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Introduction

● High-throughput sequencing has revolutionized genomic research, enabling large-scale studies. 

● Decreasing costs and increasing data volumes create computational challenges in alignment, 

variant calling, and data storage. 

● HPC is essential, incorporating GPUs, FPGAs, and TPUs to accelerate genomic analysis. 

● Innovations like ERT, mixed-precision computing, and SeqBench enhance efficiency and scalability.



Problem Statement

● Current frameworks face inefficiencies in data indexing, seeding, variant calling, and compression.    

● Alignment bottlenecks persist due to memory bandwidth constraints of compressed index 

structures.    

● GWAS struggles with the computational overhead of nonlinear models.    

● Variant calling scalability is limited by CPU-dominated workflows.    

● The report explores integrating HPC principles for a unified genomic pipeline. 



Accelerating Read Alignment

● Read alignment is computationally intensive, with seeding being a bottleneck (40% of alignment 

time).    

● Enumerated Radix Trees (ERT) improve data access speed by reducing memory retrievals.    

● FPGA-based accelerator boosts seeding (3.3x) and overall alignment performance (2.1x).



Mixed-Precision Computing in GWAS

● GWAS identifies genetic variations (SNPs) influencing traits and diseases.    

● Multivariate kernel methods like KRR model nonlinear relationships but are computationally 

demanding.    

● A tile-centric framework with mixed-precision arithmetic (INT8 to FP64) accelerates GWAS (1.805 

ExaOps/s, 5x faster than REGENIE).  



HPC-Enabled Benchmarking for Genomic Data 
Compression

● Genomic datasets (FASTQ format) are massive, creating storage and accessibility challenges.    

● SeqBench is an open-source benchmark suite for evaluating lossless and lossy compression 

methods.    

● HPC enhances compression and downstream analysis, with some compressors achieving 8-54x 

space savings.



Accelerating Variant Calling Pipelines

● Variant calling identifies genetic variations and is computationally intensive.    

● AVAH* is a GPU-aware system that optimizes variant calling by dynamically assigning tasks to 

CPUs/GPUs.    

● AVAH* achieves 3.6x–5x speedup over CPU-only approaches.



Impact of Sequencing Technologies and 
Hardware-Accelerated Computing

● Advances in sequencing and hardware-accelerated computing have transformed genomic 

research.    

● HPC, with GPUs, FPGAs, and multi-core CPUs, improves genomic data analysis.    

● HPC enables pangenomic studies, capturing genetic diversity across populations.    



Emerging Trends and Future Directions

● Emerging trends include AI/machine learning for enhanced data processing.    

● Edge-to-core computing for distributed genomic analysis.    

● Adaptive precision computing for dynamic resource allocation.
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