
HPC AND ASTROPHYSICS

CS 455 - Introduction to High Performance Computing Eddie Federmeyer

ASTROPHYSICS

WHY ASTROPHYSICS NEEDS HPC

- Simulations involve billions of particles and millions/billions of years
- Includes physics like gravity, thermodynamics, and radiation
- Observational data (e.g., from James Webb Telescope) provide massive datasets
- HPC enables feasible computation + rich visualizations

+

MPI – THE TRADITIONAL BACKBONE

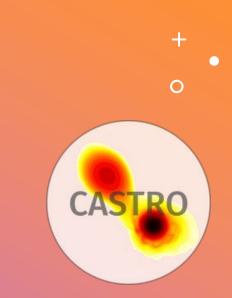
Advantages:

- Suited for distributed memory systems
- Widely adopted and used by major codebases:
 - FLASH
 - CASTRO
 - GAMRA

Challenges:

- Synchronization overhead
- Load imbalance in adaptive simulations

+


HPX – A MODERN ALTERNATIVE

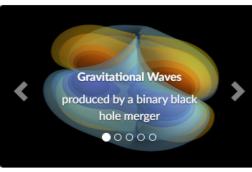
Advantages:

- No global synchronization barriers
- Dynamic task scheduling gives better load balancing
- Global address space simplifies distributed programming
- Scales well for irregular, adaptive workloads

Challenges:

- Steeper learning curve compared to MPI
- Less mature ecosystem and smaller user base
- May not always outperform MPI for regular workloads
- Debugging asynchronous tasks can be more complex

APPLICATIONS



NEUTRON STAR MERGERS

- Extremely dense stellar remnants
- Mergers emit gravitational waves
- HPC simulations help interpret data from LIGO, Virgo
- Requires modeling nuclear densities & relativistic physics

einstein_H

The Einstein Toolkit

Get Started

If you have never used the Einstein Toolkit before,

we provide a tutorial to get started You can also

download the latest release and learn about

Download

visualize your simulations.

First steps

Gallery

North American Einstein Toolkit Workshop and Meeting 2025 The North American Einstein Toolkit Meeting will

take place from 09 - 13 June 2025 at the University of Texas at Austin in Austin, Texas.

Registration will open soon.

The Einstein Toolkit is a community-driven software platform of core computational tools to advance and support research in relativistic astrophysics and gravitational physics. The conference consists of a mixture of tutorials for new users and talks about the latest developments both in the toolkit and the larger scientific community.

Documentation

A lot of the documentation within the Einstein Toolkit is generated from comments in the source code, and more can be found on the Einstein Toolkit Wiki or other documents. We provide links to guides, tutorials and references.

Ocumentation Wi

The Einstein Toolkit has been supported by NSF 2004157/2004044/2004311/2227105/2004879/2003893/2114582. Any opinions, finding of the author(s) and do not necessarily reflect the views of the National Science

SUPERNOVA & MHD

- Complex, energetic stellar deaths
- Simulations include:
 - Neutrino transport
 - Magnetohydrodynamics (MHD)
 - General relativity

license.txt	add style CI from Microphysics (#
C requirements.txt	add sphinx-dollar-math and sphir
□ README	nse
DOI 10.5281/zenodo.2301848 JOSS 10.21105/j coverity passed	joss.02513 powered by AMReX works with
CASTRO	
an adaptive mesh, astrophysical radiation	hydrodynamics simulation code
Castro is an adaptive-mesh compressible supports a general equation of state, full I for CPUs and MPI + CUDA for NVIDIA GP	Poisson gravity, and reactive flows, a
More information on Castro can be found	here:
http://amrex-astro.github.io/Castro/	
Getting Started	

BLACK HOLES & STELLAR MERGERS

- Simulations explore:
 - Accretion disks
 - Binary interactions
 - Gravitational wave emission
- Octo-Tiger uses AMR and **HPX** to simulate stellar mergers

🗅 README.md	Remove the build scripts
🗅 build_octotiger.sh	Fixed sign
□ README	SL-1.0 license
Octo-Tiger	
🗘 code quality 🔒 💭 CITATION.cff no state	s DOI 10.5281/zenodo.8303735
Octo-Tiger	
From <u>https://doi.org/10.1145/3204919</u>	.3204938:
	am simulating the evolution of star sys implemented using high-level C++ lil platforms.
Build Status [master]	
Jenkins - All CPU / GPU node-level te	sts for the 8 major build configuratio
CPU/GPU Tests with Kokkos, CUDA, H	HIP, SYCL CPU / GPU Node-Level Tests
Jenkins - Special machine tests:	

THE FUTURE

0

THANK YOU

Eddie Federmeyer

eddiefedermeyer@gmail.com Federmeyer.com LinkedIn.com/in/eddiefed

