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To meet the demands of high-end digital character design, Kizamu addresses three
requirements posed to us by a major production studio. First, animators and artists want
digital clay - a medium with the characteristics of real clay and the advantages of being
digital. Second, the system should run on standard hardware at interactive rates. Finally,
the system must accept and generate standard 3D representations thereby enabling inte-
gration into an existing animation production pipeline.

At the heart of the Kizamu system are Adaptively Sampled Distance Fields (ADFs), a
volumetric shape representation with the characteristics required for digital clay. In this
paper, we describe the system and present the major research advances in ADFs that were
required to make Kizamu a reality.

SIGGRAPH 2001 Conference Proceedings.
This work may not be copied or reproduced in whole or in part for any commercial purpose.  Permission to copy in
whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such
whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric
Research Laboratories of Cambridge, Massachusetts; an acknowledgment of the authors and individual contributions to
the work; and all applicable portions of the copyright notice.  Copying, reproduction, or republishing for any other pur-
pose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories.  All rights reserved.

Copyright © MERL Mitsubishi Electric Research Laboratories, 2001
201 Broadway, Cambridge, Massachusetts 02139



Kizamu: A System For Sculpting Digital Characters

Ronald N. Perry and Sarah F. Frisken 
Mitsubishi Electric Research Laboratories

ABSTRACT
This paper presents Kizamu, a computer-based sculpting system
for creating digital characters for the entertainment industry.
Kizamu incorporates a blend of new algorithms, significant tech-
nical advances, and novel user interaction paradigms into a system
that is both powerful and unique.

To meet the demands of high-end digital character design,
Kizamu addresses three requirements posed to us by a major pro-
duction studio. First, animators and artists want digital clay − a
medium with the characteristics of real clay and the advantages of
being digital. Second, the system should run on standard hardware
at interactive rates. Finally, the system must accept and generate
standard 3D representations thereby enabling integration into an
existing animation production pipeline.

At the heart of the Kizamu system are Adaptively Sampled
Distance Fields (ADFs), a volumetric shape representation with
the characteristics required for digital clay. In this paper, we
describe the system and present the major research advances in
ADFs that were required to make Kizamu a reality.
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1. MOTIVATION
Creating convincing digital character models is a major challenge
for the entertainment industry. Animation artists generally employ
two methods: models are either sculpted from a traditional medi-
um like clay and then digitized, or they are constructed using one
of several commercial (or custom) modeling systems such as
MAYA or SoftImage. 

Because clay can be directly molded and carved to create
both smooth surfaces and fine detail, it is the medium of choice for
most artists. However, sculpting with clay and then digitizing the
clay model (i.e., maquette) has several limitations for digital ani-
mation. For example, much detail can be lost in the digitizing
process and long-term storage of clay maquettes is difficult.

Alternatively, commercial modeling systems have been
developed which use polygons, NURBS, and subdivision surfaces
to represent shape. However, all three representations have limita-
tions. Polygon models require many vertices to represent detailed
surfaces which makes creation and editing cumbersome. Because
NURBS are topologically restricted, they must be patched togeth-
er to form complex shapes, thus presenting numerous technical
and interface challenges [9]. While subdivision surfaces do not
suffer from the same topological restrictions as NURBS, control-
ling shape changes and adding fine detail during editing are diffi-
cult. These three representations are all edited by manipulating
control vertices, requiring significant skill and patience as well as
foresight and careful planning to ensure that models have enough
control vertices where detail is desired. For these reasons, object
representations used in existing commercial modeling systems do
not rival the intuitive and expressive nature of clay. 

Because sampled volumes represent object interiors and can
be sculpted directly by changing sample values near the
tool/object interface, they appear to hold more promise as a data
structure for digital clay. However, existing volumetric sculpting
systems have large memory requirements and a fixed resolution
determined by the volume size, resulting in models with limited
detail (e.g., rounded corners). As a result, such systems are not
used in the high-end digital animation industry. The limitations of
volume representations were recently addressed by the introduc-
tion of Adaptively Sampled Distance Fields (ADFs) [12]. In that

Figure 1. 3D models created with Kizamu (“to carve” in Japanese) and rendered with simple Phong illumination; all texture is purely geometric. On the left − a slab carved
with 2000 random chisel strokes (level-12 ADF, 124 MB); in the center − a procedurally sculpted cow; on the right − flowers carved in bas-relief from a slab.
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paper, Frisken et al. introduced ADFs, outlined basic algorithms
for generating, rendering, and sculpting ADFs, and briefly
described a number of applications for ADFs.

We were recently challenged by Industrial Light and Magic
(ILM) to explore the use of ADFs for sculpting digital characters;
Kizamu is the result. Digital production studios such as ILM have
three fundamental requirements for a sculpting system: 1) anima-
tors and artists want digital clay − a medium with the characteris-
tics of real clay (e.g., expressive in its ability to represent both
smooth surfaces and very fine detail, intuitive to sculpt, easy to
manipulate, and responsive to user input) and the advantages of
being digital (e.g., ability to undo, script, duplicate, integrate into
digital animation systems, and store permanently), 2) the system
should run on standard hardware at interactive rates and 3) the sys-
tem must fit into an existing production pipeline for animation
(e.g., the system must accept standard 3D representations or 3D
scanned data from clay maquettes and output models compatible
with that pipeline).

During discussions with ILM it became apparent that ADFs
have other advantages for the entertainment industry [18]. For
example, ADFs integrate volumes and surfaces into a single rep-
resentation, thereby potentially reducing the number of independ-
ent representations in their production system. In addition, ADFs
can be combined by simple CSG operations so that individual
parts of a character can be modeled separately and later joined
together. This feature could increase productivity in character
design: libraries of body parts or facial features could be main-
tained and used to produce new characters quickly and easily.

Given these requirements, we set out to design and build
Kizamu based on the ideas presented in [12]. We quickly found
that the algorithms and methods for working with ADFs presented
in that paper were inadequate for the demands of a production-
level system. In this paper, we describe the Kizamu system and
present the major research advances in ADFs that were required to
build it. The contributions fall into 4 major areas: 

1. Innovations in the volumetric sculpting interface that take
advantage of the distance field to provide more control to the
artist such as using the distance field to orient and position the
sculpting tool relative to the surface, using distance values to
constrain sculpting tools, and region-based conversion to trian-
gle patches for editing via control vertices

2. Advances in ADF generation and editing such as a new gen-
eration algorithm with reduced memory requirements, better
memory coherency, and reduced computation, as well as a
method for correcting distance values far from the surface dur-
ing sculpting

3. Several new ADF rendering approaches that take advantage
of hardware acceleration in standard PCs, including fast gener-
ation of triangles and surface points 

4. Methods for inputting and outputting models from the system
including an improved technique for generating ADFs from
scanned range images and a very fast new algorithm for gener-
ating topologically consistent (i.e., orientable and closed) trian-
gle models from ADFs at various levels of detail (LOD)

In Kizamu, we provide artists with an interactive tool for
sculpting which: 1) incorporates the ideal interface (digital clay),
2) represents very high resolution shapes, 3) has a relatively small
memory footprint, 4) runs on standard hardware, and 5) provides
input and output methods for easy integration into existing anima-
tion pipelines. To our knowledge, no other system provides this
unique blend of features. 

While Kizamu was designed to meet the demands of a high-
end production studio like ILM, the system has exciting potential
in other areas of the entertainment industry such as character
design for games and for virtual reality. The ability to generate
LOD models with low polygon counts, as required by these appli-
cations, enables easy integration of ADF-based characters into
existing polygon engines.

2. BACKGROUND
2.1 ADFs
A distance field is a scalar field that specifies the minimum dis-
tance to the surface of a shape. When the distance field is signed,
the sign can be used to distinguish between the inside and outside
of the shape. ADFs adaptively sample the shape’s distance field
and store the sampled distance values in a spatial hierarchy for
efficient processing. Distances at arbitrary points in the field can
then be reconstructed from the sampled values and used for pro-
cessing such as rendering and sculpting. The use of adaptive sam-
pling permits high sampling rates in regions of fine detail and low
sampling rates where the distance field varies smoothly, allowing
very high accuracy without excessive memory requirements.

Frisken et al. discussed a basic sculpting procedure for ADFs
and outlined algorithms for generating and rendering ADFs . Like
[12], Kizamu uses octree-based ADFs with trilinear distance and
gradient reconstruction functions. However, when building
Kizamu, we found the algorithms presented in [12] to be inade-
quate for a production-level system. Specifically, for generation,
the proposed bottom-up algorithm requires too much memory and
too many distance computations while the top-down algorithm
requires expensive octree neighbor searches and unnecessary
repeated recomputation of distance values. Both approaches
exhibit poor memory coherence for cells and distance values.
These memory and processing limitations place practical restric-
tions on the maximum ADF level that can be generated with those
algorithms (see Section 5.1). For rendering, while the ray casting
algorithm is sufficiently fast for small local updates on a desktop
Pentium system, it is too slow for local updates on low-end sys-
tems and woefully inadequate for global view changes such as
rotating the object. Finally, in [12], there is no consideration of
user interfaces for digital sculpting, no method for conversion to
standard representations, no method for correcting distance values
away from the surface, no hardware acceleration, and only dis-
crete steps are supported during editing.

2.2 Related Work
There are several commercial systems for creating character mod-
els such as MAYA, SoftImage, 3DStudioMax, FormZ, and
Houdini. In these systems, polygons, NURBS, and subdivision
surfaces are constructed by the artist or generated from 3D
scanned data. The surface models are edited by moving control
vertices, a process that can be tedious and time consuming. To
make this manipulation more intuitive, most of these systems
allow the user to interact with groups of control vertices using a
sculpting metaphor. For example, in MAYA Artisan, NURBS
models are modified via a brush-based interface that manipulates
groups of control vertices. Operations for pushing, pulling,
smoothing, and erasing the surface are supported where the brush
tool affects control vertices in a region of diminishing influence
around the tool’s center, resulting in a softening of the sculpted
shape. The amount of detail in the sculpted surface depends on the
number of control vertices in the region of the sculpting tool −
finer control requires finer subdivision of the NURBS surface,
resulting in a less responsive system and a larger model. The mesh
subdivision is user controlled and is preset − it does not adapt to
tool selection or the detail of the sculpted surface. Achieving fine



detail in desired regions without excessive subdivision of the sur-
face in other regions requires significant foresight and planning.
SoftImage provides a sculpting interface, called “Meta-Clay”, that
appears to be based on metaballs technology [28]. Meta-Clay is a
density-based object representation for modeling organic, sculpt-
ed objects. This representation produces blobby shapes and does
not represent edges, corners, and fine detail. 

FreeForm is a commercial system for sculpting volumetric
models. The system includes a 3 degree-of-freedom haptic input
device which uses force feedback to provide the artist with a sense
of touch when sculpting. Objects are represented by sampled
intensity values stored in a regularly sampled volume. As
described in [12], this approach limits the amount of detail that can
be achieved and requires an excessive amount of memory (mini-
mum system requirements include 512 MB of RAM). Intensity
values are low-pass filtered to reduce aliasing artifacts in the
sculpted models, resulting in smoothed edges and rounded corners
typical in volumetric sculpting systems. To take advantage of
hardware rendering, objects are converted to polygon models
using Marching Cubes [19]. However, at large volume sizes,
Marching Cubes produces a prohibitive number of triangles, caus-
ing memory overload and bottlenecks in the graphics rendering
pipeline which limit interactivity.

There have been a number of research papers published tout-
ing digital sculpting systems. Volume-based systems include [13],
[25], [1], and [2]. Sculpting of parametric models are described in
[24], [11], and [17]. However, each of these suffers from some of
the limitations described above and none report sculpted results of
the quality required by ILM.

Finally, it is hard to beat clay as the ultimate sculpting medi-
um. A standard approach to creating digital character models
involves sculpting a clay maquette and digitizing or scanning it to
generate a digital model. There are a plethora of systems for scan-
ning objects and generating surface models from the scanned data.
Unfortunately, all scanners and digitizers have limited resolution,

are unable to digitize occluded or hard-to-reach surfaces, and are
subject to noise. Thus, some of the advantages of clay are lost in
the input process. However, scanned models can provide good
first order geometry that can be enhanced by a computer-based
modeler and hence it is important that modeling systems (includ-
ing Kizamu) take scanned data as input.

3. THE SCULPTING SYSTEM
Figure 2 shows a system diagram for Kizamu; individual compo-
nents are discussed in detail throughout the rest of this paper. In a
typical scenario the user might start by generating a basic form
using CSG operations on standard shapes, proceed by sculpting
the detailed object using several selectable tools, and then output
the sculpted artifact as a triangle model. During sculpting, the ren-
derer updates the image, automatically switching between several
rendering methods depending on user actions and system capabil-
ities. During idle-time, Kizamu performs a number of operations
including increasing the rendering resolution of the adaptive ray
caster, increasing the resolution and extent of edits from scripted
tool paths, and correcting distance values for points in the ADF
that are remote from the surface.

4. INTERACTION PARADIGMS
Kizamu supports a standard set of interaction tools for file manip-
ulation, operation undos, selection, shape smoothing, etc., as well
as tools for navigation and lighting control that are beyond the
scope of this paper. Here we discuss several of the unique meth-
ods in Kizamu for interacting with volumetric data that exploit the
properties of ADFs.

4.1 Surface Following
Given an ADF, we can reconstruct the distance value and direction
to the nearest surface for any point in space. Kizamu optionally
uses this information to guide the tool position and orientation,
forcing the tool tip to follow the surface and to orient itself per-
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Figure 2. A dataflow diagram of the Kizamu system with input from standard 3D forms and 3D scanned data, ADF generation, ADF editing, ADF rendering, idle-time processing,
and conversion of ADFs to triangle models. In this diagram, a box represents a process while text between lines represents data.



pendicular to the surface. Surface following is accomplished by
moving the tool tip in the direction of the gradient of the distance
field by an amount proportional to its distance from the surface (or
from some offset surface for constrained sculpting as described in
Section 4.4). Surface following has proven to be particularly use-
ful when editing a 3D shape with a 2D input device such as a
mouse because it allows more intuitive control when sculpting
surfaces that are not perpendicular to the viewing direction.

4.2 Bezier Tool Paths
Sculpting can be accomplished by performing a set of discrete
edits along the tool path (e.g., at mouse event positions). However,
as illustrated in Figure 3, this approach can be inefficient for slow
mouse movements and can result in broken paths when the input
device moves too quickly. If the tool shape is not axially symmet-
ric, direction-dependent results occur (e.g., the carved path can be
continuous when the major axis of the tool is parallel to the path
direction and broken when it is perpendicular to the path direc-
tion). To address these issues, Kizamu can edit the ADF directly
with the swept volume of a tool moved along a 3D Bezier curve.
We use a Bezier clipping algorithm [21] to compute distances
from the curve and then use the tool geometry to determine dis-
tances for the swept volume. For a spherical tool, distances in the
swept volume are trivially and quickly computed by offsetting the
distances to the centerline of the tool path. For rectangular and
other simple tools, the distance computation is more involved but
can still be more efficient than processing discrete edits. Using
Bezier tool paths allows two levels of control: 1) Bezier paths can
be automatically derived and carved during the user's input stroke
and 2) a Bezier curve can be explicitly drawn onto the object’s sur-
face and edited using control points before being carved onto the
surface at the user's command.

4.3 Scripting of the Tool Path
During editing, Kizamu can record edit paths in a script for later
processing. The scripted paths provide three important features.
First, some systems may require that the editing resolution and the
extent of the tool influence on the distance field be limited in order
to achieve interactive speeds. When this occurs, the scripted edit
paths are used for lazy evaluation of the edits at higher resolutions
and for increasing the extent of the tool influence further into the
ADF during idle-time processing. Second, scripted paths provide
a history of the sculpting session, allowing, for example, the mod-
els to be recreated across systems with different memory and pro-
cessing power. Finally, scripted paths combined with stored inter-
mediate versions of the ADF allow Kizamu to process multiple
undos without excessive storage. 

4.4 Distance-Based Constraints
Because ADFs represent the distance from the surface at any point
in space, they provide an enhanced modeling interface. For exam-
ple, by constraining tools to move along an offset surface, Kizamu
can force the tool to remove or add material at a specified depth or
height from the original surface. The computation to keep the tool
on the offset surface is as simple as it is to keep the tool on the true
surface (see Section 4.1). In addition, Kizamu uses auxiliary ADFs

to represent masks (e.g., cutouts) for editing and as ‘force fields’
that prevent the tool from entering a specified region. Finally, by
using the reconstructed distance field and its gradient, ADFs triv-
ially provide the data required for cues (e.g., force feedback for
haptics) that indicate tool depth or proximity to the surface.

4.5 Control Point Editing
While clay sculpting is a powerful metaphor for digital character
design, there are times when control vertex manipulation has its
advantages. For example, to puff out a character's cheek, it can be
easier to grab and manipulate a set of control vertices than to build
out the cheek by sculpting. Thus, Kizamu provides a means for
selecting a region of the ADF model, converting the local region
to a triangular mesh at a user controlled LOD (see Section 7.2),
manipulating the control vertices of the mesh, and locally regen-
erating the ADF using the edited mesh (see Figure 4).

5. GENERATION AND EDITING
5.1 Tiled Generation
Frisken et al. outline two methods for generating ADFs in [12]: a
bottom-up algorithm that builds a fully populated octree and coa-
lesces cells upwards when the distance field represented by a cell's
8 children is well approximated by the sampled distance values of
the cell, and a top-down algorithm that recursively subdivides
cells which do not pass a predicate comparing distances computed
from the object's distance function with distances reconstructed
from the cell's sampled distance values at 19 test points. In prac-
tice, both of these methods have limitations. The bottom-up
approach requires an excessive amount of memory and too many
distance computations to generate high resolution ADFs while the
recursive top-down approach performs expensive octree neighbor
searches and requires many redundant distance computations and
reconstructions that could be shared among neighboring cells.
Both approaches exhibit poor memory coherence. Times for gen-
erating an ADF with a maximum octree level of 8 (level-8 ADF)
from relatively simple CSG models using the top-down generation
algorithm running on a desk-top Pentium III is on the order of 20
seconds (40 seconds for a level-9 ADF of the same part). For both
algorithms, generation of ADFs higher than level-9 is impractical
due to long generation times and large memory requirements.

In Kizamu, we developed and implemented a generator that
balances memory requirements, memory coherence, and computa-
tion. Generation times for similar CSG parts are reduced signifi-
cantly to less than 1 second for a level-8 ADF and 2 seconds for a
level-9 ADF (a 20 times increase in speed). Better memory uti-
lization and reuse of distance computations allow us to generate a
level-12 ADF of the same part in 7.6 seconds. It is important to
note that a level-12 ADF represents a resolution range of 1 : 2-12

(i.e., 1 : 0.00024). Representing such detail in a regularly sampled
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Figure 3. Discrete edits along a stroke can result in A) many redundant edits for slow
tool strokes, B) broken paths for fast strokes, and C) direction-dependent results for
an asymmetric tool shape.

Figure 4. A region of the ADF is selected in A) and converted to triangles in B).
Vertices of the triangle mesh are used for control-point editing of the shape. The ADF
is then locally regenerated in C) using the edited triangle mesh.
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volume would require 69 billion sample values. In contrast, a typ-
ical level-12 ADF, such as the carved slab of Figure 1, requires on
the order of 2 to 3 million distance values.

In the new algorithm, the root cell is recursively subdivided
to a level L. Cells at level L that require further subdivision are
appended to a list of candidate cells. These candidate cells are then
recursively subdivided between levels L and 2L, where new can-
didate cells are produced and appended to the list of candidate
cells, and so forth. This layered production of candidate cells pro-
ceeds until the list of candidate cells is empty.

A cell becomes a candidate for further subdivision when (1)
it is a leaf cell of level L, or 2L, or 3L, etc., (2) it cannot be triv-
ially determined to be an interior or exterior cell, (3) it does not
satisfy a specified error criterion, and (4) its level is below a spec-
ified maximum ADF level.

For each candidate cell, computed and reconstructed dis-
tances are produced as needed during recursive subdivision. The
distance values are stored in a tile, a regularly sampled volume
(i.e., a 3D array). The tile resides in cache memory and its size
determines L. A corresponding volume of bit flags keeps track of
valid distance values in the tile volume to ensure that distance val-
ues within the tile are computed and stored only once, thereby
avoiding the redundant distance computations in [12]. After a can-
didate cell has been fully processed, valid distances in the tile vol-
ume are appended to the array of final ADF distances, and cell
pointers to these distances are updated. Special care is taken at tile
boundaries by initializing the tile volume and bit flag volume from
neighboring cells that have already been subdivided to ensure that
distances are also shared across tiles.

Tile sizes can be tuned to the CPU cache architecture. In the
Pentium systems that we have tested, a tile size of 163 has worked
most effectively. The use of the bit flag volume further enhances
cache effectiveness. The final cells and distances are stored in con-
tiguous arrays to enhance locality of reference. These arrays are
allocated in large blocks as needed during generation and truncat-
ed to their required sizes when generation is complete. Because
the allocation is contiguous, updating cell and distance value
pointers when an ADF is moved or copied to a different base
address is both fast and easy. Pseudocode for the new generation
algorithm is presented below.

tiledGeneration(genParams, distanceFunc)
// cells: block of storage for cells
// dists: block of storage for final distance values
// tileVol: temporary volume for computed and 
// reconstructed distance values
// bitFlagVol: volume of bit flags to indicate 
// validity of distance values in tileVol 
// cell: current candidate for tiled subdivision
// tileDepth: L (requires (2L+1)3 volume − the L+1
// level is used to compute cell errors for level L)
// maxADFLevel: preset max level of ADF (e.g., 12)

maxLevel = tileDepth
cell = getNextCell(cells)
initializeCell(cell, NULL) (i.e., root cell)

while (cell)
setAllBitFlagVolInvalid(bitFlagVol)
if (cell.level == maxLevel)

maxLevel = min(maxADFLevel, maxLevel + tileDepth) 
recurSubdivToMaxLevel(cell,maxLevel,maxADFLevel)
addValidDistsToDistsArray(tileVol, dists)
cell = getNextCandidateForSubdiv(cells)

initializeCell(cell, parent)
initCellFields(cell, parent, bbox, level)
for (error = 0, pt = cell, face, and edge centers)

if (isBitFlagVolValidAtPt(pt))
comp = getTileComputedDistAtPt(pt)
recon = getTileReconstructedDistAtPt(pt)

else
comp = computeDistAtPt(pt)
recon = reconstructDistAtPt(cell, pt)
setBitFlagVolValidAtPt(pt)

error = max(error, abs(comp - recon))
setCellError(error)

recurSubdivToMaxLevel(cell, maxLevel, maxADFLevel)
// Trivially exclude INTERIOR and EXTERIOR cells 
// from further subdivision
pt = getCellCenter(cell)
if (abs(getTileComputedDistAtPt(pt)) > 

getCellHalfDiagonal(cell))
// cell.type is INTERIOR or EXTERIOR
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when error criterion is met
if (cell.error < maxError)

// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
return

// Stop subdividing when maxLevel is reached
if (cell.level >= maxLevel)

// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromCellDistValues(cell)
if (cell.level < maxADFLevel)

// Tag cell as candidate for next layer
setCandidateForSubdiv(cell)

return

// Recursively subdivide all children
for (each of the cell’s 8 children)

child = getNextCell(cells)
initializeCell(child, cell)
recurSubdivToMaxLevel(child, maxLevel, maxADFLevel)

// cell.type is INTERIOR, EXTERIOR, or BOUNDARY
setCellTypeFromChildrenCellTypes(cell)

// Coalesce INTERIOR and EXTERIOR cells
if (cell.type != BOUNDARY) coalesceCell(cell)

5.2 Bounded-Surface Generation
The generation algorithm presented in the above pseudocode does
not subdivide interior or exterior cells. This surface-limited gener-
ation reduces memory requirements while assuring accurate rep-
resentation of the distance field in boundary cells, which is suffi-
cient for processing (e.g., rendering) that is limited to regions adja-
cent to the surface. However, many of the interaction methods dis-
cussed in Section 4 such as surface following, the use of distance-
based constraints, and force feedback, require the distance field to
be accurate for some distance from the surface. Under these cir-
cumstances the generation algorithm is modified so that exterior
(and/or interior) cells are not coalesced unless their parent cells
satisfy a maximum error constraint whenever those parent cells
are within a bounded region defined by a specified minimum dis-
tance from the surface.

5.3 Editing
In Kizamu, sculpting is performed on the ADF using a local edit-
ing process that extends the algorithm of [12] to use tiled genera-
tion. The use of tiled generation decreases edit times by a factor of
20 and changes in the ADF octree cell data structure (e.g., support
for 16-bit distance values) reduce memory requirements for cells
and distance values by a factor of 2. These advances make it pos-
sible to perform highly detailed sculpting. Figures 1 and 5 present
several models created using Kizamu. The sculpted models were
carved with procedurally generated tool paths (we never said that
we were sculptors) using techniques related to procedural textur-
ing [10]. Space limitations prevent a full description of this tech-
nique but we emphasize that the detail in these images is purely
geometric: achieving such surface detail using existing modeling
systems would be painful if not impossible.

To accommodate available resources on different computer
systems, Kizamu can limit both the sculpted resolution and the
volumetric extent of the tool influence to ensure interactivity. As
described in Section 4.3, Kizamu maintains a script of sculpting
operations and intermediate versions of the ADF which can be
used during idle-time processing to increase the sculpting resolu-
tion and extend the tool influence into the ADF. The relatively
small stroke numbers reported in Figures 1 and 5 show that the
memory cost of maintaining the stroke history is reasonable.



Figure 5A. A 3D cow sculpted using Kizamu with four different procedural methods for determining chisel strokes. The procedural sculpting used the distance field and cell size
of an ADF generated from a low resolution (5800 triangles) model. Simple Phong illumination was used by the renderer; all texture is purely geometric. Each cow is a level-10
ADF, requiring approximately 150 MB of storage, and was carved using 21,063 chisel strokes.

Figure 5C. Several sculpted level-8 ADFs showing how well ADFs represent both smooth surfaces and fine detail.

Figures 5B. A bas-relief carving on a slab. The 3D geometry was generated from a black and white image of a flower (photograph courtesy of John Arnold) using the algorithm
described in Section 7.1 for converting range data to an ADF. The highly detailed carving is represented as a level-10 ADF requiring 186 MB of storage.



5.4 Correcting the Remote Field
ADFs are sculpted by applying CSG operations to the object and
tool distance fields. For example, following the positive-inside /
negative-outside sign convention in [12], the sculpted distance at
a point p for a differencing tool would be dist(p) = min(distobj(p),
-disttool(p)) and the sculpted distance at p for an additive tool
would be dist(p) = max(distobj(p), disttool(p)). As pointed out by
Breen et al. in [5], and illustrated in Figure 6, the use of such
min/max operators can result in inaccurate distance values in the
distance field at points remote from the sculpted surface. For
example, the point P1, when using a differencing tool, and the
point P2, when using an additive tool, would both be assigned dis-
tances to surfaces that do not exist in the sculpted object, resulting
in an inaccurate field at these points. When processing only
requires a correct representation of the distance field at the surface
(e.g., rendering), these inaccurate values have no effect. However,
some of the interaction techniques used in Kizamu require an
accurate representation of the distance field away from the sur-
face. Hence, Kizamu corrects the remote distance field during sys-
tem idle-time and on-demand near the tool during editing.

There are a number of approaches available for correcting the
remote distance field given accurate distances close to an object’s
surface. Breen et al. [5] use a fast marching method derived from
level set techniques to propagate distances outward from a narrow
band of correct values near the surface. Rockwood has proposed
an approach that holds distance values at the zero-valued iso-sur-
face and the distance field boundaries constant and uses simulated
annealing to smooth out (but not correct) the field in between.
Neither Breen nor Rockwood apply their methods to adaptive
grids and both methods are relatively slow. Kizamu employs a cor-
rection method that extends the region growing Euclidean distance
transforms prevalent in the field of computer vision (see [7] for a
good review of such approaches) to the adaptively sampled grid.

6. FAST RENDERING
6.1 Fast Global Rendering 
We have developed and implemented two efficient new algorithms
for converting ADFs to triangle and point models that allow
Kizamu to take advantage of standard hardware during global
view changes such as rotation. Given current standard hardware
such as the NVIDIA GeForce2, these new algorithms provide truly
interactive manipulation of ADFs. First, ADFs can be converted to
triangle models using the method described in Section 7.2 and
rendered through OpenGL. Conversion times are quite fast:
Kizamu can generate a triangle model with 200,000 triangles from
a level-9 ADF in 0.37s on a Pentium IV processor. Models at
lower LODs can be generated even faster (less than 10ms for a
2000-triangle model). These fast conversion times enable models
to be created on-the-fly with imperceptible delays when naviga-
tion tools are selected. 

Alternatively, Kizamu can use point-based rendering for
global view changes, taking advantage of the current trend in com-
puter graphics towards hardware-assisted point rendering [22].

Kizamu currently renders points using the OpenGL pipeline. The
point generator can produce 800,000 Phong illuminated points in
0.2 seconds (and less than 0.12 seconds for points lit using hard-
ware). These points can be rendered interactively on desktop sys-
tems and, like triangle models, can be created on demand when
navigation tools are selected. The basic algorithm for generating
points from an ADF is outlined in the pseudocode below. Figure 7
shows an ADF model rendered as 800,000 points. The availabili-
ty of the distance field and the octree data structure give ADFs
unique advantages for generating points. For example, a point ran-
domly generated within a cell can be trivially projected onto the
surface in one step using the distance value and gradient at that
point. Furthermore, a cell’s size can be used to determine both the
number and size of points to be generated in that cell, thereby per-
mitting hierarchical rendering methods [22].

// Algorithm:
// 1. Determine the number of points to generate in
// each boundary leaf cell
// a. Compute an estimate of the object’s surface 
// area within each boundary leaf cell areaCell
// and the total estimated surface area of the
// object, areaObject = Σ areaCell
// b. Set the number of points in each cell nPtsCell
// proportional to areaCell / areaObject
// 2. For each boundary leaf cell in the ADF
// a. Generate nPtsCell random points in the cell
// b. Move each point to the object’s surface using 
// the distance and gradient at the point

generatePoints(adf, points, nPts, maxPtsToGen)
// Estimate object’s surface area within each 
// boundary leaf cell and the total object’s 
// surface area
for (areaObject = 0, level = 0 to maxADFLevel)

nCellsAtLevel = 
getNumBoundaryLeafCellsAtLevel(adf, level)

areaCell[level] = sqr(cellSize(level))
areaObject += nCellsAtLevel * areaCell[level]

// nPtsCell is proportional to areaCell / areaObject
for (level = 0 to maxADFLevel)

nPtsAtLevel[level] = maxPtsToGen * 
areaCell[level] / areaObject

// For each boundary leaf cell, generate cell points 
// and move each point to the surface
for (nPts = 0, cell = each boundary leaf cell of adf)

nPtsCell = nPtsAtLevel[cell.level]
while (nPtsCell--)

pt = generateRandomPositionInCell(cell)
d = reconstructDistAtPt(cell, pt)
n = reconstructNormalizedGradtAtPt(cell, pt)
pt += d * n
n = reconstructNormalizedGradtAtPt(cell, pt)
setPointAttributes(pt, n, points, nPts++)

Because point generation is very fast, we are exploring real-time
view-dependent point generation for every view change (e.g.,
while rotating) that culls both back-facing cells and points, and
uses cell gradients to generate more points on silhouette edges.
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tool
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object

tool
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Figure 6. Distances computed using min/max CSG operators are inaccurate at P1 for
the differencing operator and at P2 for the additive operator.

Figure 7. An ADF model rendered
as 800,000 points and viewed at
two different scales.



6.2 Fast Local Rendering
Kizamu uses two methods to locally update the image in the
sculpted region depending on system resources: adaptive and non-
adaptive ray casting for software-based rendering, and local trian-
gle regeneration for hardware-based rendering. Point models do
not represent fine sculpted detail as well as triangle models or
images derived from ray casting and therefore are not used for
local rendering.

When there is sufficient memory to maintain both the ADF
and its corresponding triangle model, Kizamu can locally update
the triangle model during sculpting. Each boundary cell references
(via an index) the triangles that represent the surface in the cell to
enable local updating. When a cell is affected by sculpting, its
associated triangles are deleted and new ones regenerated on-the-
fly. This approach is very fast but requires memory to maintain the
dynamic triangle model as well as additional memory per cell for
triangle indexing.

Kizamu provides ray casting for high quality rendering of the
sculpted surface. During sculpting, the ray cast image is updated
locally within the region affected by the tool. For systems that
cannot perform software-based ray casting fast enough for inter-
active updating, Kizamu uses an adaptive ray casting approach. In
the spirit of [15], the image region to be updated is divided into a
hierarchy of image tiles and subdivision of the image tiles is guid-
ed by a perceptually based predicate. Pixels within image tiles of
size greater than 1x1 are bilinearly interpolated to produce the
image. For each image tile, rays are cast into the ADF at tile cor-
ners and intersected with the surface using the linear intersection
method outlined in [12]. The predicate used to test for further sub-
division follows Mitchell [20] and more recently [4], individually
weighting the contrast in red, green, and blue channels and the
variance in depth-from-camera across the image tile. The adaptive
approach typically achieves a 6:1 reduction in rendering times
over firing 1 ray per pixel and more than a 10:1 reduction when
the image is supersampled for antialiasing. Figure 8 shows an
image rendered using adaptive ray casting and the rays that were
cast to produce the image.

7. FITTING KIZAMU INTO THE CHAR-
ACTER ANIMATION PIPELINE 
Any sculpting system using a novel data representation for digital
character design is useless to a production house like ILM unless
it fits into their extensive existing character animation pipeline.
Hence, Kizamu inputs models from several types of representa-
tions (including triangle models, implicit functions, CSG models,
Bezier patches, and scanned data) and outputs triangle models.
Converting most of the above representations to ADFs is treated in
[12]. Here, we focus on two important new developments: 1) a
method for generating ADFs from scanned range data which
advances the state of the art and 2) a new method for triangulating
ADFs that generates topologically consistent LOD triangle mod-
els in a fraction of a second.

7.1 Input from Range data
There are several commercial systems available for converting
scanned range data to triangle models. One approach for import-
ing this data into Kizamu would be to use such a system to con-
vert the scanned data to a triangle model and then convert the tri-
angle model to an ADF. However, our experience has been that the
triangle models produced by these systems are often problematic,
containing holes, flipped triangles, and overlapping surfaces.
Instead, Kizamu extends recent research to generate ADFs direct-
ly from scanned data.

Several recent research papers have presented methods for
converting scanned data to triangle models that make use of

signed distance fields for more robust, water-tight surface recon-
structions. The method of Curless and Levoy [8] is most frequent-
ly cited and is the basis for the data conversion method used by the
Cyberware scanning system. Wheeler [27] recently extended [8]
to use a true Euclidean distance function and a more volume-cen-
tric approach. A full description and comparison of these methods
is beyond the scope of this paper. However, we outline Wheeler's
approach since it is most closely related to the algorithm that was
developed and implemented in Kizamu.

In Wheeler's algorithm, scanned data consists of a set of over-
lapping 2D scanned range images taken from different viewpoints.
Each range image is converted to a range surface triangle mesh
and all of the triangle meshes are imported into the same coordi-
nate system. Wheeler then creates an octree of the model’s dis-
tance field in a top-down manner by computing signed distances
from each sample point to each range surface and combining these
distances using a probability-weighted function. The probability
function depends on the angle between each contributing triangle
and the original scan direction, the location of the triangle relative
to the edge of its source range image, the degree of agreement
between distances computed for overlapping range surfaces, and
possibly other factors. All cells containing the object’s boundary
are subdivided to the same octree level (similar to the 3-color
octree described in [12]). As a last step, Marching Cubes is run
over all the boundary leaf cells to generate a closed (assuming it
makes use of volume boundaries), water-tight triangle surface
from the signed distance volume.

Kizamu adopts Wheeler’s approach but enhances the algo-
rithm using ADFs, replacing his top-down generation of a 3-color
octree with tiled generation of an ADF. In ADFs, the surface with-
in each boundary cell is represented as a trilinear field; conse-
quently, boundary cells do not require subdivision in flat or near-
flat regions of the surface, resulting in a significant savings over
the 3-color octree in both memory requirements and the number of
distance computations [12]. Once scanned data is imported into
Kizamu, the sculpting system can be used to correct problems in
the model due to occluded regions, detail lost because of resolu-
tion limits or scanner noise, and rough or broken surfaces at seams
between range images. Finally, if desired, the ADF can be con-
verted into a triangle model from the adaptive grid using the
approach described in Section 7.2.

7.2 Conversion to Triangles 
Kizamu employs a new method to triangulate ADFs for rendering,
control point-based editing, and conversion to output models that
can be integrated into an existing animation pipeline. The method
produces topologically consistent (i.e., orientable and closed) tri-

Figure 8. An ADF rendered using adaptive ray casting. The right image
shows a magnified view of the rays cast to render the left image.



angle models from an implicit function sampled on an adaptive
grid such as the ADF octree. It is very fast, producing triangle
models in a fraction of a second and can be used in conjunction
with the ADF data structure to produce LOD models as described
below.

The new method is based on the SurfaceNets algorithm that
was developed as an alternative to Marching Cubes for building
globally smooth but locally accurate triangle models from binary
volume data [14]. Unlike [14], the enhanced SurfaceNets algo-
rithm in Kizamu generates a triangle mesh from distance values
sampled on an adaptive grid. It produces 'high quality' triangles
(i.e., triangles that are close to equilateral) whose vertices lie on
the object’s surface. Further, as discussed below, the method easi-
ly deals with the crack problems typically associated with adaptive
grids. The basic 3-step method is as follows: 

1. Each boundary leaf cell of the ADF is assigned a vertex that
is initially placed at the cell center.

2. Vertices of neighboring cells are joined to form triangles
using the following observations: 1) a triangle joins the vertices
of 3 neighboring cells that share a common edge (hence trian-
gles are associated with cell edges); 2) a triangle is associated
with an edge only if that edge has a zero crossing of the distance
field; 3) the orientation of the triangle can be derived from the
orientation of the edge it crosses, and 4) because cells have 12
edges, any cell can have at most 12 triangles associated with it.
In order to avoid making redundant triangles, we consider 6 of
the 12 possible edges for each cell (i.e., the cell’s up-right,
down-left, up-front, down-back, front-right, and back-left
edges). (Note for the purist: if the cell contains surface saddle
points, additional interior triangles may be required to correctly
represent the surface topology within the cell [6]. However,
treatment of this issue is beyond the scope of this paper.) 

3. After all the triangles have been formed and we have a topo-
logically consistent mesh, triangle vertices are moved towards
the surface (in the direction of the ADF gradient with a step size
equal to the distance value) to improve the mesh accuracy. Each
vertex is then moved over the surface towards the average posi-
tion of its neighbors to improve triangle quality. 

Pseudocode for the enhanced SurfaceNets algorithm follows: 

triangulateADF(adf) 
// vertices: storage for vertices
// triangles: storage for triangles

// Initialize triangles vertices at cell centers
// and associate each vertex with its cell

for (cell = each boundary leaf cell of adf)
v = getNextVertex(vertices)
associateVertexWithCell(cell, v)
v.position = getCellCenter(cell)

// Make triangles. Each cell edge joins two cell
// faces face1 and face2 which are ordered to ensure 
// a consistent triangle orientation (see EdgeFace 
// table below). For a given cell edge and face, 
// getFaceNeighborVertex returns either the vertex of 
// the cell’s face-adjacent neighbor if the 
// face-adjacent neighbor is the same size or larger 
// than the cell, OR, the vertex of the unique child 
// cell (uniqueness is guaranteed by a 
// pre-conditioning step − see text below) of the 
// face-adjacent neighbor that is both adjacent to 
// the face and has a zero-crossing on the edge

for (cell = each boundary leaf cell of adf)
for (edge = cell’s up-right, down-left, up-front,
down-back, front-right, and back-left edges)

if (surfaceCrossesEdge(edge))
face1 = EdgeFace[edge].face1
face2 = EdgeFace[edge].face2
v0 = getCellsAssociatedVertex(cell)

v1 = getFaceNeighborVertex(face1, edge)
v2 = getFaceNeighborVertex(face2, edge)
t = getNextTriangle(triangles)
if (edgeOrientation(edge) > 0) 

t.v0 = v0, t.v1 = v1, t.v2 = v2
else 

t.v0 = v0, t.v1 = v2, t.v2 = v1

// Relax each vertex to the surface and then along 
// the tangent plane at the relaxed position towards 
// the average neighbor position

for (each vertex)
v = getVertexPosition(vertex) 
u = getAveragePositionOfNeighborVertices(vertex)
cell = getVertexCell(vertex)
d = reconstructDistAtPt(cell, v)
n = reconstructNormalizedGradtAtPt(cell, v)
v += d * n 
v += (u - v) - n · (u - v)

// --------------------------------
// EdgeFace table:
// edge face1 face2
// ---------- ----- -----
// up-right up right
// down-left down left
// up-front up front
// down-back down back
// front-right front right
// back-left back left

Most algorithms for triangulating sampled implicit functions
generate triangle vertices on cell edges and faces [19][3][16]. As
illustrated in 2D in Figure 9A, this approach can cause cracks in
the triangulated surface at the boundaries between cells of differ-
ent sizes in an adaptive grid because the interpolated vertex posi-
tion of one cell may not match the interpolated vertex position of
its connected neighboring cell. This problem has been addressed
in several ways [26][23] but in general adds significant complexi-
ty to the triangulation algorithm.

In contrast, in the enhanced SurfaceNets algorithm, triangle
vertices are generated at cell centers: triangles cross the faces and
edges of different sized cells. Thus, the type of cracks illustrated
in Figure 9A do not appear. However, like other triangulation
methods, our algorithm produces cracks when the number of edge
crossings between two neighboring sets of cells differs as illus-
trated in Figure 9B. The 2D cell on the top in Figure 9B has no
zero-crossings on its bottom edge while the edge-adjacent neigh-
bors have a total of two zero crossings for the same edge. This type
of crack can be prevented by a simple pre-conditioning of the ADF
during generation or prior to triangulation. In 3D, the pre-condi-
tioning step compares the number of zero-crossings of the iso-sur-
face for each face of each boundary leaf cell to the total number of
zero-crossings for faces of the cell's face-adjacent neighbors that
are shared with the cell. When the number of zero-crossings are
not equal for any face, the cell is subdivided using distance values
from its face-adjacent neighbors until the number of zero-cross-
ings match. During pre-conditioning, the cell on the top in Figure
9B would be further subdivided. Because we have observed that
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Figure 9. Adaptive grids can result in A) cracks in the surface edge which do not
occur with the enhanced SurfaceNets algorithm and B) cracks in the surface edge
which occur very rarely and can be prevented by a simple pre-conditioning step.



the type of crack illustrated in Figure 9B occurs rarely, Kizamu
provides an optional cell pre-conditioning step when converting
an ADF to triangles.

Kizamu also exploits the hierarchical data structure of ADFs
to produce LOD models with the enhanced SurfaceNets algo-
rithm. Rather than seeding triangle vertices in boundary leaf cells,
the hierarchical data structure is traversed and vertices are seeded
into boundary cells whose maximum error (computed during gen-
eration or editing) satisfies a user-specified threshold and cells
below these cells in the hierarchy are ignored. The error threshold
can be varied continuously enabling fine control over the number
of triangles generated in the LOD model. Unlike most triangle
decimation algorithms, the time to produce an LOD model is pro-
portional to the number of vertices in the output mesh rather than
the size of the input mesh. Generation times are at least an order
of magnitude faster than the state-of-the-art: we generate a
200,000 triangle model in 0.37 seconds and a 2000 triangle model
in less than 0.010 seconds on a desktop system with a Pentium IV
processor.

8. CONCLUSIONS AND FUTURE WORK
The Kizamu system is a first step towards integrating ADFs, a
powerful new shape representation, into the production pipeline
for digital character design and animation. Kizamu is an interac-
tive system for sculpting high resolution digital characters that is
intuitive to use and efficient in memory usage and processing. We
have presented several new algorithms and approaches that were
required to take ADFs beyond the concept stage introduced in [12]
and into a practical, working system. These include: innovations
in the volumetric sculpting interface that take advantage of the dis-
tance field and provide more control to the artist; efficient gener-
ation and editing algorithms with reduced memory requirements,
better memory coherency, and reduced computation; several new
rendering approaches that take advantage of hardware acceleration
in standard PCs; and a new and very fast method for generating
topologically consistent LOD triangle models from ADFs.

We are currently exploring a number of ways to enhance
Kizamu as a sculpting tool as well as to extend the use of ADFs in
digital animation beyond sculpting. We have presented a method
for generating triangle models from ADFs so that models created
with Kizamu can be used in the character animation pipeline. To
increase compatibility, we are looking into methods for generating
NURBS as well. In particular, because animators require well-
placed control vertices for better control, we are exploring user-
guided placement of control curves onto the ADF surface to guide
the NURBS generation. In addition, we are investigating a number
of methods for deforming and animating ADFs, including free
form deformations, finite element methods, and skeleton-based
methods. Since ADFs are a volumetric representation they repre-
sent object interiors, which is often required to produce physical-
ly plausible deformation. Finally, Kizamu currently has limited
functionality to take advantage of ADF's ability to represent volu-
metric characters (see Figure 10). Since we believe that the abili-
ty to sculpt volumes has enticing possibilities, we plan to extend
Kizamu to provide improved volume rendering and a means for
integrating these volumes into the animation pipeline.
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Figure 10. An ADF character volumetrically rendered.


