
CAVERNsoft G2: A Toolkit for High Performance
Tele-Immersive Collaboration

Kyoung S. Park, Yong J. Cho, Naveen K. Krishnaprasad, Chris Scharver, Michael J. Lewis,
Jason Leigh, Andrew E. Johnson

Electronic Visualization Laboratory
851 S. Morgan St., Room 1120 (M/C 154)

University of Illinois at Chicago
Chicago, IL 60607, USA

1 312 996 3002
cavern@evl.uic.edu

ABSTRACT
This paper describes the design and implementation of
CAVERNsoft G2, a toolkit for building collaborative
virtual reality applications. G2’s special emphasis is on
providing the tools to support high-performance computing
and data intensive systems that are coupled to collaborative,
immersive environments.

This paper describes G2’s broad range of services, and
demonstrates how they are currently being used in a
collaborative volume visualization application.

Keywords
Tele-immersion, high-performance computing, data-mining,
networking library, VR, CVE.

1. INTRODUCTION
Tele-immersion is defined as the synthesis of collaborative
virtual environments (CVEs), audio and video
conferencing, and supercomputing resources and massive
data stores, all interconnected and running over high-speed
national or worldwide networks [10]. Tele-immersion
enables participants in distant locations to collaborate in a
shared environment as if they are in the same room. The
development of tele-immersive applications is considered
one of the most challenging areas of research in VR as it
requires expertise in VR, networking, database
management, collaboration and high performance
computing.

CAVERN, the CAVE Research Network, is an alliance of
industrial and research institutions equipped with CAVE
[4] and ImmersaDesk VR systems, and high-performance

computing resources. High-speed national and international
networks peering at STAR TAP (the Science, Technology
and Research Transit Access Point [5]) are able to support
tele-immersive engineering, design, education and training,
scientific visualization, and computational steering.

Our goal is to make these systems convenient, so that
scientists and designers can do real work within these
shared environments without having to worry about how the
collaboration is sustained.

CAVERNsoft G1 [13] was our previous attempt to provide
a system to rapidly generate tele-immersive applications,
and retrofit a legacy of non-collaborative VR applications,
with tele-immersive capabilities. Other similar toolkits
available, academically or commercially, including DIVE
[2], NPSNET[16], WTK/WorldUp/World2World
[18][19][20], BrickNet [21], Avango [24], and Bamboo
[26]. The primary difference between CAVERNsoft and the
others is its focus on integrating collaborative VR with
high-performance and data-intensive computing over high-
speed networks.

These applications typically have the following additional
requirements beyond those expected of CVEs:

• Support for 64-bit precision

• Support for 64-bit memory addressing

• Support for 64-bit file access

• Support for rapid transmission of massive data
files

• Support for performance monitoring

This paper will begin with an historical overview, and what
motivated this second generation design of CAVERNsoft.
Following this will be a description of G2’s capabilities,
with particular attention given to G2’s data distribution and
network performance monitoring capabilities. Finally this
paper will describe an application built using G2 as an
example of how application programmers might make use
of G2’s capabilities.

LEAVE THIS TEXT BOX IN PLACE
AND BLANK

evl eecs
Proc. of the Symposium on Virtual Reality Software and Technology 2000, Oct 22-25, 2000, Seoul, Korea

2. THE HISTORY OF CAVERNsoft
The concept behind CAVERNsoft began with the
development of an application called CASA for an
electronic visualization event held at EVL in May 1995 [3].
CASA (Computer Augmentation for Smart Architectonics)
was a proof of concept to illustrate how virtual
environments could be used to prototype smart
environments. In 1995, CASA demonstrated the earliest
application of collaborative VR using the CAVE. To
facilitate this, a shared variable model of a distributed
shared memory system (DSM), which uses a reliable
protocol, was developed to eliminate the need of
programmers to develop specific protocols for network
communication. This was also the first instance of a DSM
being used to build collaborative CAVE applications.

Expanding on the CASA work, CALVIN (Collaborative
Architectural Layout Via Immersive Navigation) was
developed in October 1995 [12]. CALVIN allowed
collaborating users to edit an architectural design by
picking up objects, moving, rotating and scaling them.
CALVIN extended CASA’s DSM system by also providing
persistence. Using CALVIN, collaborators could save
versions of their design and resume their work at a later
time.

Through the development of CALVIN and its subsequent
demonstrations at conference events, two issues became
apparent: 1. The use of reliable TCP to deliver all of the
DSM data introduced too great a network lag in the
application; 2. The lack of an event-driven system to notify
a client when a shared variable had been updated meant that
each variable had to be polled to determine if a change had
occurred. Hence, it appeared that a message passing system
might have been preferable. Also, we were beginning to
build a new application called NICE (Narrative Immersive
Collaborative/Constructionist Environment) [11].

NICE was an educational environment that allowed
children to collaboratively plant virtual vegetables in a
virtual garden. A central simulation server was used to
simulate the growth of the vegetables based on the
conditions in the garden. In NICE we attempted to use a
purely message passing system to share all networked data.
A UDP connection was used to share avatar state
information and TCP connections were used to share the
state of the garden as well as to allow the download of
avatar 3D models from an HTTP server. While the message
passing system used in NICE allowed the application
developer to control networking more precisely, data
distribution was no longer transparent. Furthermore,
whereas in a DSM model, late joiners would find out about
the state of the world by contacting a central server, in a
message-passing model, late joiners had to listen for
incoming messages to gradually construct the state of the
world.

To address these issues, and build a more robust and
reusable architecture for data sharing in CVEs, we began
designing what is now known as CAVERNsoft.

CAVERNsoft’s initial design criteria included:

• Allowing the use of multiple protocols such as TCP,
UDP, multicast and HTTP

• Supporting both a distributed shared memory and a
message passing model

• Providing persistence

• Providing an event generation and handling mechanism

• Providing low-level access to networking calls as well
as high-level abstractions

• Facilitate the construction of new applications and the
retrofitting of legacy applications

To test the viability of these ideas, we developed a proof of
concept (CAVERNsoft G0) in September 1996. Additional
capabilities such as greater reliability and the ability to
share data over a variety of network connections
simultaneously, culminated in the first release of
CAVERNsoft (G1) in September 1997 [13]. G1 was unique
in a number of ways. Firstly, it broke the traditional model
of DSMs by allowing clients to share information
transparently over both reliable and unreliable links.
Secondly, G1 was client and server symmetric. That is, a
client program was indistinguishable from a server
program. Clients could transparently connect to other
clients to access their DSM over a customizable network
connection. This flexibility allowed users to build any
topology of collaborative applications, whether it was a star
with a centralized server; or a chain with each client linking
to one neighbor; or completely decentralized over
multicast.

G1 also went further to include higher-level abstractions
that would provide C++ classes for sharing 3D avatars and
audio streaming. These abstractions were structured in an
application shell called LIMBO [14] to facilitate the
development of new collaborative VR applications. LIMBO
not only provided shared avatars, but also a means to
persistently share 3D models and their state information.

Approximately a dozen collaborative applications were
built using G1 before it was finally replaced with G2 in
September 1999 [15]. The remainder of this paper will
discuss G2’s components and an example of how they are
used to build a tele-immersive volume visualization
application.

3. DESIGN AND IMPLEMENTATION
G1 and G2 are both C++ libraries. The major drawback of
G1 was that it was a large monolithic system, which made
the inclusion of new capabilities difficult. It was also
heavily threaded using Nexus and Globus [7], thus causing

incompatibility with other graphical or VR libraries. Globus
is a C toolkit developed by Argonne National Laboratory
for building high-performance computing applications and
coordinating their resources.

CAVERNsoft G2 took the approach of separating many of
the data delivery mechanisms in G1, into smaller
independent classes or modules (Figure 1.) Hence G2 is a
lightweight toolkit rather than a monolithic system. As a
toolkit, G2 comprises low-level modules to provide full
control of networking at the socket level; middle-level data
distribution modules such as remote procedure calls; and
high-level modules such as application shells and classes
for rendering avatars using the CAVE library and IRIS
Performer. Note that the low- and mid-level modules can be
used independently of the CAVE library or IRIS Performer,
and hence can be used to build cross-platform client/server
applications.

3.1 Low-level Modules
The low-level network modules provide socket-level
networking classes for TCP, UDP and multicast
communications, and cross-platform numerical data
conversion. Building modules, or applications on top of
these modules, guarantees their portability across platforms.

3.1.1 CAVERNnet_tcp_c, CAVERNnet_udp_c,
CAVERNnet_mcast_c classes

CAVERNsoft provides simple classes to support TCP,
UDP and multicast protocols. UDP is frequently used to
deliver avatar tracker data as the loss of a packet is soon
followed by another [16].

3.1.2 CAVERNts_condition_c, CAVERNts_mutex_c,
CAVERNts_thread_c classes

G2 also provides low-level modules that encapsulate thread
management and mutual exclusion capabilities of different
operating systems. Support is provided for POSIX threads,

Silicon Graphics Sproc and the Microsoft Windows thread
library. When using threads, conditional variables work in
conjunction with mutexes to give control over thread
execution.

3.1.3 CAVERNnet_datapack_c class
When clients and servers reside on heterogeneous
computing platforms, data format conversion is necessary
for proper data sharing to occur. The
CAVERNnet_datapack_c class provides data conversion
and serialization for most base types (ints, floats, etc). As
high-performance computing applications typically require
high mathematical precision, a 64-bit version of the data
conversion class is also provided.

3.2 Middle-level Modules
The middle-level network modules make use of the lower-
level modules to provide data sharing schemes that are
often needed in distributed computing. These include
support for HTTP, UDP and TCP reflectors, parallel socket
TCP, remote file I/O, Remote Procedure Calls and DSM.

3.2.1 CAVERNnet_http_c class
Providing a class to access web servers allow application
builders to take advantage of existing distributed
information resources on the web. For example, in NICE
[11] avatars for the environment were dynamically
downloaded from web servers. Hence a new user joining a
NICE session could place their avatar body parts at a web
page and simply point to it when starting their client. All
other clients would download the models from the web and
cache them locally.

3.2.2 CAVERNnet_tcpReflector_c,
CAVERNnet_udpReflector_c classes

Data reflection is a unicast method for emulating multicast.
Clients send information to a central server rather than a
single multicast address, and the reflector repeats/reflects
that same information to all other subscribing clients. We
have found that this is the most heavily used module in G2.
In a message-passing scheme, reflectors can be used to
share avatar state information over an unreliable link, or
world state information over a reliable link. Often,
reflectors are of the unreliable UDP variety. G2 however
provides both a UDP and a TCP reflector. The UDP
reflector not only provides unicast reflection, but multicast
bridging too. That is, groups of clients may operate
multicast within separated domains and share information
across them using a bridge, rather than having to set up a
multicast tunnel which often requires root privileges.

G2 also provides a TCP reflector. The TCP reflector is
similar to the UDP reflector in that it places boundaries on
TCP messages rather than allowing TCP to be a continuous
stream. Hence discrete messages are broadcasted rather
than sent as a stream.

Tele-Immersive Applications (TIDE, CIBRView)

High-level Developer Modules
(Audio streaming, Avatar, Voice Recognition, Menu, LIMBO)

Database Modules
(DC Client/Server, Observer/Subject Pattern)

Middle-level Modules
(Reflector, Parallel TCP, RemoteFileIO, ParallelRemoteFileIO,

HTTP, RPC)

Low-level Modules
(TCP, UDP, Multicast)

Thread/Mutual
Exclusion
Modules

Cross-platformData
Conversion Modules

Performance
Monitoring

APIs

Globus
Network
Library

(including
DiffServ

Qos)

CAVE
Performer
Graphics
Library

Figure 1 Diagram of CAVERNsoft G2 showing networking,
database, graphical modules and tele-immersive applications.

3.2.3 CAVERNnet_parallelTcp_c class
The main networking requirement in high-performance
distributed computing applications is the need to rapidly
move massive amounts of data from one site to another.
While high bandwidth networks already connect many
members of CAVERN, these networks are still, for the most
part, incapable of providing Quality of Service (the ability
to establish desired application bandwidth, latency and
jitter.) Furthermore, as these CAVERN users are typically
distributed around the world (for example between Chicago
and Amsterdam) the network latency (approximately 95ms)
between sites imposes what is called the “long fat network”
(LFN) problem [22]. The LFN problem occurs because in
most cases the kernel’s TCP window size is set too low to
take advantage of the available network capacity. TCP
windows specify how much information a TCP socket may
send before waiting for an acknowledgement. For long
distance networks this often results in severe bandwidth
under-utilization. Hence while a client may have a 45Mbps
connection to a remote site (as is the case between Chicago
and Amsterdam) it may not be able to access more than
5Mbps at a time. Increasing the TCP window size often
solves this. However there remain legacy versions of TCP
that use a 16-bit window size specification and cannot
increase their window size beyond 64Kbytes.

G2 provides a temporary solution by providing a parallel
socket class. This class works like G2’s regular TCP socket
class except a data buffer is partitioned and transmitted over
several sockets rather than just one. This technique is often
known as socket striping. Again with our example from
Chicago to Amsterdam, Figure 2 shows the performance of
parallel sockets when transmitting a 50Mbyte file using
between 1 and 11 sockets. Notice bandwidth utilization
improves dramatically from 4Mbps to 32Mbps.

3.2.4 CAVERNnet_extendedTcp_c,CAVERNnet_extende
dParallelTcp_c classes

Another useful middle level module G2 provides is the

Extended TCP module, which combines G2’s data packing
and unpacking routines with its TCP class. The Extended
Parallel TCP module provides the same data conversion
enhancements for parallel sockets.

3.2.5 CAVERNnet_remoteFileIO32_c,
CAVERNnet_remoteFileIO64_c,
CAVERNnet_remoteParallelFileIO32_c,
CAVERNnet_remoteParallelFileIO64_c classes

The Remote File I/O modules provide the capability for
uploading and downloading files from a remote server. The
provision of both 32-bit and 64-bit versions, as well as
parallel socket versions of the class allows for the efficient
delivery of all file sizes, including those larger than 2
Gigabytes. The 64-bit version effectively allows one to
deliver Terabyte files.

A Terabyte file will take approximately a day to deliver on
a 100Mbps network link, assuming full utilization of the
capacity. In these cases the need for parallel TCP becomes
even more prominent.

3.2.6 CAVERNdb_c, CAVERNmisc_observer_c and
subject_c classes

G2 provides distributed shared memory emulation via the
CAVERNdb (or database) class. This is essentially a
client/server database with default data reflection. Hence
any updates to the database are propagated to all
subscribers of the database. Clients are notified by either a
traditional callback function or a subject/observer
mechanism [8]. The subject/observer mechanism is
essentially an object-oriented replacement for callbacks.
The subject maintains a list of its observers for specific
events and each observer will be triggered whenever the
specific event occurs.

The database assumes a Unix-like directory hierarchy with
the leaf nodes containing the individual data values. These
data values are intended to be small to expedite state
information sharing rather than bulk data sharing.

Bandwidth vs Number of Parallel Sockets Used for
transmitting 50M bytes of data over a 45Mbps link

between EVL and SARA

0

5

10

15

20

25

30

35

1 2 3 4 5 6 7 8 9 10 11

Number of Parallel Sockets

B
an

dw
id

th
 (M

bp
s)

SARA to EVL

EVL to SARA

Elapsed Time vs Number of Parallel Sockets Used
for transmitting 50M bytes of data over a 45Mbps

link between EVL and SARA

0

20

40

60

80

100

120

1 2 3 4 5 6 7 8 9 10 11

Number of Parallel Sockets

Ti
m

e
(s

)

SARA to EVL

EVL to SARA

Figure 2 Results of a parallel socket test between EVL (Chicago, USA) and SARA (Amsterdam, Netherlands) over STAR TAP.

3.2.7 CAVERNnet_rpc_c class
To compliment G2’s DSM and message passing
capabilities, remote procedure calling is also provided. This
allows clients and servers to invoke each other’s functions
and procedures. This is a widely used technique for
distributed computing, however, it has been found to be less
applicable in real-time CVE applications.

3.3 High-level Developer Modules
The high-level modules in G2 provide functionality for
audio streaming, avatars, speech recognition, 3D menus and
other graphical modules utilizing the CAVELib™ and IRIS
Performer libraries.

3.3.1 CAVERN_audioStream_c class
The audio streaming module relies on a UDP reflector to
share voice or audio between clients. Audio can be shared
from 8kHz to 44kHz, bandwidth permitting. Threshold is
also provided as a means to reduce bandwidth utilization
when audio levels fall below user-definable amplitude.

3.3.2 CAVERN_baseAvatar_c,
CAVERN_perfArticulatedAvatar_c classes

The base avatar module provides a non-graphical
implementation of avatars. This is useful as a starting point
for developing graphical avatars as it encapsulates the basic
information sharing requirements. For example, G2 uses
this base module to provide a CAVE/Performer avatar class
that supports a single head tracker and two wand trackers.
Inverse kinematic calculations are performed on the wand
trackers to provide articulated arms for the avatars.

3.3.3 CAVERN_perfCAVENavCollision_c class
As in many other VR libraries, G2 provides facilities for
navigation and collision detection within a CVE. This
module employs the CAVE library and Performer.

3.3.4 pfNetDCS_c class
The networked DCS (dynamic coordinate system) module
is an extension of Performer’s DCS node such that
transformations within the DCS are automatically shared
with other collaborators over the network. The advantage is
that programmers may manipulate networked objects in the
same way they manipulate standard Performer objects. A
similar approach has been taken in Avango [24].

3.3.5 CAVERN_perfCAVEPickNMove_c class
Combining the pfNetDCS_c module with the CAVE library
the pick and move module allows programmers to easily
write code to pick, move and orient objects in a shared
manner.

3.3.6 CAVERN_perfGui_c
The Performer-based menu module creates push-to-select
menus within the virtual environment. This module loads
model files to represent its “buttons” and hence its
appearance is customizable. Since the module uses
Performer for model loading, any models supported by

Performer can be used, such as pfb, flt, iv, dxf, obj, 3ds.

3.3.7 The Collaborative Animator
The collaborative animation module is actually a complete
running program. It allows collaborators to load a series of
models into the environment and cycle through them
rapidly to form a flipbook animation. The application
provides avatar support; the ability to turn wire frame
meshing on; and to push a cutting plane through the scene.
All capabilities are collaboratively shared hence one
participant may advance the flipbook while another is
manipulating the cutting plane.

3.3.8 LIMBO
Similar to the Collaborative Animator, LIMBO provides a
more generic program shell for jumpstarting application
development. LIMBO takes the aforementioned modules
for avatar presentation, shared object manipulation, and
collision detection, and organizes them into a simple
extensible framework. This is the first imposition of a
framework in G2, and is primarily intended for the
development of new applications. One of G2’s chief design
goals has been to develop a system that allows both the
construction of new collaborative applications as well as the
retrofitting of legacy applications. Legacy applications
often have an existing program structure in place that is
difficult to reorganize into a new framework. G2’s toolkit
approach allows one to insert collaborative capabilities into
the program as needed, without requiring the program to
adopt a new framework. Using this approach, it has been
quite effortless to insert collaborative capabilities into
General Motors’ VisualEyes automobile styling system
[15].

4. PERFORMANCE MONITORING AND
ANALYSIS
High performance computing applications often consume
enormous amounts of computational, network and storage
resources. These resources are often limited, hence tuning
of these applications, as well as their visualization clients, is
important. G2 supports this by imbedding performance
monitoring routines in all the network modules. The
performance calculations are done automatically whenever
the network is used and the statistics are accessible via
member functions in each of the networking classes. These
statistics conform to the Netlogger [17] format, which is
simply a list of <label, value> pairs. The following is an
example:

TIME=955664372.441101 SELF_IP=131.193.48.163
REMOTE_IP=131.193.48.164 SELF_PORT=9977
REMOTE_PORT=1811
STREAM_INFO=131.193.48.164_AVATAR_SERVER
COMMENT=TRACKER_UDP MIN_LAT=0.000318
AVG_LAT=0.002742 MAX_LAT=0.069904
INST_LAT=0.000734 JITTER=0.001046 MIN_IMD=0.000093
AVG_IMD=1.902742 MAX_IMD=480.669540

INST_IMD=0.000715 AVG_RBW=11.573473
INST_RBW=44754.160720 AVG_SBW=401.712774
INST_SBW=733308.778808 BURSTINESS=30118.629172
TOTAL_READ=8258 TOTAL_SENT=306604
PACKETS_READ=376 PACKETS_SENT=7860

The parameters measured are Minimum Latency
(MIN_LAT), Average Latency (AVG_LAT), Maximum
Latency (MAX_LAT), Instantaneous Latency
(INST_LAT), Jitter (JITTER), Minimum Inter-Message
Delay (MIN_IMD), Average Inter-Message Delay
(AVG_IMD), Maximum Inter-Message Delay
(MAX_IMD), Instantaneous Inter-Message Delay
(INST_IMD), Average Read Bandwidth (AVG_RBW),
Average Send Bandwidth (AVG_SBW), Burstiness
(BURSTINESS), Throughput at the receiving end
(TOTAL_READ), Throughput at the transmitting end
(TOTAL_SEND), Number of Packets read
(PACKETS_READ) and Number of Packets sent
(PACKETS_SENT).

A brief account of the parameters measured, along with
their units of measurement and the formulae used, is given
as follows:

• Latency (one-way) = Ts - Tr

Where Ts is the Time recorded at the sender’s end and Tr is
the time recorded at the receiving end (both ends should be
time synchronized). The unit of measurement is seconds. The
minimum (MIN_LAT), average (AVG_LAT), maximum
(MAX_LAT) and instantaneous (INST_LAT) latencies are
calculated and provided for further analysis.

• Jitter = E [{ Li – E[L] }]

Where E is the Expectation of a data set, L is the set of 100
most recent instantaneous latency samples and Li is the
instantaneous latency. The unit of measurement is seconds.

• Inter Message Delay = Ti+1 - Ti

Where Ti and Ti+1 are instances of two consecutive messages
received. The unit of measurement is seconds. Like latency,
the minimum (MIN_IMD), average (AVG_IMD), maximum
(MAX_IMD) and instantaneous (INST_IMD) inter message
delays are calculated and recorded.

• Bandwidth = [δd / δt]

Where δd is the data in bytes, received/sent over a time δt.
The unit of bandwidth is bytes/sec. AVG_RBW,

INST_RBW, AVG_SBW and INST_SBW represents the
average and instantaneous values of read and send
bandwidth, respectively.

• Burstiness = E [{ Bi – E[B] }]

Where E is the Expectation of a data set, B is the set of 100
most recent instantaneous bandwidth samples and Bi is the
instantaneous read bandwidth. The unit of measurement as in
bandwidth is bytes/sec.

In addition to being able to retrieve these statistics via
member functions in each of the network classes, these
statistics can be streamed in real-time to a network
performance daemon. A CAVE-based network visualization
client called QoSIMoto (QoS Internet Monitoring Tool)
[25] can then be connected to the daemon to watch, in real-
time, the bandwidth, latency and jitter of a collection of
simultaneous network flows. This allows us to find
correlations between application events and network
utilization.

5. A TELE-IMMERSIVE APPLICATION
In this section we will describe one application of G2 -
others exist, however within the limits of this paper we will
describe one in some detail.

The Collaborative Image Based Rendering Viewer (or
CIBRView) is a tool designed to address two problems
related to volume visualization. Firstly, it attempts to make
volume visualization of extremely large animated data
volumes possible on both low-end desktop workstations and
high-performance graphics systems, such as the
ImmersaDesk and CAVE. Secondly, CIBRView attempts to
allow free-form collaborative viewing of these images, so
that multiple participants at remote sites and on
heterogeneous visualization platforms may work together to
interpret massive data sets.

Figure 3 Collaborators in a CIBR View session.

This is achieved by connecting collaborating visualization
clients to a supercomputing backend called Visapult [1].
Visapult was developed by Wes Bethel at Lawrence
Berkeley Laboratory, to generate semi-translucent
composite image slices of a data volume using multiple
processors of an SGI Onyx or Origin class supercomputer.
Data volumes tend to be large. The volumes that we have
been working with thus far are on the order of
approximately 40Gigabytes. These files are typically
housed on large disks at Lawrence Berkeley Lab and made
accessible by a Distributed Parallel Storage System (DPSS)
server [23].

Within the collaborative environment, participants are
represented virtually by their name badges or photos
attached to a 3D pointer they could use to point to items of
interest. While a desktop user would use a mouse to operate
in the environment, a CAVE user would use a 3D wand.
Participants are able speak to each other via a shared audio
stream, while they collaboratively cycle through sequences
of animation frames, or slice through the data with a cutting
plane (Figure 3).

Figure 4 shows the network connectivity between
CIBRView, Visapult, the DPSS server, the performance
monitoring daemon and two QoSIMoto clients. The DPSS
server reads volume data rapidly from parallel disks and
streams them to the Visapult backend for rendering. The
rendered slices are stored to a local disk accessible to a
CIBRView server. This CIBRView server maintains the
state information for the CIBRView virtual environment.
Upon generation of each image slice, the remote CIBRView
clients request copies of the slice via the CIBRView server.
The CIBRView server consists of a G2 remote file I/O
server; a TCP reflector to reflect information from newly
joining avatars; a UDP reflector to reflect avatar tracking
data; and a CAVERNdb server to share the state of the
cutting plane, the next available image slice and the current
animation frame being viewed by all the clients. The
CIBRView client possesses corresponding client interfaces

to the CIBRView server’s modules. Performance data
generated by the CIBRServer and the CIBRView clients are
streamed to a performance-monitoring daemon, which is
then distributed to all listening QoSIMoto clients. We have
found the ability to monitor network utilization in real-time
to be useful, as it allows us to correlate events in the CVE
with its impact on the networks, and vice versa.

6. CONCLUSION AND FUTURE WORK
We have described the motivation and design of
CAVERNsoft G2, a cross-platform C++ toolkit for building
collaborative tele-immersive environments.

In our continuing work to optimize throughput between
high performance computing systems and CVEs, we are
experimenting with two network Quality of Service
testbeds: GEMnet, a Chicago-Tokyo network that employs
a proprietary Integrated Servicecs QoS implementation
called Media Cruising Signaling Protocol (developed by
Sony and Nippon Telephone and Telegraph); and
EMERGE, a national Differentiated Services test bed
supported by the U.S. Department of Energy. We are
studying these testbeds to determine how well they are able
to make bandwidth and jitter guarantees.

Furthermore we are exploring techniques for low-latency
reliable transmission of state or streaming information via
error correcting schemes [6]. The goal is to provide a
protocol with the low latency of UDP, but with the
reliability of TCP.

Additional details about CAVERNsoft G2, its capabilities,
the implementation as well as the distribution are available
on the web at http://www.evl.uic.edu/cavern/cavernG2/.

7. ACKNOWLEDGMENTS
We would like to thank Stichting Academisch Rekencentrum
Amsterdam (SARA) in the Netherlands for assisting us in
performing our parallel socket experiments. We would also like to
thank Stuart Bailey and Robert Grossman of the National Center
for Data Mining for sharing their parallel socket algorithm.

The virtual reality research, collaborations, and outreach programs
at the Electronic Visualization Laboratory (EVL) at the University
of Illinois at Chicago are made possible by major funding from
the National Science Foundation (NSF), awards EIA-9802090,
EIA-9871058, ANI-9980480, ANI-9730202, and ACI-9418068,
as well as NSF Partnerships for Advanced Computational
Infrastructure (PACI) cooperative agreement ACI-9619019 to the
National Computational Science Alliance. EVL also receives
major funding from the US Department of Energy (DOE), awards
99ER25388 and 99ER25405, as well as support from the DOE's
Accelerated Strategic Computing Initiative (ASCI) Data and
Visualization Corridor program. In addition, EVL receives
funding from Pacific Interface on behalf of NTT Optical Network
Systems Laboratory in Japan and Microsoft Corporation.

The CAVE and ImmersaDesk are registered trademarks of the
Board of Trustees of the University of Illinois. ImmersaDesk2,
PARIS, and Wanda are trademarks of the Board of Trustees of the

CIBRServer DPSS
Server

Visapult
Backend

CIBRView
Client

CIBRView
Client

CIBRView
Client

Performance
Monitoring
Daemon

QoSIMoto
client

QoSIMoto
client

Disk

Disk

Disk

Disk

Figure 4 Connectivity of a typical performance monitored
CIBRView collaborative session.

University of Illinois.

8. REFERENCES
[1] Bethel, W. Visapult web site, LBNL,

http://vis.lbl.gov/projects/visapult/index.html
[2] Carlsson, C. and Hagsand, O., “DIVE – A Multi-User

Virtual Reality System,” Proc. of IEEE VRAIS ’93, Seattle,
WA, September 18-22, 1993, pp. 394-400.

[3] CASA (Computer Augmentation for Smart Architectonics)
web site, Electronic Visualization Event 4 (EVE4), EVL,
University of Illinois at Chicago, May 9-19, 1995,
http://www.evl.uic.edu/spiff/casa/

[4] Cruz-Neira, C., Sandin, D. J., DeFanti, T. A., Kenyon, R. V.
and Hart, J. C., “The Cave Automatic Virtual Environment,”
Communications of the ACM, 35(2):64-72, June 1992.

[5] DeFanti, T. A. and Goldstein, S. STAR TAP web site,
http://www.startap.net/

[6] Fang, R., Schonfeld, D., Rashid, A., Leigh, J., “Forward
Error Correction for Multimedia and Tele-immersion
Streams,” EVL technical report, February 2000.
http://www.startap.net/images/RayFangFEC1999.pdf

[7] Foster, I. and Kesselman, C., “Globus. A Metacomputing
Infrastructure Toolkit,” International Journal of
Supercomputing Application, 11(2):115-128, 1997.

[8] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns – Elements of Resuable Object-Oriented Software,
pages 293-303, Reading, MA: Addison-Wesley, 1995.

[9] Hagsand, O., Lea, R., Stenius, M., “Using Spatial
Techniques to Decrease Message Passing in a Distributed
VE System,” Proc. of VRML ’97 – Second Symposium on the
Virtual Reality Modeling Language, Monterey, California,
February 24-26, 1997, pp. 7-16.

[10] Johnson, A. E., Leigh, J., and DeFanti T., “Multi-
Disciplinary Experiences with CAVERNsoft Tele-Immersive
Applications,” Proc. of Fourth International Conference on
Virtual System and Multimedia, November 1998, pp. 498-
503.

[11] Johnson, A., Roussos, M., Leigh, J., Barnes, C., Vasilakis,
C., Moher, T., “The NICE Project: Learning Together in a
Virtual World,” Proc. of IEEE VRAIS '98, Atlanta, Georgia,
March 14-18, 1998, pp.176-183.

[12] Leigh, J., Johnson, A., Vasilakis, C., DeFanti, T., “Multi-

perspective Collaborative Design in Persistent Networked
Virtual Environments,” Proc. of IEEE VRAIS ’96, Santa
Clara, CA, March 20 - April 3, 1996, pp. 253-260, 271-272.

[13] Leigh, J., Johnson, A. E. and DeFanti, T. A., “CAVERN: A
Distributed Architecture for Supporting Scalable Persistence
and Interoperability in Collaborative Virtual Environments,”
Journal of Virtual Reality Research, Development and
Applications, 2(2):217-237, 1997.

[14] Leigh, J., Rajlich, P., Stein, R., Johnson, A. E., DeFanti T.
A., “LIMBO/VTK: A Tool for Rapid Tele-Immersive
Visualization,” CDROM proc. of IEEE Visualizaton '98,
Research Triangle Park, NC, October 18-23, 1998.

[15] Leigh, J., Johnson, A., DeFanti, T., et al., “A Review of Tele-
Immersive Applications in the CAVE Research Network,”
Proc. of IEEE VR ‘99, Houston TX, March 13-17, 1999.

[16] Macedonia, M. R., Zyda, M. J., Pratt, D.R., Barham, P.T.,
and Zeswitz, S., “NPSNET: A Network Software
Architecture for Large-Scale Virtual Environments,”
Presence, 3 (4): 265-287, 1994.

[17] Netlogger web site,
http://www.didc.lbl.gov/NetLogger/homepage.html

[18] Sense8 Corp. WorldToolKit Reference Manual, Release 8.
[19] Sense8 Corp.WorldUp Users Guide, Release 4.
[20] Sense8 Corpo. World2World Release 1. Tech. Overview.
[21] Singh, G., Serra, L., Png, W., Wong, A., and Ng, H.,

“BrickNet: Sharing Object Behaviors on the Net,” Proc.
IEEE VRAIS ’95, Research Triangle Park, NC, March 11-15,
1995, pp. 19-25.

[22] Stevens, W. R., TCP/IP Illustrated Vol.1, Chapter24, pp.
344–350.Addison Wesley, 2nd Edition, 1994.

[23] Tierney, B.L., Distributed Parallel Storage System,
http://www-didc.lbl.gov/DPSS/

[24] Tramberend, H., “Avocado: A Distributed Virtual Reality
Framework,” Proc. of IEEE VR ’99, Houston, TX, March
13-17 1999, pp. 14-21.

[25] QoS Internet Monitoring Tool (QoSIMoTo) web site,
http://www.evl.uic.edu/cavern/qosimoto/

[26] Watsen, K. and Zyda, M., “Bamboo – A Portable System for
Dynamically Extensible, Real-Time, Networked Virtual
Environments,” Proc. of IEEE VRAIS ’98, Atlanta, GA,
March 14-18, 1998, pp. 252-259.

