

Tech Report 2002-77

Real-time LOD: Marching-cube-and-

octree-based 3D Object Level-of-detail Modeling

2002, 9, 26

이하섭, 이주호, 양현승

KAIST 전자전산학과

Real-time LOD: Marching-cube-and-

octree-based 3D Object Level-of-detail

Modeling

Hasup Lee, Juho Lee and Hyun S. Yang

Department of EECS, KAIST, 373-1 Kusung-dong Yusung-gu, Taejon, Korea 305-

701

hasups@mail.kaist.ac.kr, jhlee@paradise.kaist.ac.kr, hsyang@cs.kaist.ac.kr

Abstract

This paper introduces the marching cube octree data structure, a new scheme for representing and
generating the mesh of various level-of-details (LODs). The marching cube octree is based on the data
structure of the Marching Cube algorithm [1], which is used to generate the mesh from the range data and
the octree, this last widely used in computer graphics. Our LOD model can support adaptive simplification,
compression, progressive transmission, view dependency rendering and collision detection. Our LOD mesh
generation algorithm is faster than previous methods because it directly references the marching cube
octree. We can construct the LOD model directly from the range data if the Marching Cube algorithm is
used to generate the mesh.

1. Introduction

In computer graphics systems, three-dimensional (3D) objects are represented by a set of

triangles, called a mesh. Meshes constructed from real 3D objects are widely used. Meshes

generated with range sensors are constructed with plenty of triangles, to describe complex 3D

objects in detail. Objects can thus be described in detail in computer graphics systems when

many triangles are used, although the rendering process is slow. Objects can be rendered faster

when small triangles are used, but they will then be described coarsely. Although computers are

fast becoming more and more powerful, they are still not enough to render complex 3D objects in

real time. We should generate and use meshes that fit the performance of the rendering system.

System performance changes continuously, however, because the number of objects or the

complexity of the background scene changes. If we can control the level-of-detail (LOD) of the

object, we can construct an effective computer graphics system. LOD modeling consists of the

representation of the mesh and the algorithm to generate a certain LOD.

Previous methods of LOD modeling are mostly concentrated on the description that is

similar to that of the original object. Creations of representations are very complex or expensive,

however, and mesh generation is too slow to be used in practice. Thus, most commercial real-time

systems have their own model. In a real -time system, user interactiveness is more important

than the precision of the description.

This paper proposes a new data structure called marching cube octree, which is based on

the data structure of a Marching Cube algorithm used to generate mesh from range data. We

used this data structure to make the new LOD model. Using the sampling paradigm, our

algorithm turned out to be faster than previous methods. If the Marching Cube algorithm is used

to generate the mesh, the proposed method can make the “LOD-controllable 3D model” directly

from the range data.

1.1 Related Work

There are two main categories of research on geometric LOD modeling of meshes: (1)

algorithms that adaptively subdivide an existing mesh with multi-resolutional approaches, [6][7]

and (2) algorithms that remove geometry features such as vertices, edges, etc., approximate the

most detailed mesh, and construct parameterization [3][11].

1.1.1 Adaptive Subdivision

An adaptive subdivision and analysis method that applies wavelet-based multi-

resolution analysis to an arbitrary topology surface was proposed [6][7]. This method can perform

smooth parameterization at any LOD and can be applied to adaptive simplification, compression,

progressive transmission and editing [8][9][10]. The wavelet-based method makes some of these

advantages possible. Nevertheless, this method renders the making of the base mesh expensive

and slow. Too many triangles are needed and generated when resolving small local features.

To overcome these drawbacks, a new algorithm, MAPS, was proposed [11]. The MAPS

algorithm uses hierarchical simplification, defined by vertex removal, flattening and

retriangulation, to induce a parameterization of the original mesh over a base mesh. Although

this method can reduce the complexity of the base mesh formulation and resolve small features

well, it cannot support view dependency rendering and collision detection, which are important in

computer graphics systems.

1.1.2 Geometry Removal

Another algorithm called Progressive Mesh was proposed that makes the new mesh by

defining the edge collapse and the vertex split operation, and applying these to the detailed mesh

[3]. In addition, a new format was developed for saving and transmitting the triangulated

geometric model [4]. The Progressive Mesh method can be applied to adaptive simplification,

compression, progressive transmission and view dependency rendering [5]. The model generation

is relatively slow, however, because the simplification is based on the energy function. This

method also slightly supports collision detection.

1.2 Features of Marching Cube Octree

Our algorithm was designed to rapidly construct the LOD model and generate the LOD

mesh. We approximated the 3D object conceptually with sampling range data in many

resolutions. We used the octree and the marching cube to represent the LOD model. The

operation necessary for the construction of the marching cube octree is relatively simple. We used

the octree that naturally supports progressive transmission, view dependency rendering and

collision detection. We did not implement these features yet but octree-based view-defendant

rendering has been carried out efficiently by [13]. We can construct the LOD model directly from

the range data by using the marching cube data structure, if the Marching Cube algorithm is

applied for the mesh generation. Our algorithm directly generates the LOD mesh by referencing

only the needed nodes of the tree.

2. Marching Cube Octree Representation

2.1 Overview

The Marching Cube mesh-generation algorithm for medical images like MRI and CT

was proposed [1]. The cube, which includes the in/out configuration of each of the 8 vertices, is

classified into 14 distinct cases. Triangles are created automatically for each case. The vertices of

the triangles are at the midpoints of the cube’s edges. The Marching Cube algorithm can also be

used to generate the mesh from the range data.

To generate triangles, we use the sign and the ratio converted from the signed distance

of the cube’s vertices. The signed distance was proposed for surface reconstruction from

unorganized points [2]. It is defined as the distance between the vertex P and the closest range

point multiplied by +-1, depending on which side of the surface P is. The sign of the vertex is

defined as the sign of the signed distance. The ratio of the edge is defined as the ratio of the

absolute value of one vertex’s signed distance to that of the others. We can generate triangles

naturally using a low resolution by choosing the proportional point instead of the midpoint for

the vertex of the triangles.

Using an octree for the representation of 3D object is not new idea. The isosurface

generation using marching cubes and octree traversal was proposed in [14]. This paper describes

efficient creation of octree based representation. But we applied modified marching cube

configuration to octree structure, thus can construct hierarchies and implement level-of-detail.

We define a marching cube in this paper as the set of signs and colors for each of the 8

vertices, and of ratios for the 12 edges. A marching cube octree is defined as a spatial octree

whose nodes are marching cubes. Since the dimension of the root node is known, we can

determine the relative position and the size of any node in the octree. A null node is defined for

all edges of the corresponding marching cube that do not intersect with the surface. Thus, all

vertex signs are the same. The null node has no child nodes and null points. Finally, the nodes of

the marching cube octree correspond only to the region of the surface.

2.2 Creation of the Marching Cube Octree

The marching cube octree is created from the marching cubes of the Marching Cube

algorithm. The creation algorithm consists of two operations: parent node creation and marching

cube conversion. The spatial octree is created using a bottom-up approach. We make the parent

node from adjacent nodes and then convert it into the marching cube.

Figure 1: Creation of the parent node

Creation of the marching cube octree starts with marching cubes of the most detailed

resolution from the Marching Cube algorithm. Let the marching cube’s level be 0. Eight or fewer

marching cubes that are adjacent to a certain vertex are grouped and become child nodes of the

new parent node (level 1). We convert the parent node into the marching cube, and then make

the next parent nodes successively until all level 0 nodes are covered. Then we repeat this

process from level 1 to level 2 and so on, until a marching cube is created in level N. If the child

node’s corresponding marching cube does not exist, the parent node has the null node for that

child node.

Figure 2: Conversion of the marching cube

A parent node can be made into the marching cube by referencing its child nodes. The

decision on the sign of the vertex is classified into four cases (Figure 2):

(1) if a corresponding vertex exists in the child nodes, the sign is the same as that of vertex A);

(2) if an adjacent vertex exists in the child nodes, the sign is the same as that of vertex B;

(3) if a diagonal vertex exists in the child nodes, the sign is the same as that of vertex C; and

(4) if no corresponding, adjacent and diagonal vertex exists in the child nodes, the sign is the

same as that of the center vertex (vertex D).

In case (2), several adjacent vertices can exist in the child nodes, but their signs will all

be the same. The color value is copied in the same manner. The ratio is calculated easily by

extending the vertex that has the triangle’s vertex in it (Figure 2). The ratio of the vertex that

does not have the triangle’s vertex in it is unnecessary.

Figure 3: Marching cube octree

The intermediate data structure of our algorithm shows in (Figure 3). The right part of

…

… … …
… … …

A B

C

D

a b

a/2(a+b)

a b

(2a+b)/2(a+b)

the (Figure 3) is the cube configuration figure proposed in [1].

2.3 Node Priority Numbering

To detail the LOD of the model, we assign a priority number to all the nodes. The mesh

generated from one level has twice the resolution of the mesh from the next level. Thus, the size

of the marching cube is double in the Marching Cube algorithm. The priority numbering

determines which node expands first in the same level. We use the area difference as the LOD

metric. The area difference is defined as the difference between the area of the triangles

generated from one node and the area of the triangles generated from the child nodes. The higher

the area difference is, the more detailed is the description of the local feature and the higher the

priority is. To describe the 3D object with fewer triangles, the higher priority node expands first

in the same level.

To generate the LOD mesh rapidly, we save this priority number in a referencing array,

the LOD array. The number N means the Nth node to be expanded. Thus, its child nodes are

triangulated, as shown in Figure 4. When the LOD of the mesh is 1, the child nodes of the 1st

node (the root) are triangulated. When the LOD of the mesh is 2, the 2nd node’s child nodes and

the rest of the 1st node’s child nodes -- the 3rd to the 7th nodes -- are triangulated.

Figure 4: Marching cube octree with LOD array

2.4 Crack Patching

Cracks are gen erated at the interfaces of nodes with varying levels (left-hand-side of

Figure 5 is from [12]). This is a common problem with adaptive subdivision algorithms. Crack

patching algorithm was proposed in [12] and we use that in our algorithm. For fast generation of

the LOD mesh, thus we calculate all compensation points before the mesh is generated. First, we

check whether or not the crack happens while generating the LOD mesh, from the coarsest level

to the most detailed level. Only the compensation points of crack-happen nodes are calculated

and saved. In Figure 5, the compensation point R of P3 is a cross point of P1P2 and a

perpendicular line to P1P2 containing P3.

Figure 5: Crack patching

3. Direct Generation of Level-of-detail Mesh

Using the algorithm mentioned above, we constructed the marching cube octree

presentation of a certain mesh. In this section, we consider generating the LOD mesh using this

representation. We generate the LOD mesh rapidly and efficiently by referencing the LOD array.

The LOD of the LOD mesh is controlled by using the LOD array. In the LOD array, there

is a triangulated node sequence of all nodes in the marching cube octree. When another node is

triangulated, the number of triangles in the mesh is increased by d (0=d=4). We control the LOD

of the LOD mesh with the priority number. For a given priority number i, node N is determined

by the LOD array. We triangulate the node whose priority is lower (i.e., whose number is bigger)

than N's among all the nodes at the N's level. Otherwise, we triangulate the child nodes. The

pseudo code is written as follows:

For all node n’s (where n’s level = N's’s level), given node N --

 if n’s priority number > N's’s priority number,

 triangulate n;

 otherwise,

 triangulate n’s child nodes.

An example, where the N's priority = 5, is shown in Figure 6. Child nodes of nodes 2 to 5

and 6 to 9 are triangulated.

P1

P2

P3

R

Figure 6: Direct generation of the LOD mesh

If the number of triangles in the mesh is given, we convert this input to the priority

number by using the accumulation table. The accumulation table contains a triangle increment

by the priority order triangulation. Thus, we can get the approximated priority inversely from

the number of triangles.

4. Results

The numbers of the triangles are 107074, 40478, 22037 and 1998. The meshes of the

upper part are wireframes and of the lower part, rendered meshes (Figure 7). These results show

our model is feasible for LOD representation.

Our algorithm directly generates the LOD mesh by referencing only the needed nodes of

the tree. Let N is the triangle number of the most detailed mesh and C is of the coarsest. If m is

the triangle number of an arbitrary LOD mesh (m∈[C,N]), The time complexity of our algorithm

is O(m), because it refers only needed cubes. The time complexities of previous models are the

same O(m2) because of the serial accumulation manners. The space complexity of our model is

the same as the other models. The LOD array used for fast mesh generation occupies small space

and needed only in processing.

Figure 7: Examples of female bodies (Dataset courtesy of Cyberware)

5. Conclusion

In this paper, we propose a new method of LOD modeling using the marching cube

octree. We create the representation easily and efficiently by using the marching cube features.

We can take advantage of the octree representation in a 3D graphics system. Our LOD model can

support adaptive simplification, compression, progressive transmission, view dependency

rendering and collision detection. By using the sampling paradigm, our LOD mesh generation

algorithm becomes faster than previous methods. We can construct the LOD model directly from

range data by using the marching cube data structure, if the Marching Cube algorithm is applied

for the mesh generation. We propose the new feasible method of 3D object LOD modeling.

6. Future Work

In our model, the marching cube is divided into halves in the next level. If we control the

size of the next level’s cube and formulate it, we can construct a more detailed continuous LOD

model. The fastness and simplicity of the modeling may be lost, however.

In the LOD mesh generation algorithm, the node expansion is done in a breadth-first

manner. To describe a detailed part with more triangles, the depth-first manner node expansion

is considered. Crack patching is a serious problem with this algorithm, however.

Acknowledgements

This research was partially supported by the Virtual Reality Research Center (VRRC) of

the Korea Science and Engineering Foundation (KOSEF).

References

1. William E. Lorensen and Harvey E. Cline. 1987. Marching Cubes: A High Resolution 3D

Surface Construction Algorithm. SIGGRAPH '87 Conference Proceedings, Vol. 21(4), 163-170.

2. Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner Stuetzle. 1992.
Surface Reconstruction from Unorganized Points. Computer Graphics (SIGGRAPH '92
Proceedings), Vol. 26(2), 71-78.

3. Hugues Hoppe. 1996. Progressive Meshes. Computer Graphics, Vol. 30, Number Annual
Conference Series, 99-108.

4. Jovan Popovic and Hugues Hoppe. 1997. Progressive simplicial complexes, Computer
Graphics, Vol. 31, Number Annual Conference Series, 217-224.

5. Hugues Hoppe. View-Dependent Refinement of Progressive Meshes. In Computer Graphics
(SIGGRAPH 97 Proceedings), 189–198, 1997.

6. Lounsbery, M., Derose, T., and Warren, J. Multiresolution Analysis for Surfaces of Arbitrary
Topological Type. Transactions on Graphics 16, 1 (January 1997), 34–73.

7. Lounsbery, M. Multiresolution Analysis for Surfaces of Arbitrary Topological Type. PhD
thesis, Department of Computer Science, University of Washington, 1994.

8. Eck, M., Derose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. Multiresolution
Analysis of Arbitrary Meshes. In Computer Graphics (SIGGRAPH 95 Proceedings), 173–182,
1995.

9. Certain, A., Popovic, J., Derose, T., Duchamp, T., Salesin, D., and Stuetzle, W. Interactive
Multiresolution Surface Viewing. In Computer Graphics (SIGGRAPH 96 Proceedings), 91–98,
1996.

10. Zorin, D., Schroder, P., and Sweldens, W. Interactive Multiresolution Mesh Editing. In
Computer Graphics (SIGGRAPH 97 Proceedings), 259–268, 1997.

11. Aaron W. F. Lee, Wim Sweldens, Peter Schröder, Lawrence Cowsar and David Dobkin.
MAPS: Multiresolution Adaptive Parameterization of Surfaces. SIGGRAPH 98 Conference
Proceedings, Annual Conference Series, pp. 95-104, Addison Wesley, July 1998.

12. Raj Shekhar, Elias Fayyad, Roni Yagel, J. Fredrick Cornhill. Octree-Based Decimation of
Marching Cubes Surfaces. Proceedings of the Conference on Visualization, pp. 335-344, IEEE,
October 27- November 1 1996.

13. David Luebke and Carl Erikson. View-Dependent Simplification of Arbitrary Polygonal
Environments. Proceedings of SIGGRAPH 97, ACM Press, August 1997.

14. Wilhelms, Jane and Allen Van Gelder. Octrees for Faster Isosurface Generation, ACM Transactions on
Graphics, Vol. 11, No. 3, pp. 201 - 227, July 1992.

