Volume-Sampled 3D Modeling

Sidney W. Wang and Arie E. Kaufman
State University of New York at Stony Brook

This technique creates voxel models that
are free from object-space aliasing.

Thus it incorporates the image-space
antialiasing information as part

of the view-independent voxel model.

VOlume graphics is an emerging area of computer graphics
concerned with the synthesis, manipulation, and rendering
of volumetric objects stored in a volume raster of voxels.! Typ-
ically, this technology samples geometric objects, stores them
with their view-independent attributes in the volume raster, and
repeatedly projects from the volume raster onto a 2D image
raster. This approach is an alternative to conventional surface-
based graphics, and its advantages over the latter include view-
independent representation, sensitivity to the volume raster
resolution but not to object complexity, and suitability for rep-
resenting sampled and simulated datasets and their mixtures
with geometric objects. Further, it supports the visualization of
internal structures and lends itself to block operations, hierar-
chical representations, and constructive solid modeling at the
voxel level.

On the other hand, due to the discrete nature of the model
representation, volume graphics suffers some disadvantages. It
requires substantial amounts of storage space. Moreover, if not
properly synthesized, voxelized volume models are imprecise.
Thus, they generate jagged surfaces, known as object-space alias-
ing, and significant errors, especially after a sequence of trans-
formations and manipulations is performed on them. (The
literature includes detailed accounts of the relative advantages
and disadvantages of volume and surface graphics.")

Modeling a synthetic scene in volume graphics calls for algo-
rithms that use geometric objects to generate a set of voxels

26 0272-17-16/94/$4.00 © 1994 IEEE

that approximate the continuous object. These algorithms,
called voxelization (or 3D scan-conversion) algorithms, are ap-
plied to a variety of objects such as curves, surfaces, and solids.
The goal of our research is to improve the precision of vox-
elized volume models. In this article, we present a 3D object-
space antialiasing technique for volume graphics. Our approach
performs antialiasing once—on a 3D view-independent repre-
sentation—as part of the modeling stage. Unlike antialiasing of
2D scan-converted graphics, where the main focus is on gener-
ating aesthetically pleasing displays, antialiasing of 3D voxelized
graphics emphasizes the production of alias-free 3D models for
various volume graphics manipulations, including but not lim-
ited to the generation of aesthetically pleasing displays.

Point-sampled models

Voxelizing a continuous object into a volume raster requires
a sampling process that assigns a value to each element, or voxel,
of the volume raster. Perhaps the most straightforward method
of sampling in space is point sampling. Due to its simplicity, all
the voxelization algorithms reported in the literature employ
this method (for example, see Cohen and Kaufman,? Kaufman,?
and Mokrzycki). Point sampling evaluates the continuous ob-
ject at the voxel center and assigns the value of 1 when the voxel
belongs to the object or 0 otherwise. This binary voxelization
scheme means that the resolution of the 3D raster ultimately de-
termines the precision of the discrete model.

IEEE Computer Graphics and Applications

Figure 1. Volumetric ray-tracing image of point-sampled cone and
torus reflected on a point-sampled wavy mirror.

The imprecision of point-sampled models causes object-space
aliasing that, in turn, causes many of the maladies of voxel-
based graphics. For example, discrete ray tracing® and voxel-
based flight simulation® applications use discrete geometric
models to model their synthetic scenes. Accurate scene ren-
dering requires accurate computation of surface normal vec-
tors to calculate shading and spawn secondary rays. However,
the lack of geometric surface definitions in discrete voxel rep-
resentation necessitates the use of discrete shading techniques
that estimate the normal from a context of neighboring voxels.
The accuracy of the discrete normal estimation depends greatly
on the smoothness/jaggedness of the discrete surface.

Another obvious effect of aliasing occurs when detecting ray-
object intersection. A ray that barely misses an object in the
continuous space might produce an intersection in the discrete
space. Similarly, a ray-object intersection in the continuous
space might not be detected in the discrete space. Figure 1 shows
a volumetric ray-traced image of a point-sampled torus and a
point-sampled cone reflected on a point-sampled wavy mirror.
The image was generated using the VolVis volumetric ray
tracer,” which employs continuous parametric rays in the dis-
crete 3D volume raster. This type of ray tracing is referred to as
volumetric ray tracing, in contrast with discrete ray tracing,’
which uses discrete rays instead.

Some applications use voxelized geometric models in con-
junction with sampled data. For example, a medical imaging
application might superimpose a scalpel on a 3D reconstructed
computed tomography (CT) image or radiation beams on a 3D
magnetic resonance imaging (MRI) scan of a tumor. One way
to do this is to convert (voxelize) the geometric object into the
volumetric sampled data representation before intermixing
them. You could then render the resulting composite dataset us-
ing one of a variety of volume rendering methods. However, if
the geometric object is voxelized using point sampling, artifacts
can occur in the generated image. The reason lies in the in-
compatibility of merging data of binary density (the voxelized
model) with data of gray-scale density (the sampled data).

Voxelized primitives lend themselves to various block-based
modeling, such as voxblt (voxel block transfer) operations.
These operations—the 3D counterparts of bitblt operations—
support the transfer and manipulation of cuboidal voxel blocks
(that is, 3D windows, or “rooms”) with a variety of voxel-by-
voxel operations between source and destination blocks. This
is especially advantageous when the modeling paradigm is con-
structive solid geometry. CSG operations such as subtraction,
union, and intersection between two voxelized objects occur at
the voxel level. This reduces the original problem of evaluating
a CSG tree of such operations during rendering to a Boolean
operation between pairs of voxels during modeling. However,
since the 3D raster resolution determines the precision of the
discrete model, errors caused by imprecise point-sampled mod-
eling can accumulate and lead to gross artifacts.

The spatial presortedness of the volume raster lends itself to
multiresolution hierarchical model representations. These rep-

September 1994

Volume-Sampled 3D Modeling

resentations approximate the original model by decreasing 3D
raster resolution as the hierarchy level increases. They accom-
plish this by aggregating neighboring voxels (for example. 2 x
2 x 2 neighborhoods) into supervoxels in a pyramid-like hier-
archy. To render unbounded scenes and to approach real-time
rendering, distant objects are modeled with low 3D raster res-
olution while objects closer to the viewpoint are modeled with
higher resolution (compare with Wright and Hsieh®). However.
if the model represented at the highest resolution is aliased, the
object-space aliasing subsequently propagates through all lev-
els of the resolution hierarchy.

The examples in this section present the complications in-
herent in point-sampled discrete modeling for a variety of vol-
ume graphics manipulations. Like pixels in 2D, voxels in 3D
can in principle be made as small as desired to increase the ac-
curacy of the discrete representation, thus reducing the aliasing.
However, the improvement comes at the price of significantly
increasing the memory space and voxelization time. In the next
section, we present an algorithm for generating alias-free geo-
metric primitives using volume sampling. Then we describe how
our alias-free models resolve each of the complications associ-
ated with point-sampled models.

Volume-sampled models

The main problem with point sampling lies in the finite set of
points sampled, which can miss important features present on
the boundary between the material (the object) and empty
space. This is why aliased 2D models contain jagged edges and
aliased 3D models have jagged surfaces. One antialiasing
method in 2D is simply to point-sample the object at a high res-
olution, then average it down to the desired image resolution.
However, this approach merely hides the aliasing by making
the jagged silhouette less noticeable to the human eye. While
this method is frequently adopted in 2D raster graphics, it will
not work in 3D, since volume graphics must generate alias-free
models for various manipulations, not just for viewing.

Another 2D antialiasing approach uses a low-pass filter on the
original signal (the continuous object) before sampling it. In
practice, the two stages—prefiltering followed by sampling—are
combined into one process, called area sampling in 2D raster
graphics. Gupta and Sproull® incorporated this idea into efficient
2D scan-conversion algorithms for lines and polygons by ex-
ploiting precomputed look-up tables.

—
Visualization

Figure 2. Three cases of beam extraction for a cone
using the depth buffers.

Our algorithm for generating alias-free 3D models essen-
tially generalizes Gupta and Sproull’s area-sampling algorithm
to 3D. Instead of performing 2D area prefiltering and sampling,
the algorithm prefilters and samples in 3D space, hence we call
it volume-sampling. We have detailed the volume-sampling al-
gorithm in an earlier paper.” We describe it here briefly, but fo-
cus on an enhanced version of the volume-sampling algorithm,
on the manipulations of volume-sampled models, and on the
motivation for using volume sampling.

For its effectiveness and ease of implementation, we selected
a 4D hypercone filter for volume sampling. The hypercone fil-
ter has a spherical filter support, and it is weighted such that its
maximum contribution occurs at the center of the sphere and at-
tenuates linearly to zero at a distance equal to the radius of the
sphere. The filter support should be large enough to filter out all
the high frequencies that exceed the Nyquist frequency as de-
termined by the sampling resolution of the volume raster, but
also small enough to retain as many of the object’s detailed fea-
tures as possible.

To speed up the process of volume sampling, we use pre-
computed feature- and object-dependent look-up tables of fil-
tered densities to assign the filtered-density value to each voxel.’
Thus, the expensive process of performing 3D volume filtering
at each voxel is reduced to a look-up table reference. However,
it is impossible to precompute feature- and object-dependent
tables of densities for all shapes and sizes of primitives. Our
implementation includes look-up tables only for a predefined
set of geometric primitives of certain sizes. For a primitive that
falls between two predefined sizes, we linearly interpolate a
value between the two corresponding look-up tables.

We achieve another speedup by using existing point-sam-
pled voxelization algorithms to access those voxels affected by
the filtered object directly, instead of traversing the entire vol-
ume raster. Unlike point-sampled models, where the outer vox-
elized surface is at most half a voxel unit away from the outer
continuous surface, the outer surface of volume-sampled mod-
els is at most the filter radius away from its corresponding con-
tinuous outer surface. Hence, to ensure that all essential voxels
are visited, we expand the continuous object by the size of the
filter radius. Then a point-sampled voxelization algorithm labels
the expanded outer surface. Finally, a volume-fill algorithm ex-
tracts all interior voxels bounded by the outer voxelized surface.
However, in many applications, such as synthetic scene model-
ing, voxelizing the interior of the continuous model is unneces-
sary because the application typically renders only the surface.
Thus, additional processing time can be saved by treating the
continuous object as hollow rather than solid and filtering just
its surface.

We developed another technique to extract only those vox-
els affected by the filtered surface. The idea is to point-sample
the outer as well as inner voxelized surfaces bounding the fil-
tered “soft” region, then to use volume-filling to extract all vox-
els bounded between these surfaces. In general, however,
extracting voxels between two voxelized surfaces of an arbi-

28

Front1 Front2 Backi Back2

No beam

One beami

Two beams

One beam
No beam

Depth —

trarily shaped object is nontrivial. Therefore, the algorithm pre-
sented here is restricted to convex geometric primitives without
cavities, such as cones, cylinders, and spheres. The proposed
algorithm can still generate other geometric primitives, such as
tori, but the process requires extra care.

The algorithm employs a data structure that consists of a pair
of front and back 2D depth buffers, called frontl and backl,
respectively, for the outer voxelized surface, and a pair of front
and back depth buffers, called front2 and back2, respectively, for
the inner voxelized surface. Typically, the depth buffers are ar-
bitrarily placed parallel to one of the principal planes of the
volume raster. However, some nonconvex objects might bene-
fit from selecting one specific principal plane. For example,
when voxelizing a torus, the depth buffers are placed parallel to
the principal plane that is most parallel to the base plane of the
torus.

For the sake of discussion, let’s assume that the depth buffers
are placed parallel to the xy-plane. During point-sampled vox-
elization of the outer surface, each pixel of the frontl and back1
depth buffers is routinely updated to reflect the smallest and
largest depth value, respectively. Similarly, the front2 and back?2
depth buffers are updated during voxelization of the inner sur-
face. Once the inner and outer surfaces are voxelized, a fast or-
thogonal beam-filling algorithm extracts all voxels bounded by
the two voxelized surfaces. Figure 2 illustrates the three cases
of beam extraction for a cone in an analogous 2D diagram.

Table 1 shows volume-sampling times measured on a Silicon
Graphics Indigo 2 for a selected set of geometric primitives.
The table breaks the processing time into three parts. The first
part represents the time needed to update the depth buffers
employing the point-sampled voxelization algorithms. The sec-
ond part indicates the time needed to extract the orthogonal
beams from the depth buffers, while the third part is the time
spent classifying the extracted voxels to the correct feature-
dependent look-up tables and assigning the density values to
these voxels. The selected filter support had a radius of two
voxel units.

Clearly, as the primitive becomes more complex, the classi-
fication process determining which feature a voxel represents
becomes more expensive. For example, in generating a volume-
sampled box primitive, the majority of processing time is spent
on feature classification. This is because each extracted voxel re-
quires point-plane distance calculations to find the distance to
the nearest face, edge, or vertex of the box primitive. The cal-
culated distance then becomes an index to the corresponding
look-up table.

IEEE Computer Graphics and Applications

Volume-Sampled 3D Modeling

Table 1. Volume-sampling times (in seconds) for a sphere, a cone, and a box.
Vox racti Feature Classification
Primitive Interior | Depth Buffers | Filling for Table Lookup Total Time
Sphere Solid 0.07 0.38 1.67 212
(radius: 32) Hollow 0.12 0.14 0.65 0.91
Cone
(height: 64; Solid 0.69 0.25 2.84 3.78
base radius: 32) | Hollow 1.09 0.16 1.70 2.95
BOX . . 0

(dimension: | Solid 0.07 0.23 474 5.05 Figure 3. Volumetric ray-tracing
32x64x32) | Hollow 0.12 0.16 2.76 3.07 image of volume-sampled torus
and cone reflected on a volume-

Rendering volume-sampled models

Once the filtered scene is represented as a volume raster of
filtered values, we can basically treat it as a sampled or simulated
volume dataset, such as a 3D medical imaging dataset. Thus, we
can employ one of many volume-rendering techniques for im-
age generation—either an image-order approach by casting a
ray from each image pixel into object space (for example, see
Levoy'") or an object-order approach by directly mapping each
sample point in object space into image space (see Drebin, Car-
penter, and Hanrahan''). However, in this article, we discuss
only image-order volume-rendering algorithms, specifically sur-
face ray casting' and volumetric ray tracing.” Note that you can
view our volume-sampled model as either a density cloud or a
solid object with surface features. This flexible viewing is not
achievable through traditional surface rendering.

Both the ray-casting and the volumetric ray-tracing algo-
rithms determine pixel values by casting rays through the image
plane to the dataset. However, ray casting casts only primary
rays, while ray tracing recursively spawns secondary rays at ray-
object intersection points and thus supports the simulation of
global illumination phenomena. Detecting ray-surface inter-
section in a filtered scene is not a trivial task, since the filtered
scene no longer includes the geometric surface definitions.

A surface ray caster uses a threshold isosurface value to de-
termine the presence of a surface. This binary classification is a
source of image-space aliasing. The reason lies in the high fre-
quencies introduced by the sharp transitions present on binary-
classified surfaces. Our method employs a nonbinary surface
classification instead, which maps filtered values to opacity fac-
tors. Consequently, the smoothness of the band-limited scene
in object space carries over into image space, thus eliminating
the sharp surface transitions.

Detecting a ray-object intersection is simple with information
provided by the surface classifier. Basically, at each sample
point along the ray. we perform a trilinear interpolation among
surrounding voxels to evaluate the filtered value at that point.
Then the classifier assigns the corresponding opacity factor. A
pixel color is obtained by compositing the shaded samples along
the pixel ray in a front-to-back order, terminating when the ac-
cumulated opacity reaches opaque or when the ray exits the
dataset.

The method for casting secondary rays and shadow rays for
the volumetric ray tracing is the same as for the primary rays.
Thus, the silhouettes of objects—as well as their reflections, re-

September 1994

sampled wavy mirror.

fractions, and shadows—are jaggy-free. For example, contrast
Figure 3 with Figure 1. Needing accurate normals to spawn sec-
ondary rays, the ray tracer employs a gray-level gradient nor-
mal,? estimated from the context of the ncighboring samples.
for spawning reflective and transmitted rays. In our implemen-
tation using VolVis,” we use central differences to estimate the
components of the normal vector. By not performing any geo-
metric ray-object intersection or geometric surface normal cal-
culation, we save the bulk of the rendering time.

Manipulating volume-sampled
models

Recall that manipulating point-sampled models presents sev-
eral problems. For example. during CSG model construction,
the errors caused by imprecise modeling can accumulate. An-
other problem arises from the data-type incompatibility of vi-
sualizing a point-sampled model with a scanned or simulated
dataset. Volume-sampled models eliminate these difficulties.

Our model is a density function d(x) over R*, where d = 1 in-
side the filtered object. d = 0 outside the filtered object. and 0 <
d < 1 within the soft region of the filtered surface. Hence, the
Boolean operations of CSG or voxblt applied to volume-sam-
pled models are analogous to those of fuzzy set theory (for ex-
ample, see Dubois and Prade'?). Some common operations
between two objects A and B are defined as follows:

—
Visualization

intersection: d, -, g(x) = min (d ,(x), dp(x))
complement: d;(x)=1-d (x)

difference: d,_g(x) = min (d,(x), 1 — dg(x))
union: d,_z(x) = max(d,(x), dg(x))

The only law of set theory that is no longer true is the excluded-
middle law (thatis, A N A # ¢ and A U A # universe).

The use of the min and max functions causes discontinuity
where the soft regions of the two objects meet, since only one
of the two overlapping objects can define the density value at
each location in the region. You can generate complex geo-
metric models, such as the one shown in Figure 4, by perform-
ing the above CSG operations between volume-sampled
primitives. Volume-sampled models can also function as matte
volumes'' for various matting operations, such as performing
cutaways and using the union operation to merge multiple vol-
umes into a single volume. However, to preserve continuity on
the cutaway boundaries between the material and the empty
space, you should use an alternative set of Boolean operators
based on algebraic sum and algebraic product:*!

intersection: d,z(x) =d(x) dg(x)
complement: dz(x)=1-d,(x)

difference: d,_g(x) = d(x) — d(x) dy(x)
union: d,g(x) =d,(x) + dg(x) — d(x) dy(x)

Unlike the min and max operators, algebraic sum and product
operators result in A U A # A. Consequently, if the modeling
uses sweeping, for example, the resulting model is sensitive to the
sampling rate of the swept path. For instance, sweeping a vol-
ume-sampled sphere around a circle with two revolutions pro-
duces a different volume-sampled torus from sweeping with just
one revolution.

For intermixing manipulations, we use the second set of
Boolean operators to determine the density values of the over-
lapping region between a volume-sampled primitive and a sam-
pled/computed dataset. For example, to visualize a radiation
beam superimposed on a human MRI head, we can first model
the radiation beam using a volume-sampled primitive (for ex-
ample, a cylinder); then we can position the synthesized radia-
tion beam at the desired location within the MRI dataset.
During volume rendering, as a ray enters the overlapping re-

30

Figure 4. Bolt and nut generated by a sequence of CSG operations on
hexagonal, cylindrical, and helix primitives.

Figure 5. Intermixing of a volume-sampled cylinder with an
MRI head using the union operation.

gion, the union of the density values from the two datasets de-
termines the density values along that portion of the ray. Hence,
unifying the intermixed models in a common data representa-
tion eliminates the need for a special-purpose renderer. Figure
5 shows the image resulting from an intermixing. Our VolVis
system’ treats each voxel as a density value in a scalar field, and
it can handle multiple, even overlapping, volumes. Thus, we
can freely position and rotate the synthesized radiation beam,
regardless of the MRI dataset’s position and orientation.

Finally, volume-sampled models also resolve the issue of
propagating object-space aliasing during multiresolution hier-
archy construction. The direct correspondence between the size
of the filter support and the resolution of the volume raster
leads to an ideal alias-free hierarchical model representation.
The base of the hierarchy contains the most detailed, highest
resolution of the object, and the top contains the blurriest, low-
resolution version.

Volume-sampled modeling does require extra care to ensure
that adequate filtering is applied for the given 3D raster reso-
lution at each level of the hierarchy. We do this by widening the
filter support, thus decreasing the raster resolution as you move
up the hierarchy. Object-space aliasing is, consequently, elim-
inated for all levels of the resolution hierarchy. Figure 6 shows
four different hierarchy levels rendered. The appropriate hier-
archy level is selected according to distance from the viewpoint.
Objects close to the viewpoint are modeled with a high level of
detail, while distant objects are modeled with a low-resolution
representation. Figure 7 illustrates the mapping of projection
depth to hierarchy level. For a resolution that lies between two
levels of the hierarchy, the data value is determined at each of
the two adjacent levels. Then it is bilinearly interpolated be-
tween them to avoid spatial and especially temporal disconti-
nuities during animation.

IEEE Computer Graphics and Applications

Results

We conducted tests to determine the accuracy of our ray-
object intersection detection and surface normal estimation as
well as the rendering performance. Figures 8a and 8b are color-
mapped images that indicate the magnitude of errors when
compared with the true geometric ray-object intersection and
the true geometric surface normal, respectively. In both cases,
errors are linearly mapped to the colors red and yellow, where
red indicates the largest error magnitude and yellow indicates
10 error.

As Figure 8a shows, the accuracy of ray-object intersection
detection degrades for rays around the silhouette of the geo-
metric object. This is because the accumulation of opacity val-
ues along the silhouette of the volume-sampled object during
volume rendering can cause the ray to terminate early. Thus,
false intersection occurs. The maximum error in surface detec-
tion is under 0.2 voxel unit for a volume-sampled cone.

Recall that we estimate our surface norm through a gray-
level gradient method by taking the central differences. Figure
8b shows that the magnitude of error is greatest at locations
near the apex and circumference of the cone base. This is be-
cause volume filtering smoothed out the object’s sharp features.
Nevertheless, normal estimation error is under 1.5 degrees for
areas other than the apex and the circumference. We can im-
prove these results by employing a more sophisticated normal
estimation technique or examining a larger neighborhood.

Although the 3D volume-filtering process is expensive, it is
performed just once as a preprocessing stage; the resulting alias-
free models are stored as part of the database. The view-inde-
pendent database can then be rendered repeatedly using
volume rendering or volumetric ray tracing. Furthermore, by
carrying the smoothness of the volume-sampled 3D model over
into image space, this approach achieves image space anti-
aliasing without increasing the number of pixel rays or per-
forming image-space filtering.

Now refer back to the examples of volumetric ray-traced and
volume-rendered images of volume-sampled models in Figures
3 and 4, respectively. We performed all renderings on a Silicon
Graphics Indigo 2 using a modified version of the VolVis volu-
metric ray tracer. The scene illustrated in Figure 3 consists of
three volumes, with 3D raster resolutions of 30 x 150 x 125,
165 x 45 x 165, and 70 x 140 x 70. We used one generation of re-
flection rays and one light source for ray tracing. For image res-
olutions of 300 x 300 and 600 x 600, the ray tracing times are 35
seconds and 141 seconds, respectively. The volume-rendered

September 1994

Volume-Sampled 3D Modeling

Figure 6. Rendering of four different resolution representations of the
same object.

Figure 7. Projection depths are mapped to their
corresponding hierarchy levels.

Level O

Level k

Level N

Multiresolution hierarchy

Figure 8. Error magnitudes mapped linearly from yellow to red, where
yellow represents no error and red represents maximum error: (a)
error in surface detection as compared to the true geometric ray-
object intersection and (b) error in surface normal estimation as
compared to the true geometric surface normal.

image of Figure 4 consists of two volumes with 3D raster reso-
lutions of 70 x 40 x 60 and 70 x 125 x 65. Ray-casting time for a
300 x 300 resolution image took 21 seconds and for a 600 x 600
image took 87 seconds.

We made no attempt to optimize the ray-casting or ray-
tracing codes. For example, we could improve the rendering

Visualization

performances by precomputing and storing in the volume
rasters such view-independent shading attributes as diffuse re-
flections and shadow determinations. Furthermore, the flexi-
bility of handling multiple volumes in our VolVis rendering
system adds overhead to our rendering time by treating these
volumes first as bounding boxes for objects in the scene before
utilizing the volumetric ray tracer.

Future directions

We are investigating an alternative volume-sampling ap-
proach that will eliminate the need for volume-filling and fea-
ture-classification processes. The idea is to voxelize the
continuous object once, using point sampling. Then, for each
voxel visited, the decision variables of the voxelization algo-
rithm function as indices to look-up tables that store the density
values of the neighboring voxels. This is similar to Gupta and
Sproull’s approach in 2D line scan conversion. In essence, the
densities of the voxels visited during point-sampled voxelization
are splatted in 3D space and distributed to their neighboring
voxels.

Furthermore, current work focuses on the rendering aspect
of volume-sampled models. By carrying the smoothness of the
3D volume-sampled model from object space into its 2D pro-
jection in image space, our technique creates not only voxel
models that are free from object-space aliasing but also images
that are free from image-space aliasing. We are also investigat-
ing the benefits of volume-sampled models for approximating
the effect of penumbra shadows and fuzzy reflections. a

Acknowledgments
This work has been supported by the National Science Foundation un-
der grant CCR-9205047 and by the Department of Energy PICS grant.

References

1. A. Kaufman, D. Cohen, and R. Yagel, “Volume Graphics,” Com-
puter, Vol. 26,No. 7, July 1993, pp. 51-64.

2. D.Cohen and A. Kaufman, “Scan-Conversion Algorithms for Lin-
ear and Quadratic Objects,” in Volume Visualization, A. Kaufman,
ed., IEEE Computer Society Press, Los Alamitos, Calif., 1990, pp.
280-301.

3. A.Kaufman, “Efficient Algorithms for 3D Scan-Conversion of Para-
metric Curves. Surfaces, and Volumes,” Computer Graphics (Proc.
Siggraph). Vol. 21, No. 4, 1987, pp. 171-180.

4. W. Mokrzycki, “Algorithms of Discretization of Algebraic Spatial
Curves on Homogeneous Cubical Grids,” Computer & Graphics,
Vol. 12, Nos. 3/4, 1988. pp. 477-487.

5. R. Yagel, D. Cohen, and A. Kaufman, “Discrete Ray Tracing,”
IEEE CG&A, Vol. 12, No. 5, Sept. 1992, pp. 19-28.

32

6. J. Wright and J. Hsieh, “A Voxel-Based, Forward-Project Algo-
rithm for Rendering Surface and Volumetric Data,” Proc. Visual-
ization 92, IEEE CS Press, Los Alamitos, Calif., 1992, pp. 340-348.

7. R. Avila, L. Sobierajski, and A. Kaufman, “Towards a Compre-
hensive Volume Visualization System,” Proc. Visualization 92,
IEEE CS Press, Los Alamitos, Calif., 1992, pp. 13-20.

8. S. Gupta and R.F. Sproull, “Filtering Edges for Gray-Scale Dis-
plays,” Computer Graphics (Proc. Siggraph), Vol. 15, No. 3, Aug.
1981, pp. 1-5.

9. S.W. Wang and A. Kaufman, “Volume-Sampled Voxelization of
Geometric Primitives,” Proc. Visualization 93, IEEE CS Press, Los
Alamitos, Calif., 1993, pp. 78-84.

10. M. Levoy, “Display of Surfaces from Volume Data,” IEEE CG&A,
Vol. 8,No. 5, May 1988, pp. 29-37.

11. R.A.Drebin, L. Carpenter, and P. Hanrahan, “Volume Rendering,”
Computer Graphics (Proc. Siggraph), Vol. 22, No. 4, Aug. 1983, pp.
65-74.

12. K.H. Hoehne and R. Bernstein, “Shading 3D Images from CT Us-
ing Gray-Level Gradient,” I[EEE Trans. Medical Imaging, Vol. MI-
4,No. 1, Mar. 1986, pp. 45-47.

13. D. Dubois and H. Prade, Fuzzy Sets and Systems: Theory and Ap-
plications, Academic Press, New York, 1980.

14. K. Perlin and E.M. Hoffert, “Hypertexture,” Computer Graphics,
Vol. 23, No. 3, July 1989, pp. 253-262.

Sidney W. Wang is a PhD candidate in computer
science at State University of New York at Stony
Brook. His research interests include volume vi-
sualization, voxel-based modeling, and volume
manipulation. Wang received his BS and MS de-
grees in electrical engineering and computer sci-
ence from Johns Hopkins University in 1987 and
1988, respectively.

Arie E. Kaufman is a guest editor of this issue, and his biography appears
with the Guest Editor’s Introduction.

Readers can contact Kaufman at the Department of Computer Sci-
ence, State University of New York at Stony Brook, Stony Brook, NY
11794-4400, e-mail ari@cs.sunysb.edu.

IEEE Computer Graphics and Applications

