40 GB >300MB 230MB 900MB 24 MB
192KB L1
40MB L2

Process 7nm 7nm 14nm 7nm 7nm 7nm

System Size 2 Nodes
2 nodes 

(8 cards per 
node)

4 nodes 
(8 cards per 

node)

1 node 
(8 cards per 

node)

2 nodes
(8 cards per 

node)
1 card

Estimated 
Performance of 
a card (TFlops)

>5780 (FP16) >300 (BF16) >188 (FP16) >250 (FP16) >150 (FP16)
312 (FP16), 156 

(FP32)

Software Stack 
Support

Tensorflow, 
Pytorch

SambaFlow, 
Pytorch

GroqAPI, ONNX
Tensorflow, 

Pytorch, PopArt

Synapse AI, 
TensorFlow and 

PyTorch

Tensorflow, 
Pytorch, etc

Interconnect Ethernet-based Infiniband RealScale 
TM

IPU Link Ethernet-based NVLink



COVID-19 CVAE Training on Summit and Cerebras CS-2 

Performance 523 X 523 926 X 926

Throughput (samples/sec)

1x CS-2 System 24,000 4700

1x V100 GPU 228 51

1x A100 GPU ~1100 ~150

Speedup (CS2 vs. GPU )

1 x V100 GPU 113x 101x

1 x A100 GPU ~22X ~32X

• Single CS-2 delivers performance 
of over 100 GPUs on CVAE

• Results are for out-of-the-box 
performance based on model 
config not optimized for CS-2. 
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Total GPUs

300

1200

2200

4700

9000

15000

36000

70000

150000

24000

300000

S
a
m

p
le

s/
s
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Chain H - 523 Residues - A100

Chain A - 926 Residues - V100

Chain A - 926 Residues - A100

Single CS-2 System - 523 Residues

Single CS-2 System - 926 Residues

Intelligent Resolution: Integrating Cryo-EM with AI-driven Multi-resolution Simulations to Observe the SARS-CoV-2 Replication-Transcription Machinery in Action, SC21 COVID19 Gordon Bell 
Finalist, To appear in IJHPCA 2022 https://www.biorxiv.org/content/10.1101/2021.10.09.463779v1.full.pdf

CS-2 523 Residues

CS-2 926 Residues



Getting Started on 
ALCF AI Testbed

Director’s Discretionary (DD) awards support 

various project objectives from scaling code to 

preparing for future computing competition to 

production scientific computing in support of 

strategic partnerships.

Cerebras CS-2 and SambaNova Datascale 
systems are available for allocations! 

• Allocation Request Form

• AI Testbed User Guide

https://www.alcf.anl.gov/science/directors-discretionary-allocation-program
https://www.alcf.anl.gov/alcf-ai-testbed


First and Latest Argonne Computer



Thank You
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