Enigma = MapPoint

Chris Turek & Tina Shah

Explanation of Design Tradeoffs

Our tradeoffs were really concerned with the scope of the game. We had originally hoped to include a minimum of three puzzles: a Caesar cipher, the Towers of Hanoi, and perhaps another classic puzzle (Pythagorean puzzle). We were advised to consider one or two puzzles and ended up with one main puzzle – the Towers of Hanoi. The code needed to drive the puzzle ended up being about 60% of our program (approx 1500 lines), very little of which was related to the actual graphic display of models. We had not anticipated this much of a time investment when designing the game, but since we started on the towers early enough into the project we were able to change our design and still maintain the feel of the game. Rather than solving a cipher and then being able to solve the towers, we decided to create a “pellet” (read: Pac Man) sense of gameplay. By littering the course with add/delete time pellets as well as 4 different pieces of the map we were able to force the player to drive around the city, investigate and experience the act of driving around the city looking for an actual rave, and garner a complete map that lead to the record store, where the final puzzle was (towers of hanoi). This pellet based style of puzzle solving was easy to implement, compared to the towers, and highlighted the inherent fun we had hoped to implement in a driving game.

We had also hoped to make the city an accurate geographic snapshot of a given set of city blocks in Chicago, while also promising a cartoonish appearance to reflect the target age group of the game (12-15). We do have almost accurate models for the blocks we chose, but ensuring their accurate modeling and placement in relation to each other proved extremely time extensive for Tina – the small details that make a given city block stand out was just too time consuming. We ended up leaning towards the cartoonish aspect of our proposal and we do not feel that the game suffered from that decision. The time commitment to coding the Towers was simply more important.

Overall Software Design

Our game translates very easily into a series of finite state machines, and we designed it with that in mind very early on. A quick summary:

GAME FSM

INTRO:

Play and loop movie

If start key selected currentState = INITPLAY

If quit key selected currentState = EXIT GAME

INITPLAY:

currentState = PLAY

PLAY:

Reset world and status variables

Call main game processing function

EXIT:

Display either success screen or failure screen

CAR FSM:

INIT:

Reset position of car

Start countdown of timer

currentState = PLAY

PLAY:

Handle navigation and collisions

HIT_SAD_FACE_PELLET:

Decrement timer by 25 seconds

HIT_HAPPY_FACE_PELLET:

Augment timer by 25 seconds

HIT_MAP_FLYER_PART:

Note given flyer section as obtained (4 total)

TOWERS_OF_HANOI:

If all flyer sections are obtained AND collision is detected with record store then currentState = PUZZLE.

TIME_OUT:

Game over, failure notice posted

PUZZLE FSM:

INIT:

Reset towers to initial state

Lock out all other controls

curentState = PLAY_PUZZLE

PLAY_PUZZLE:

Allow movement of discs on the three towers

If isSolved() == true AND there is time remaining,

currentState = SOLVED

TIME_OUT:

Game over, failure notice posted

SOLVED:

Display end of game success screen

There weren’t too many data structures to speak of, at least not in a C++/Java representation of the term. The only area where we needed data structures was in the internal representation of the Towers of Hanoi.

We used a mock version of a double array of integers:

Global SMALL = 1

Global MEDIUM = 2

Global LARGE = 3

Tower1_1 = LARGE

Tower1_2 = MEDIUM

Tower1_3 = SMALL

Tower2_1 = 0

; 0 indicates and empty slot on the tower

Tower2_2 = 0

Tower2_3 = 0

Tower3_1 = 0

Tower3_2 = 0

Tower3_3 = 0

The above data is the initial configuration where the first tower has the discs in the correct order and the other towers are empty. During play of the puzzle the values of the Towerx_x variables are immediately changed to reflect the current state of the towers.

The remainder of data in the game was largely stored either in simple Boolean variables or in integer variables used as flags for If/Then statements in the main game loop. Since the game consists of open ended exploration of the world with a simple checking of whether given tasks have been accomplished, elaborate data structures were not necessary.

AI

Since our game is puzzle based and there aren’t any enemies attacking the player, AI was not a huge priority for us, though it certainly needed a place in our game. The AI we implemented was meant to be both an interesting annoyance as well as a way to accurately depict an urban environment. We chose to add 6 animated cars to drive through the streets of our game. We tried adding more but experienced a slowdown in rendering and gameplay (maybe too much animation is a source of memory leakage?). The cars simply drive in a straight line starting at one side of the board, and continuing until they hit the other end of the board. They all start at different places, with different directions, and move at different rates of speed from each other. If the user collides with a car the AI car will flip over and cease its iterations. We had wanted to add more physics to this as well some animated flames (ala The Simpsons), but time conspired against us. For the sake of time we also made it impossible to damage the player’s car. The AI is ultimately very simple but with subtle variations in speed and direction our result was quite satisfying.

Visual and Audio Effects

All modeling of the city was done with Maya 5.0 with original textures created in Adobe Photoshop. Some environment models like the fire hydrant, street lamp, skybox and cars were “borrowed” from free model sites. All models were altered or made to reflect a cartoonish look. We wanted a dark look since our game was at night so we really had no need to experiment too much with light sources.

We did not implement anything too strange or difficult when it came to visual effects, though we did try very hard to make the Towers of Hanoi look like CD’s and CD spindles.

We did intend to produce our own audio soundtrack and for the development phase we had decent sound in the game in the places where our own sounds would later go. Well, as time went on we realized two things: 1) generating a soundtrack would be more time consuming than we had expected and 2) we had grown fond of the existing soundtrack and had also received several unsolicited compliments regarding it. So the decision was easy. We did add appropriately themed sound effects for colliding into mad/happy clocks as well as flyer pieces. In the end it didn’t take too much of our time, but simply having ambient street noise, a nice dance track playing at the same, and some nice short noises for the acquirement of items, proved very satisfying for our game experience. Any sound editing was done using Sound Forge.

