Corner_detector.m

function [corners,lambda2] = corner_detector(im, nbhd_size,eig_thresh)

x= imread('door.tif');

[Ex, Ey] = image_gradient(im, 3);

%initialisation

c=[];

lambda2=[];

pixx=[];

pixy=[];

cornerx=[];

cornery=[];

for i= 8:size(x,1)-7

 for j=8:size(x,2)-7

 c=[sum(sum(Ex(i-7:i+7,j-7:j+7).* Ex(i-7:i+7,j-7:j+7))),

sum(sum(Ex(i-7:i+7,j-7:j+7).* Ey(i-7:i+7,j-7:j+7)));

 sum(sum(Ex(i-7:i+7,j-7:j+7).* Ey(i-7:i+7,j-7:j+7))),

sum(sum(Ey(i-7:i+7,j-7:j+7).* Ey(i-7:i+7,j-7:j+7)))];

 y=sort(eig(c));

 y1=y(1);

 if(y1 > eig_thresh)

 lambda2=[lambda2,y1];

 pixx=[pixx,i];

 pixy=[pixy,j];

 end
 end
 end

 tot_arr1=[lambda2;pixx;pixy]';

 tot_arr=sortrows(tot_arr1,1);

 n=size(tot_arr,1);

 tot_arr=invarr(tot_arr,n);

 for i=1:n-1

 for j=i+1:n

 if(tot_arr(j,2)>0)

% just avoiding unwanted calculations of already deleted pixels

 if(abs(tot_arr(j,2)-tot_arr(i,2))<= 10)

 if(abs(tot_arr(j,3)-tot_arr(i,3))<= 10)

 tot_arr(j,2)=-100;

 tot_arr(j,3)=-100;

end

 end

end

end

end

 for i=1:n

 if(tot_arr(i,2)>0)

 cornerx=[cornerx,tot_arr(i,2)];

 cornery=[cornery,tot_arr(i,3)];

 end
 end

 corners=[cornerx;cornery];

 return

Explanation for program:

Flow: the first For loops calculate the C matrix and then minimum eiogen values are found and the values of eigens that are > threshold and their corresponding pixel values are stored in tot_arr. This

Array is inverted to sort the rows by using invarr.m

Finally The selection of points without overlapped neighborhood is done and returned to main function.

Main.m

im = imread('door.tif');

%colormap('gray')

[corners,lambda2]=corner_detector1(im,15,0.1);

 imagesc(im)

 colormap('gray')

 hold on

 for i = 1:size(corners,2)

 plot(corners(2,i),corners(1,i),'r*')

 end
Invarr.m

function [arr]= invarr(arr1,n)

for i=1:n

 for j= 1:3

 arr(n-i+1,j)=arr1(i,j);

 end

end

return

Opinions for Questions.

3)

image: door.tif.

nbhd_size= 15

eig_thresh= 0.1

The Image has its corners detected to some extent.

There are about 50 corners generated and very few overlapped points in L – list.

Also the image is so regular (. less number of gray level)

Hence eig_thresh does not play much role in the image corner detection.

Some unnecessary points were included as corners. Most of the corners were detected but many of them were not exactly detected, the points are somewhat close to the corners.

5)

image: door.tif.

nbhd_size= 15

eig_thresh= 0.3

The corners detected are ceratainly better compared to the one in 3 in that many extra poits have been reduced and also points are more closer to the actual corners.

But as I said earlier there is not much difference between the two images as level of gray in image is almost 2 or slightly more.

Here the number of unnecessary points were lesser but not completely eliminated. Also detected points were closer to the ones they mean to indicate.

If eig_thresh=.4 or greater there are corners whicha renot detected.

6)

image: myimage.tif

nbhd_size= 11

eig_thresh= 0.025

Many of the corners were detected and the image was graded well(many grey levels were there,) hence much changes were seen on changing the eig_thresh.

In the centre of the image where intensity is low the corners are less prominent than at the edge where the intensity difference us high. Two prominent edges were not detected (70,50) and (90,60). The reason might be the highly intensity varied borders.(It did come up with lower threshold but many extra points cam. So I chose this as optimal)

Computer Assignment –2

Detecting Corners

CS-515 . Fall 2002.
Vaidyasubramanian Chandrasekhar

vchand2@uic.edu

