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Abstract 

 

This paper introduces the marching cube octree  data structure, a new scheme for representing and 
generating the mesh of various level-of-details (LODs). The marching cube octree is based on the data 
structure of the Marching Cube algorithm [1 ], which is used to generate the mesh from the range data and 
the octree, this last widely used in computer graphics. Our LOD model can support adaptive simplification, 
compression, progressive transmission, view dependency rendering and collision detection. Our LOD mesh 
generation algorithm is faster than previous methods because it directly references the marching cube 
octree. We can construct the LOD model directly from the range data if the Marching Cube algorithm is 
used to generate the mesh. 

 
1. Introduction  

 

In computer graphics systems, three-dimensional (3D) objects are represented by a set of 

triangles, called a mesh. Meshes constructed from real 3D objects are widely used. Meshes 

generated with range sensors are constructed with plenty of triangles, to describe complex 3D 

objects in detail. Objects can thus be described in detail in computer graphics systems when 

many triangles are used, although the rendering process is slow. Objects can be rendered faster 

when small triangles are used, but they will then be described coarsely. Although computers are 

fast becoming more and more powerful, they are still not enough to render complex 3D objects in 

real time. We should generate and use meshes that fit the performance of the rendering system. 

System performance changes continuously, however, because the number of objects or the 

complexity of the background scene changes. If we can control the level-of-detail (LOD) of the 

object, we can construct an effective computer graphics system. LOD modeling consists of the 



representation of the mesh and the algorithm to generate a certain LOD. 

Previous methods of LOD modeling are mostly concentrated on the description that is 

similar to that of the original object. Creations of representations are very complex or expensive, 

however, and mesh generation is too slow to be used in practice. Thus, most commercial real-time 

systems have their own model. In a real -time system, user interactiveness is more important 

than the precision of the description. 

This paper proposes a new data structure called marching cube octree, which is based on 

the data structure of a Marching Cube algorithm used to generate mesh from range data. We 

used this data structure to make the new LOD model. Using the sampling paradigm, our 

algorithm turned out to be faster than previous methods. If the Marching Cube algorithm is used 

to generate the mesh, the proposed method can make the “LOD-controllable 3D model” directly 

from the range data. 

 

1.1 Related Work 

 

There are two main categories of research on geometric LOD modeling of meshes: (1) 

algorithms that adaptively subdivide an existing mesh with multi-resolutional approaches, [6][7] 

and (2) algorithms that remove geometry features such as vertices, edges, etc., approximate the 

most detailed mesh, and construct parameterization [3][11]. 

 

1.1.1 Adaptive Subdivision 

 

An adaptive subdivision and analysis method that applies wavelet-based multi-

resolution analysis to an arbitrary topology surface was proposed [6][7]. This method can perform 

smooth parameterization at any LOD and can be applied to adaptive simplification, compression, 

progressive transmission and editing [8][9][10]. The wavelet-based method makes some of these 

advantages possible. Nevertheless, this method renders the making of the base mesh expensive 

and slow. Too many triangles are needed and generated when resolving small local features. 

To overcome these drawbacks, a new algorithm, MAPS, was proposed [11]. The MAPS 

algorithm uses hierarchical simplification, defined by vertex removal, flattening and 

retriangulation, to induce a parameterization of the original mesh over a base mesh. Although 

this method can reduce the complexity of the base mesh formulation and resolve small features 

well, it cannot support view dependency rendering and collision detection, which are important in 

computer graphics systems. 

 

1.1.2 Geometry Removal 

 

Another algorithm called Progressive Mesh was proposed that makes the new mesh by 



defining the edge collapse and the vertex split operation, and applying these to the detailed mesh 

[3]. In addition, a new format was developed for saving and transmitting the triangulated 

geometric model [4]. The Progressive Mesh method can be applied to adaptive simplification, 

compression, progressive transmission and view dependency rendering [5]. The model generation 

is relatively slow, however, because the simplification is based on the energy function. This 

method also slightly supports collision detection. 

 

1.2 Features of Marching Cube Octree 

 

Our algorithm was designed to rapidly construct the LOD model and generate the LOD 

mesh. We approximated the 3D object conceptually with sampling range data in many 

resolutions. We used the octree and the marching cube to represent the LOD model. The 

operation necessary for the construction of the marching cube octree is relatively simple. We used 

the octree that naturally supports progressive transmission, view dependency rendering and 

collision detection. We did not implement these features yet but octree-based view-defendant 

rendering has been carried out efficiently by [13]. We can construct the LOD model directly from 

the range data by using the marching cube data structure, if the Marching Cube algorithm is 

applied for the mesh generation. Our algorithm directly generates the LOD mesh by referencing 

only the needed nodes of the tree. 

 

2. Marching Cube Octree Representation  

 

2.1 Overview 

 

The Marching Cube mesh-generation algorithm for medical images like MRI and CT 

was proposed [1]. The cube, which includes the in/out configuration of each of the 8 vertices, is 

classified into 14 distinct cases. Triangles are created automatically for each case. The vertices of 

the triangles are at the midpoints of the cube’s edges. The Marching Cube algorithm can also be 

used to generate the mesh from the range data. 

To generate triangles, we use the sign and the ratio converted from the signed distance 

of the cube’s vertices. The signed distance was proposed for surface reconstruction from 

unorganized points [2]. It is defined as the distance between the vertex P and the closest range 

point multiplied by +-1, depending on which side of the surface P is. The sign of the vertex is 

defined as the sign of the signed distance. The ratio of the edge is defined as the ratio of the 

absolute value of one vertex’s signed distance to that of the others. We can generate triangles 

naturally using a low resolution by choosing the proportional point instead of the midpoint for 

the vertex of the triangles. 

Using an octree for the representation of 3D object is not new idea. The isosurface 



generation using marching cubes and octree traversal was proposed in [14]. This paper describes 

efficient creation of octree based representation. But we applied modified marching cube 

configuration to octree structure, thus can construct hierarchies and implement level-of-detail. 

We define a marching cube in this paper as the set of signs and colors for each of the 8 

vertices, and of ratios for the 12 edges. A marching cube octree is defined as a spatial octree 

whose nodes are marching cubes. Since the dimension of the root node is known, we can 

determine the relative position and the size of any node in the octree. A null node is defined for 

all edges of the corresponding marching cube that do not intersect with the surface. Thus, all 

vertex signs are the same. The null node has no child nodes and null points. Finally, the nodes of 

the marching cube octree correspond only to the region of the surface. 

 

2.2 Creation of the Marching Cube Octree 

 

The marching cube octree is created from the marching cubes of the Marching Cube 

algorithm. The creation algorithm consists of two operations: parent node creation and marching 

cube conversion. The spatial octree is created using a bottom-up approach. We make the parent 

node from adjacent nodes and then convert it into the marching cube. 

 

Figure 1: Creation of the parent node 

Creation of the marching cube octree starts with marching cubes of the most detailed 

resolution from the Marching Cube algorithm. Let the marching cube’s level be 0. Eight or fewer 

marching cubes that are adjacent to a certain vertex are grouped and become child nodes of the 

new parent node (level 1). We convert the parent node into the marching cube, and then make 

the next parent nodes successively until all level 0 nodes are covered. Then we repeat this 

process from level 1 to level 2 and so on, until a marching cube is created in level N. If the child 

node’s corresponding marching cube does not exist, the parent node has the null node for that 

child node. 



Figure 2: Conversion of the marching cube 

A parent node can be made into the marching cube by referencing its child nodes. The 

decision on the sign of the vertex is classified into four cases (Figure 2): 

(1) if a corresponding vertex exists in the child nodes, the sign is the same as that of vertex  A); 

(2) if an adjacent vertex exists in the child nodes, the sign is the same as that of vertex B; 

(3) if a diagonal vertex exists in the child nodes, the sign is the same as that of vertex C; and 

(4) if no corresponding, adjacent and diagonal vertex exists in the child nodes, the sign is the 

same as that of the center vertex (vertex D). 

In case (2), several adjacent vertices can exist in the child nodes, but their signs will all 

be the same. The color value is copied in the same manner. The ratio is calculated easily by 

extending the vertex that has the triangle’s vertex in it (Figure 2). The ratio of the vertex that 

does not have the triangle’s vertex in it is unnecessary. 

 

Figure 3: Marching cube octree 

The intermediate data structure of our algorithm shows in (Figure 3). The right part of 
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the (Figure 3) is the cube configuration figure proposed in [1]. 

 

2.3 Node Priority Numbering 

 

To detail the LOD of the model, we assign a priority number to all the nodes. The mesh 

generated from one level has twice the resolution of the mesh from the next level. Thus, the size 

of the marching cube is double in the Marching Cube algorithm. The priority numbering 

determines which node expands first in the same level. We use the area difference as the LOD 

metric. The area difference is defined as the difference between the area of the triangles 

generated from one node and the area of the triangles generated from the child nodes. The higher  

the area difference is, the more detailed is the description of the local feature and the higher the 

priority is. To describe the 3D object with fewer triangles, the higher priority node expands first 

in the same level. 

To generate the LOD mesh rapidly, we save this priority number in a referencing array,  

the LOD array. The number N means the Nth node to be expanded. Thus, its child nodes are 

triangulated, as shown in Figure 4. When the LOD of the mesh is 1, the child nodes of the 1st 

node (the root) are triangulated. When the LOD of the mesh is 2, the 2nd node’s child nodes and 

the rest of the 1st node’s child nodes -- the 3rd to the 7th nodes -- are triangulated. 

 

Figure 4: Marching cube octree with LOD array 

 

2.4 Crack Patching 

 

Cracks are gen erated at the interfaces of nodes with varying levels (left-hand-side of 

Figure 5 is from [12]). This is a common problem with adaptive subdivision algorithms. Crack 

patching algorithm was proposed in [12] and we use that in our algorithm. For fast generation of 



the LOD mesh, thus we calculate all compensation points before the mesh is generated. First, we 

check whether or not the crack happens while generating the LOD mesh, from the coarsest level 

to the most detailed level. Only the compensation points of crack-happen nodes are calculated 

and saved. In Figure 5, the compensation point R of P3 is a cross point of P1P2 and a  

perpendicular line to P1P2 containing P3. 

 

 

Figure 5: Crack patching 

 

3. Direct Generation of Level-of-detail Mesh 

 

Using the algorithm mentioned above, we constructed the marching cube octree 

presentation of a certain mesh. In this section, we consider generating the LOD mesh using this 

representation. We generate the LOD mesh rapidly and efficiently by referencing the LOD array. 

The LOD of the LOD mesh is controlled by using the LOD array. In the LOD array, there 

is a triangulated node sequence of all nodes in the marching cube octree. When another node is 

triangulated, the number of triangles in the mesh is increased by d (0=d=4). We control the LOD 

of the LOD mesh with the priority number. For a given priority number i, node N is determined 

by the LOD array. We triangulate the node whose priority is lower (i.e., whose number is bigger) 

than N's among all the nodes at the N's level. Otherwise, we triangulate the child nodes. The 

pseudo code is written as follows: 

For all node n’s (where n’s level = N's’s level), given node N -- 

 if n’s priority number > N's’s priority number, 

  triangulate n; 

 otherwise, 

  triangulate n’s child nodes. 

An example, where the N's priority = 5, is shown in Figure 6. Child nodes of nodes 2 to 5 

and 6 to 9 are triangulated. 

P1 

P2 

P3 

R 



 

Figure 6: Direct generation of the LOD mesh 

If the number of triangles in the mesh is given, we convert this input to the priority 

number by using the accumulation table. The accumulation table contains a triangle increment 

by the priority order triangulation. Thus, we can get the approximated priority inversely from 

the number of triangles. 

 

4. Results 

 

The numbers of the triangles are 107074, 40478, 22037 and 1998.  The meshes of the 

upper part are wireframes and of the lower part, rendered meshes (Figure 7). These results show 

our model is feasible for LOD representation. 

Our algorithm directly generates the LOD mesh by referencing only the needed nodes of 

the tree. Let N is the triangle number of the most detailed mesh and C is of the coarsest. If m is 

the triangle number of an arbitrary LOD mesh (m∈[C,N]), The time complexity of our algorithm 

is O(m), because it refers only needed cubes. The time complexities of previous models are the 

same O(m2) because of the serial accumulation manners. The space complexity of our model is 

the same as the other models. The LOD array used for fast mesh generation occupies small space 

and needed only in processing. 



 

Figure 7: Examples of female bodies (Dataset courtesy of Cyberware) 

 

5. Conclusion  

 

In this paper, we propose a new method of LOD modeling using the marching cube 

octree. We create the representation easily and efficiently by using the marching cube features. 

We can take advantage of the octree representation in a 3D graphics system. Our LOD model can 

support adaptive simplification, compression, progressive transmission, view dependency 

rendering and collision detection. By using the sampling paradigm, our LOD mesh generation 

algorithm becomes faster than previous methods. We can construct the LOD model directly from 

range data by using the marching cube data structure, if the Marching Cube algorithm is applied 

for the mesh generation. We propose the new feasible method of 3D object LOD modeling. 

 

6. Future Work 

 

In our model, the marching cube is divided into halves in the next level. If we control the 

size of the next level’s cube and formulate it, we can construct a more detailed continuous LOD 



model. The fastness and simplicity of the modeling may be lost, however. 

In the LOD mesh generation algorithm, the node expansion is done in a breadth-first 

manner. To describe a detailed part with more triangles, the depth-first manner node expansion 

is considered. Crack patching is a serious problem with this algorithm, however. 
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